2 * QEMU Hypervisor.framework support for Apple Silicon
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu-common.h"
14 #include "qemu/error-report.h"
16 #include "sysemu/runstate.h"
17 #include "sysemu/hvf.h"
18 #include "sysemu/hvf_int.h"
19 #include "sysemu/hw_accel.h"
22 #include <mach/mach_time.h>
24 #include "exec/address-spaces.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
38 #define SYSREG(op0, op1, crn, crm, op2) \
39 ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
40 #define SYSREG_MASK SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
41 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
42 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
43 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
44 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
45 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
46 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
47 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
48 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
49 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
50 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
51 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
52 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
53 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
54 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
55 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
56 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
58 #define WFX_IS_WFE (1 << 0)
60 #define TMR_CTL_ENABLE (1 << 0)
61 #define TMR_CTL_IMASK (1 << 1)
62 #define TMR_CTL_ISTATUS (1 << 2)
64 static void hvf_wfi(CPUState
*cpu
);
66 typedef struct HVFVTimer
{
67 /* Vtimer value during migration and paused state */
71 static HVFVTimer vtimer
;
73 typedef struct ARMHostCPUFeatures
{
78 const char *dtb_compatible
;
81 static ARMHostCPUFeatures arm_host_cpu_features
;
83 struct hvf_reg_match
{
88 static const struct hvf_reg_match hvf_reg_match
[] = {
89 { HV_REG_X0
, offsetof(CPUARMState
, xregs
[0]) },
90 { HV_REG_X1
, offsetof(CPUARMState
, xregs
[1]) },
91 { HV_REG_X2
, offsetof(CPUARMState
, xregs
[2]) },
92 { HV_REG_X3
, offsetof(CPUARMState
, xregs
[3]) },
93 { HV_REG_X4
, offsetof(CPUARMState
, xregs
[4]) },
94 { HV_REG_X5
, offsetof(CPUARMState
, xregs
[5]) },
95 { HV_REG_X6
, offsetof(CPUARMState
, xregs
[6]) },
96 { HV_REG_X7
, offsetof(CPUARMState
, xregs
[7]) },
97 { HV_REG_X8
, offsetof(CPUARMState
, xregs
[8]) },
98 { HV_REG_X9
, offsetof(CPUARMState
, xregs
[9]) },
99 { HV_REG_X10
, offsetof(CPUARMState
, xregs
[10]) },
100 { HV_REG_X11
, offsetof(CPUARMState
, xregs
[11]) },
101 { HV_REG_X12
, offsetof(CPUARMState
, xregs
[12]) },
102 { HV_REG_X13
, offsetof(CPUARMState
, xregs
[13]) },
103 { HV_REG_X14
, offsetof(CPUARMState
, xregs
[14]) },
104 { HV_REG_X15
, offsetof(CPUARMState
, xregs
[15]) },
105 { HV_REG_X16
, offsetof(CPUARMState
, xregs
[16]) },
106 { HV_REG_X17
, offsetof(CPUARMState
, xregs
[17]) },
107 { HV_REG_X18
, offsetof(CPUARMState
, xregs
[18]) },
108 { HV_REG_X19
, offsetof(CPUARMState
, xregs
[19]) },
109 { HV_REG_X20
, offsetof(CPUARMState
, xregs
[20]) },
110 { HV_REG_X21
, offsetof(CPUARMState
, xregs
[21]) },
111 { HV_REG_X22
, offsetof(CPUARMState
, xregs
[22]) },
112 { HV_REG_X23
, offsetof(CPUARMState
, xregs
[23]) },
113 { HV_REG_X24
, offsetof(CPUARMState
, xregs
[24]) },
114 { HV_REG_X25
, offsetof(CPUARMState
, xregs
[25]) },
115 { HV_REG_X26
, offsetof(CPUARMState
, xregs
[26]) },
116 { HV_REG_X27
, offsetof(CPUARMState
, xregs
[27]) },
117 { HV_REG_X28
, offsetof(CPUARMState
, xregs
[28]) },
118 { HV_REG_X29
, offsetof(CPUARMState
, xregs
[29]) },
119 { HV_REG_X30
, offsetof(CPUARMState
, xregs
[30]) },
120 { HV_REG_PC
, offsetof(CPUARMState
, pc
) },
123 static const struct hvf_reg_match hvf_fpreg_match
[] = {
124 { HV_SIMD_FP_REG_Q0
, offsetof(CPUARMState
, vfp
.zregs
[0]) },
125 { HV_SIMD_FP_REG_Q1
, offsetof(CPUARMState
, vfp
.zregs
[1]) },
126 { HV_SIMD_FP_REG_Q2
, offsetof(CPUARMState
, vfp
.zregs
[2]) },
127 { HV_SIMD_FP_REG_Q3
, offsetof(CPUARMState
, vfp
.zregs
[3]) },
128 { HV_SIMD_FP_REG_Q4
, offsetof(CPUARMState
, vfp
.zregs
[4]) },
129 { HV_SIMD_FP_REG_Q5
, offsetof(CPUARMState
, vfp
.zregs
[5]) },
130 { HV_SIMD_FP_REG_Q6
, offsetof(CPUARMState
, vfp
.zregs
[6]) },
131 { HV_SIMD_FP_REG_Q7
, offsetof(CPUARMState
, vfp
.zregs
[7]) },
132 { HV_SIMD_FP_REG_Q8
, offsetof(CPUARMState
, vfp
.zregs
[8]) },
133 { HV_SIMD_FP_REG_Q9
, offsetof(CPUARMState
, vfp
.zregs
[9]) },
134 { HV_SIMD_FP_REG_Q10
, offsetof(CPUARMState
, vfp
.zregs
[10]) },
135 { HV_SIMD_FP_REG_Q11
, offsetof(CPUARMState
, vfp
.zregs
[11]) },
136 { HV_SIMD_FP_REG_Q12
, offsetof(CPUARMState
, vfp
.zregs
[12]) },
137 { HV_SIMD_FP_REG_Q13
, offsetof(CPUARMState
, vfp
.zregs
[13]) },
138 { HV_SIMD_FP_REG_Q14
, offsetof(CPUARMState
, vfp
.zregs
[14]) },
139 { HV_SIMD_FP_REG_Q15
, offsetof(CPUARMState
, vfp
.zregs
[15]) },
140 { HV_SIMD_FP_REG_Q16
, offsetof(CPUARMState
, vfp
.zregs
[16]) },
141 { HV_SIMD_FP_REG_Q17
, offsetof(CPUARMState
, vfp
.zregs
[17]) },
142 { HV_SIMD_FP_REG_Q18
, offsetof(CPUARMState
, vfp
.zregs
[18]) },
143 { HV_SIMD_FP_REG_Q19
, offsetof(CPUARMState
, vfp
.zregs
[19]) },
144 { HV_SIMD_FP_REG_Q20
, offsetof(CPUARMState
, vfp
.zregs
[20]) },
145 { HV_SIMD_FP_REG_Q21
, offsetof(CPUARMState
, vfp
.zregs
[21]) },
146 { HV_SIMD_FP_REG_Q22
, offsetof(CPUARMState
, vfp
.zregs
[22]) },
147 { HV_SIMD_FP_REG_Q23
, offsetof(CPUARMState
, vfp
.zregs
[23]) },
148 { HV_SIMD_FP_REG_Q24
, offsetof(CPUARMState
, vfp
.zregs
[24]) },
149 { HV_SIMD_FP_REG_Q25
, offsetof(CPUARMState
, vfp
.zregs
[25]) },
150 { HV_SIMD_FP_REG_Q26
, offsetof(CPUARMState
, vfp
.zregs
[26]) },
151 { HV_SIMD_FP_REG_Q27
, offsetof(CPUARMState
, vfp
.zregs
[27]) },
152 { HV_SIMD_FP_REG_Q28
, offsetof(CPUARMState
, vfp
.zregs
[28]) },
153 { HV_SIMD_FP_REG_Q29
, offsetof(CPUARMState
, vfp
.zregs
[29]) },
154 { HV_SIMD_FP_REG_Q30
, offsetof(CPUARMState
, vfp
.zregs
[30]) },
155 { HV_SIMD_FP_REG_Q31
, offsetof(CPUARMState
, vfp
.zregs
[31]) },
158 struct hvf_sreg_match
{
164 static struct hvf_sreg_match hvf_sreg_match
[] = {
165 { HV_SYS_REG_DBGBVR0_EL1
, HVF_SYSREG(0, 0, 14, 0, 4) },
166 { HV_SYS_REG_DBGBCR0_EL1
, HVF_SYSREG(0, 0, 14, 0, 5) },
167 { HV_SYS_REG_DBGWVR0_EL1
, HVF_SYSREG(0, 0, 14, 0, 6) },
168 { HV_SYS_REG_DBGWCR0_EL1
, HVF_SYSREG(0, 0, 14, 0, 7) },
170 { HV_SYS_REG_DBGBVR1_EL1
, HVF_SYSREG(0, 1, 14, 0, 4) },
171 { HV_SYS_REG_DBGBCR1_EL1
, HVF_SYSREG(0, 1, 14, 0, 5) },
172 { HV_SYS_REG_DBGWVR1_EL1
, HVF_SYSREG(0, 1, 14, 0, 6) },
173 { HV_SYS_REG_DBGWCR1_EL1
, HVF_SYSREG(0, 1, 14, 0, 7) },
175 { HV_SYS_REG_DBGBVR2_EL1
, HVF_SYSREG(0, 2, 14, 0, 4) },
176 { HV_SYS_REG_DBGBCR2_EL1
, HVF_SYSREG(0, 2, 14, 0, 5) },
177 { HV_SYS_REG_DBGWVR2_EL1
, HVF_SYSREG(0, 2, 14, 0, 6) },
178 { HV_SYS_REG_DBGWCR2_EL1
, HVF_SYSREG(0, 2, 14, 0, 7) },
180 { HV_SYS_REG_DBGBVR3_EL1
, HVF_SYSREG(0, 3, 14, 0, 4) },
181 { HV_SYS_REG_DBGBCR3_EL1
, HVF_SYSREG(0, 3, 14, 0, 5) },
182 { HV_SYS_REG_DBGWVR3_EL1
, HVF_SYSREG(0, 3, 14, 0, 6) },
183 { HV_SYS_REG_DBGWCR3_EL1
, HVF_SYSREG(0, 3, 14, 0, 7) },
185 { HV_SYS_REG_DBGBVR4_EL1
, HVF_SYSREG(0, 4, 14, 0, 4) },
186 { HV_SYS_REG_DBGBCR4_EL1
, HVF_SYSREG(0, 4, 14, 0, 5) },
187 { HV_SYS_REG_DBGWVR4_EL1
, HVF_SYSREG(0, 4, 14, 0, 6) },
188 { HV_SYS_REG_DBGWCR4_EL1
, HVF_SYSREG(0, 4, 14, 0, 7) },
190 { HV_SYS_REG_DBGBVR5_EL1
, HVF_SYSREG(0, 5, 14, 0, 4) },
191 { HV_SYS_REG_DBGBCR5_EL1
, HVF_SYSREG(0, 5, 14, 0, 5) },
192 { HV_SYS_REG_DBGWVR5_EL1
, HVF_SYSREG(0, 5, 14, 0, 6) },
193 { HV_SYS_REG_DBGWCR5_EL1
, HVF_SYSREG(0, 5, 14, 0, 7) },
195 { HV_SYS_REG_DBGBVR6_EL1
, HVF_SYSREG(0, 6, 14, 0, 4) },
196 { HV_SYS_REG_DBGBCR6_EL1
, HVF_SYSREG(0, 6, 14, 0, 5) },
197 { HV_SYS_REG_DBGWVR6_EL1
, HVF_SYSREG(0, 6, 14, 0, 6) },
198 { HV_SYS_REG_DBGWCR6_EL1
, HVF_SYSREG(0, 6, 14, 0, 7) },
200 { HV_SYS_REG_DBGBVR7_EL1
, HVF_SYSREG(0, 7, 14, 0, 4) },
201 { HV_SYS_REG_DBGBCR7_EL1
, HVF_SYSREG(0, 7, 14, 0, 5) },
202 { HV_SYS_REG_DBGWVR7_EL1
, HVF_SYSREG(0, 7, 14, 0, 6) },
203 { HV_SYS_REG_DBGWCR7_EL1
, HVF_SYSREG(0, 7, 14, 0, 7) },
205 { HV_SYS_REG_DBGBVR8_EL1
, HVF_SYSREG(0, 8, 14, 0, 4) },
206 { HV_SYS_REG_DBGBCR8_EL1
, HVF_SYSREG(0, 8, 14, 0, 5) },
207 { HV_SYS_REG_DBGWVR8_EL1
, HVF_SYSREG(0, 8, 14, 0, 6) },
208 { HV_SYS_REG_DBGWCR8_EL1
, HVF_SYSREG(0, 8, 14, 0, 7) },
210 { HV_SYS_REG_DBGBVR9_EL1
, HVF_SYSREG(0, 9, 14, 0, 4) },
211 { HV_SYS_REG_DBGBCR9_EL1
, HVF_SYSREG(0, 9, 14, 0, 5) },
212 { HV_SYS_REG_DBGWVR9_EL1
, HVF_SYSREG(0, 9, 14, 0, 6) },
213 { HV_SYS_REG_DBGWCR9_EL1
, HVF_SYSREG(0, 9, 14, 0, 7) },
215 { HV_SYS_REG_DBGBVR10_EL1
, HVF_SYSREG(0, 10, 14, 0, 4) },
216 { HV_SYS_REG_DBGBCR10_EL1
, HVF_SYSREG(0, 10, 14, 0, 5) },
217 { HV_SYS_REG_DBGWVR10_EL1
, HVF_SYSREG(0, 10, 14, 0, 6) },
218 { HV_SYS_REG_DBGWCR10_EL1
, HVF_SYSREG(0, 10, 14, 0, 7) },
220 { HV_SYS_REG_DBGBVR11_EL1
, HVF_SYSREG(0, 11, 14, 0, 4) },
221 { HV_SYS_REG_DBGBCR11_EL1
, HVF_SYSREG(0, 11, 14, 0, 5) },
222 { HV_SYS_REG_DBGWVR11_EL1
, HVF_SYSREG(0, 11, 14, 0, 6) },
223 { HV_SYS_REG_DBGWCR11_EL1
, HVF_SYSREG(0, 11, 14, 0, 7) },
225 { HV_SYS_REG_DBGBVR12_EL1
, HVF_SYSREG(0, 12, 14, 0, 4) },
226 { HV_SYS_REG_DBGBCR12_EL1
, HVF_SYSREG(0, 12, 14, 0, 5) },
227 { HV_SYS_REG_DBGWVR12_EL1
, HVF_SYSREG(0, 12, 14, 0, 6) },
228 { HV_SYS_REG_DBGWCR12_EL1
, HVF_SYSREG(0, 12, 14, 0, 7) },
230 { HV_SYS_REG_DBGBVR13_EL1
, HVF_SYSREG(0, 13, 14, 0, 4) },
231 { HV_SYS_REG_DBGBCR13_EL1
, HVF_SYSREG(0, 13, 14, 0, 5) },
232 { HV_SYS_REG_DBGWVR13_EL1
, HVF_SYSREG(0, 13, 14, 0, 6) },
233 { HV_SYS_REG_DBGWCR13_EL1
, HVF_SYSREG(0, 13, 14, 0, 7) },
235 { HV_SYS_REG_DBGBVR14_EL1
, HVF_SYSREG(0, 14, 14, 0, 4) },
236 { HV_SYS_REG_DBGBCR14_EL1
, HVF_SYSREG(0, 14, 14, 0, 5) },
237 { HV_SYS_REG_DBGWVR14_EL1
, HVF_SYSREG(0, 14, 14, 0, 6) },
238 { HV_SYS_REG_DBGWCR14_EL1
, HVF_SYSREG(0, 14, 14, 0, 7) },
240 { HV_SYS_REG_DBGBVR15_EL1
, HVF_SYSREG(0, 15, 14, 0, 4) },
241 { HV_SYS_REG_DBGBCR15_EL1
, HVF_SYSREG(0, 15, 14, 0, 5) },
242 { HV_SYS_REG_DBGWVR15_EL1
, HVF_SYSREG(0, 15, 14, 0, 6) },
243 { HV_SYS_REG_DBGWCR15_EL1
, HVF_SYSREG(0, 15, 14, 0, 7) },
245 #ifdef SYNC_NO_RAW_REGS
247 * The registers below are manually synced on init because they are
248 * marked as NO_RAW. We still list them to make number space sync easier.
250 { HV_SYS_REG_MDCCINT_EL1
, HVF_SYSREG(0, 2, 2, 0, 0) },
251 { HV_SYS_REG_MIDR_EL1
, HVF_SYSREG(0, 0, 3, 0, 0) },
252 { HV_SYS_REG_MPIDR_EL1
, HVF_SYSREG(0, 0, 3, 0, 5) },
253 { HV_SYS_REG_ID_AA64PFR0_EL1
, HVF_SYSREG(0, 4, 3, 0, 0) },
255 { HV_SYS_REG_ID_AA64PFR1_EL1
, HVF_SYSREG(0, 4, 3, 0, 2) },
256 { HV_SYS_REG_ID_AA64DFR0_EL1
, HVF_SYSREG(0, 5, 3, 0, 0) },
257 { HV_SYS_REG_ID_AA64DFR1_EL1
, HVF_SYSREG(0, 5, 3, 0, 1) },
258 { HV_SYS_REG_ID_AA64ISAR0_EL1
, HVF_SYSREG(0, 6, 3, 0, 0) },
259 { HV_SYS_REG_ID_AA64ISAR1_EL1
, HVF_SYSREG(0, 6, 3, 0, 1) },
261 /* We keep the hardware MMFR0 around. HW limits are there anyway */
262 { HV_SYS_REG_ID_AA64MMFR0_EL1
, HVF_SYSREG(0, 7, 3, 0, 0) },
264 { HV_SYS_REG_ID_AA64MMFR1_EL1
, HVF_SYSREG(0, 7, 3, 0, 1) },
265 { HV_SYS_REG_ID_AA64MMFR2_EL1
, HVF_SYSREG(0, 7, 3, 0, 2) },
267 { HV_SYS_REG_MDSCR_EL1
, HVF_SYSREG(0, 2, 2, 0, 2) },
268 { HV_SYS_REG_SCTLR_EL1
, HVF_SYSREG(1, 0, 3, 0, 0) },
269 { HV_SYS_REG_CPACR_EL1
, HVF_SYSREG(1, 0, 3, 0, 2) },
270 { HV_SYS_REG_TTBR0_EL1
, HVF_SYSREG(2, 0, 3, 0, 0) },
271 { HV_SYS_REG_TTBR1_EL1
, HVF_SYSREG(2, 0, 3, 0, 1) },
272 { HV_SYS_REG_TCR_EL1
, HVF_SYSREG(2, 0, 3, 0, 2) },
274 { HV_SYS_REG_APIAKEYLO_EL1
, HVF_SYSREG(2, 1, 3, 0, 0) },
275 { HV_SYS_REG_APIAKEYHI_EL1
, HVF_SYSREG(2, 1, 3, 0, 1) },
276 { HV_SYS_REG_APIBKEYLO_EL1
, HVF_SYSREG(2, 1, 3, 0, 2) },
277 { HV_SYS_REG_APIBKEYHI_EL1
, HVF_SYSREG(2, 1, 3, 0, 3) },
278 { HV_SYS_REG_APDAKEYLO_EL1
, HVF_SYSREG(2, 2, 3, 0, 0) },
279 { HV_SYS_REG_APDAKEYHI_EL1
, HVF_SYSREG(2, 2, 3, 0, 1) },
280 { HV_SYS_REG_APDBKEYLO_EL1
, HVF_SYSREG(2, 2, 3, 0, 2) },
281 { HV_SYS_REG_APDBKEYHI_EL1
, HVF_SYSREG(2, 2, 3, 0, 3) },
282 { HV_SYS_REG_APGAKEYLO_EL1
, HVF_SYSREG(2, 3, 3, 0, 0) },
283 { HV_SYS_REG_APGAKEYHI_EL1
, HVF_SYSREG(2, 3, 3, 0, 1) },
285 { HV_SYS_REG_SPSR_EL1
, HVF_SYSREG(4, 0, 3, 0, 0) },
286 { HV_SYS_REG_ELR_EL1
, HVF_SYSREG(4, 0, 3, 0, 1) },
287 { HV_SYS_REG_SP_EL0
, HVF_SYSREG(4, 1, 3, 0, 0) },
288 { HV_SYS_REG_AFSR0_EL1
, HVF_SYSREG(5, 1, 3, 0, 0) },
289 { HV_SYS_REG_AFSR1_EL1
, HVF_SYSREG(5, 1, 3, 0, 1) },
290 { HV_SYS_REG_ESR_EL1
, HVF_SYSREG(5, 2, 3, 0, 0) },
291 { HV_SYS_REG_FAR_EL1
, HVF_SYSREG(6, 0, 3, 0, 0) },
292 { HV_SYS_REG_PAR_EL1
, HVF_SYSREG(7, 4, 3, 0, 0) },
293 { HV_SYS_REG_MAIR_EL1
, HVF_SYSREG(10, 2, 3, 0, 0) },
294 { HV_SYS_REG_AMAIR_EL1
, HVF_SYSREG(10, 3, 3, 0, 0) },
295 { HV_SYS_REG_VBAR_EL1
, HVF_SYSREG(12, 0, 3, 0, 0) },
296 { HV_SYS_REG_CONTEXTIDR_EL1
, HVF_SYSREG(13, 0, 3, 0, 1) },
297 { HV_SYS_REG_TPIDR_EL1
, HVF_SYSREG(13, 0, 3, 0, 4) },
298 { HV_SYS_REG_CNTKCTL_EL1
, HVF_SYSREG(14, 1, 3, 0, 0) },
299 { HV_SYS_REG_CSSELR_EL1
, HVF_SYSREG(0, 0, 3, 2, 0) },
300 { HV_SYS_REG_TPIDR_EL0
, HVF_SYSREG(13, 0, 3, 3, 2) },
301 { HV_SYS_REG_TPIDRRO_EL0
, HVF_SYSREG(13, 0, 3, 3, 3) },
302 { HV_SYS_REG_CNTV_CTL_EL0
, HVF_SYSREG(14, 3, 3, 3, 1) },
303 { HV_SYS_REG_CNTV_CVAL_EL0
, HVF_SYSREG(14, 3, 3, 3, 2) },
304 { HV_SYS_REG_SP_EL1
, HVF_SYSREG(4, 1, 3, 4, 0) },
307 int hvf_get_registers(CPUState
*cpu
)
309 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
310 CPUARMState
*env
= &arm_cpu
->env
;
313 hv_simd_fp_uchar16_t fpval
;
316 for (i
= 0; i
< ARRAY_SIZE(hvf_reg_match
); i
++) {
317 ret
= hv_vcpu_get_reg(cpu
->hvf
->fd
, hvf_reg_match
[i
].reg
, &val
);
318 *(uint64_t *)((void *)env
+ hvf_reg_match
[i
].offset
) = val
;
322 for (i
= 0; i
< ARRAY_SIZE(hvf_fpreg_match
); i
++) {
323 ret
= hv_vcpu_get_simd_fp_reg(cpu
->hvf
->fd
, hvf_fpreg_match
[i
].reg
,
325 memcpy((void *)env
+ hvf_fpreg_match
[i
].offset
, &fpval
, sizeof(fpval
));
330 ret
= hv_vcpu_get_reg(cpu
->hvf
->fd
, HV_REG_FPCR
, &val
);
332 vfp_set_fpcr(env
, val
);
335 ret
= hv_vcpu_get_reg(cpu
->hvf
->fd
, HV_REG_FPSR
, &val
);
337 vfp_set_fpsr(env
, val
);
339 ret
= hv_vcpu_get_reg(cpu
->hvf
->fd
, HV_REG_CPSR
, &val
);
341 pstate_write(env
, val
);
343 for (i
= 0; i
< ARRAY_SIZE(hvf_sreg_match
); i
++) {
344 if (hvf_sreg_match
[i
].cp_idx
== -1) {
348 ret
= hv_vcpu_get_sys_reg(cpu
->hvf
->fd
, hvf_sreg_match
[i
].reg
, &val
);
351 arm_cpu
->cpreg_values
[hvf_sreg_match
[i
].cp_idx
] = val
;
353 assert(write_list_to_cpustate(arm_cpu
));
355 aarch64_restore_sp(env
, arm_current_el(env
));
360 int hvf_put_registers(CPUState
*cpu
)
362 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
363 CPUARMState
*env
= &arm_cpu
->env
;
366 hv_simd_fp_uchar16_t fpval
;
369 for (i
= 0; i
< ARRAY_SIZE(hvf_reg_match
); i
++) {
370 val
= *(uint64_t *)((void *)env
+ hvf_reg_match
[i
].offset
);
371 ret
= hv_vcpu_set_reg(cpu
->hvf
->fd
, hvf_reg_match
[i
].reg
, val
);
375 for (i
= 0; i
< ARRAY_SIZE(hvf_fpreg_match
); i
++) {
376 memcpy(&fpval
, (void *)env
+ hvf_fpreg_match
[i
].offset
, sizeof(fpval
));
377 ret
= hv_vcpu_set_simd_fp_reg(cpu
->hvf
->fd
, hvf_fpreg_match
[i
].reg
,
382 ret
= hv_vcpu_set_reg(cpu
->hvf
->fd
, HV_REG_FPCR
, vfp_get_fpcr(env
));
385 ret
= hv_vcpu_set_reg(cpu
->hvf
->fd
, HV_REG_FPSR
, vfp_get_fpsr(env
));
388 ret
= hv_vcpu_set_reg(cpu
->hvf
->fd
, HV_REG_CPSR
, pstate_read(env
));
391 aarch64_save_sp(env
, arm_current_el(env
));
393 assert(write_cpustate_to_list(arm_cpu
, false));
394 for (i
= 0; i
< ARRAY_SIZE(hvf_sreg_match
); i
++) {
395 if (hvf_sreg_match
[i
].cp_idx
== -1) {
399 val
= arm_cpu
->cpreg_values
[hvf_sreg_match
[i
].cp_idx
];
400 ret
= hv_vcpu_set_sys_reg(cpu
->hvf
->fd
, hvf_sreg_match
[i
].reg
, val
);
404 ret
= hv_vcpu_set_vtimer_offset(cpu
->hvf
->fd
, hvf_state
->vtimer_offset
);
410 static void flush_cpu_state(CPUState
*cpu
)
412 if (cpu
->vcpu_dirty
) {
413 hvf_put_registers(cpu
);
414 cpu
->vcpu_dirty
= false;
418 static void hvf_set_reg(CPUState
*cpu
, int rt
, uint64_t val
)
422 flush_cpu_state(cpu
);
425 r
= hv_vcpu_set_reg(cpu
->hvf
->fd
, HV_REG_X0
+ rt
, val
);
430 static uint64_t hvf_get_reg(CPUState
*cpu
, int rt
)
435 flush_cpu_state(cpu
);
438 r
= hv_vcpu_get_reg(cpu
->hvf
->fd
, HV_REG_X0
+ rt
, &val
);
445 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
447 ARMISARegisters host_isar
= {};
448 const struct isar_regs
{
452 { HV_SYS_REG_ID_AA64PFR0_EL1
, &host_isar
.id_aa64pfr0
},
453 { HV_SYS_REG_ID_AA64PFR1_EL1
, &host_isar
.id_aa64pfr1
},
454 { HV_SYS_REG_ID_AA64DFR0_EL1
, &host_isar
.id_aa64dfr0
},
455 { HV_SYS_REG_ID_AA64DFR1_EL1
, &host_isar
.id_aa64dfr1
},
456 { HV_SYS_REG_ID_AA64ISAR0_EL1
, &host_isar
.id_aa64isar0
},
457 { HV_SYS_REG_ID_AA64ISAR1_EL1
, &host_isar
.id_aa64isar1
},
458 { HV_SYS_REG_ID_AA64MMFR0_EL1
, &host_isar
.id_aa64mmfr0
},
459 { HV_SYS_REG_ID_AA64MMFR1_EL1
, &host_isar
.id_aa64mmfr1
},
460 { HV_SYS_REG_ID_AA64MMFR2_EL1
, &host_isar
.id_aa64mmfr2
},
463 hv_return_t r
= HV_SUCCESS
;
464 hv_vcpu_exit_t
*exit
;
467 ahcf
->dtb_compatible
= "arm,arm-v8";
468 ahcf
->features
= (1ULL << ARM_FEATURE_V8
) |
469 (1ULL << ARM_FEATURE_NEON
) |
470 (1ULL << ARM_FEATURE_AARCH64
) |
471 (1ULL << ARM_FEATURE_PMU
) |
472 (1ULL << ARM_FEATURE_GENERIC_TIMER
);
474 /* We set up a small vcpu to extract host registers */
476 if (hv_vcpu_create(&fd
, &exit
, NULL
) != HV_SUCCESS
) {
480 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
481 r
|= hv_vcpu_get_sys_reg(fd
, regs
[i
].reg
, regs
[i
].val
);
483 r
|= hv_vcpu_get_sys_reg(fd
, HV_SYS_REG_MIDR_EL1
, &ahcf
->midr
);
484 r
|= hv_vcpu_destroy(fd
);
486 ahcf
->isar
= host_isar
;
489 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
490 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
492 ahcf
->reset_sctlr
= 0x30100180;
494 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
495 * let's disable it on boot and then allow guest software to turn it on by
498 ahcf
->reset_sctlr
|= 0x00800000;
500 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
501 if ((host_isar
.id_aa64pfr0
& 0xff) != 0x11) {
505 return r
== HV_SUCCESS
;
508 void hvf_arm_set_cpu_features_from_host(ARMCPU
*cpu
)
510 if (!arm_host_cpu_features
.dtb_compatible
) {
511 if (!hvf_enabled() ||
512 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features
)) {
514 * We can't report this error yet, so flag that we need to
515 * in arm_cpu_realizefn().
517 cpu
->host_cpu_probe_failed
= true;
522 cpu
->dtb_compatible
= arm_host_cpu_features
.dtb_compatible
;
523 cpu
->isar
= arm_host_cpu_features
.isar
;
524 cpu
->env
.features
= arm_host_cpu_features
.features
;
525 cpu
->midr
= arm_host_cpu_features
.midr
;
526 cpu
->reset_sctlr
= arm_host_cpu_features
.reset_sctlr
;
529 void hvf_arch_vcpu_destroy(CPUState
*cpu
)
533 int hvf_arch_init_vcpu(CPUState
*cpu
)
535 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
536 CPUARMState
*env
= &arm_cpu
->env
;
537 uint32_t sregs_match_len
= ARRAY_SIZE(hvf_sreg_match
);
538 uint32_t sregs_cnt
= 0;
544 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu
->gt_cntfrq_hz
));
546 /* Allocate enough space for our sysreg sync */
547 arm_cpu
->cpreg_indexes
= g_renew(uint64_t, arm_cpu
->cpreg_indexes
,
549 arm_cpu
->cpreg_values
= g_renew(uint64_t, arm_cpu
->cpreg_values
,
551 arm_cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t,
552 arm_cpu
->cpreg_vmstate_indexes
,
554 arm_cpu
->cpreg_vmstate_values
= g_renew(uint64_t,
555 arm_cpu
->cpreg_vmstate_values
,
558 memset(arm_cpu
->cpreg_values
, 0, sregs_match_len
* sizeof(uint64_t));
560 /* Populate cp list for all known sysregs */
561 for (i
= 0; i
< sregs_match_len
; i
++) {
562 const ARMCPRegInfo
*ri
;
563 uint32_t key
= hvf_sreg_match
[i
].key
;
565 ri
= get_arm_cp_reginfo(arm_cpu
->cp_regs
, key
);
567 assert(!(ri
->type
& ARM_CP_NO_RAW
));
568 hvf_sreg_match
[i
].cp_idx
= sregs_cnt
;
569 arm_cpu
->cpreg_indexes
[sregs_cnt
++] = cpreg_to_kvm_id(key
);
571 hvf_sreg_match
[i
].cp_idx
= -1;
574 arm_cpu
->cpreg_array_len
= sregs_cnt
;
575 arm_cpu
->cpreg_vmstate_array_len
= sregs_cnt
;
577 assert(write_cpustate_to_list(arm_cpu
, false));
579 /* Set CP_NO_RAW system registers on init */
580 ret
= hv_vcpu_set_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_MIDR_EL1
,
584 ret
= hv_vcpu_set_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_MPIDR_EL1
,
585 arm_cpu
->mp_affinity
);
588 ret
= hv_vcpu_get_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_ID_AA64PFR0_EL1
, &pfr
);
590 pfr
|= env
->gicv3state
? (1 << 24) : 0;
591 ret
= hv_vcpu_set_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_ID_AA64PFR0_EL1
, pfr
);
594 /* We're limited to underlying hardware caps, override internal versions */
595 ret
= hv_vcpu_get_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_ID_AA64MMFR0_EL1
,
596 &arm_cpu
->isar
.id_aa64mmfr0
);
602 void hvf_kick_vcpu_thread(CPUState
*cpu
)
604 cpus_kick_thread(cpu
);
605 hv_vcpus_exit(&cpu
->hvf
->fd
, 1);
608 static void hvf_raise_exception(CPUState
*cpu
, uint32_t excp
,
611 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
612 CPUARMState
*env
= &arm_cpu
->env
;
614 cpu
->exception_index
= excp
;
615 env
->exception
.target_el
= 1;
616 env
->exception
.syndrome
= syndrome
;
618 arm_cpu_do_interrupt(cpu
);
621 static void hvf_psci_cpu_off(ARMCPU
*arm_cpu
)
623 int32_t ret
= arm_set_cpu_off(arm_cpu
->mp_affinity
);
624 assert(ret
== QEMU_ARM_POWERCTL_RET_SUCCESS
);
628 * Handle a PSCI call.
630 * Returns 0 on success
631 * -1 when the PSCI call is unknown,
633 static bool hvf_handle_psci_call(CPUState
*cpu
)
635 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
636 CPUARMState
*env
= &arm_cpu
->env
;
637 uint64_t param
[4] = {
643 uint64_t context_id
, mpidr
;
644 bool target_aarch64
= true;
645 CPUState
*target_cpu_state
;
651 trace_hvf_psci_call(param
[0], param
[1], param
[2], param
[3],
652 arm_cpu
->mp_affinity
);
655 case QEMU_PSCI_0_2_FN_PSCI_VERSION
:
656 ret
= QEMU_PSCI_0_2_RET_VERSION_0_2
;
658 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE
:
659 ret
= QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED
; /* No trusted OS */
661 case QEMU_PSCI_0_2_FN_AFFINITY_INFO
:
662 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO
:
667 target_cpu_state
= arm_get_cpu_by_id(mpidr
);
668 if (!target_cpu_state
) {
669 ret
= QEMU_PSCI_RET_INVALID_PARAMS
;
672 target_cpu
= ARM_CPU(target_cpu_state
);
674 ret
= target_cpu
->power_state
;
677 /* Everything above affinity level 0 is always on. */
681 case QEMU_PSCI_0_2_FN_SYSTEM_RESET
:
682 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
684 * QEMU reset and shutdown are async requests, but PSCI
685 * mandates that we never return from the reset/shutdown
686 * call, so power the CPU off now so it doesn't execute
689 hvf_psci_cpu_off(arm_cpu
);
691 case QEMU_PSCI_0_2_FN_SYSTEM_OFF
:
692 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
693 hvf_psci_cpu_off(arm_cpu
);
695 case QEMU_PSCI_0_1_FN_CPU_ON
:
696 case QEMU_PSCI_0_2_FN_CPU_ON
:
697 case QEMU_PSCI_0_2_FN64_CPU_ON
:
700 context_id
= param
[3];
701 ret
= arm_set_cpu_on(mpidr
, entry
, context_id
,
702 target_el
, target_aarch64
);
704 case QEMU_PSCI_0_1_FN_CPU_OFF
:
705 case QEMU_PSCI_0_2_FN_CPU_OFF
:
706 hvf_psci_cpu_off(arm_cpu
);
708 case QEMU_PSCI_0_1_FN_CPU_SUSPEND
:
709 case QEMU_PSCI_0_2_FN_CPU_SUSPEND
:
710 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND
:
711 /* Affinity levels are not supported in QEMU */
712 if (param
[1] & 0xfffe0000) {
713 ret
= QEMU_PSCI_RET_INVALID_PARAMS
;
716 /* Powerdown is not supported, we always go into WFI */
720 case QEMU_PSCI_0_1_FN_MIGRATE
:
721 case QEMU_PSCI_0_2_FN_MIGRATE
:
722 ret
= QEMU_PSCI_RET_NOT_SUPPORTED
;
732 static int hvf_sysreg_read(CPUState
*cpu
, uint32_t reg
, uint32_t rt
)
734 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
735 CPUARMState
*env
= &arm_cpu
->env
;
739 case SYSREG_CNTPCT_EL0
:
740 val
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) /
741 gt_cntfrq_period_ns(arm_cpu
);
743 case SYSREG_PMCR_EL0
:
744 val
= env
->cp15
.c9_pmcr
;
746 case SYSREG_PMCCNTR_EL0
:
748 val
= env
->cp15
.c15_ccnt
;
751 case SYSREG_PMCNTENCLR_EL0
:
752 val
= env
->cp15
.c9_pmcnten
;
754 case SYSREG_PMOVSCLR_EL0
:
755 val
= env
->cp15
.c9_pmovsr
;
757 case SYSREG_PMSELR_EL0
:
758 val
= env
->cp15
.c9_pmselr
;
760 case SYSREG_PMINTENCLR_EL1
:
761 val
= env
->cp15
.c9_pminten
;
763 case SYSREG_PMCCFILTR_EL0
:
764 val
= env
->cp15
.pmccfiltr_el0
;
766 case SYSREG_PMCNTENSET_EL0
:
767 val
= env
->cp15
.c9_pmcnten
;
769 case SYSREG_PMUSERENR_EL0
:
770 val
= env
->cp15
.c9_pmuserenr
;
772 case SYSREG_PMCEID0_EL0
:
773 case SYSREG_PMCEID1_EL0
:
774 /* We can't really count anything yet, declare all events invalid */
777 case SYSREG_OSLSR_EL1
:
778 val
= env
->cp15
.oslsr_el1
;
780 case SYSREG_OSDLR_EL1
:
784 cpu_synchronize_state(cpu
);
785 trace_hvf_unhandled_sysreg_read(env
->pc
, reg
,
791 hvf_raise_exception(cpu
, EXCP_UDEF
, syn_uncategorized());
795 trace_hvf_sysreg_read(reg
,
802 hvf_set_reg(cpu
, rt
, val
);
807 static void pmu_update_irq(CPUARMState
*env
)
809 ARMCPU
*cpu
= env_archcpu(env
);
810 qemu_set_irq(cpu
->pmu_interrupt
, (env
->cp15
.c9_pmcr
& PMCRE
) &&
811 (env
->cp15
.c9_pminten
& env
->cp15
.c9_pmovsr
));
814 static bool pmu_event_supported(uint16_t number
)
819 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
820 * the current EL, security state, and register configuration.
822 static bool pmu_counter_enabled(CPUARMState
*env
, uint8_t counter
)
825 bool enabled
, filtered
= true;
826 int el
= arm_current_el(env
);
828 enabled
= (env
->cp15
.c9_pmcr
& PMCRE
) &&
829 (env
->cp15
.c9_pmcnten
& (1 << counter
));
832 filter
= env
->cp15
.pmccfiltr_el0
;
834 filter
= env
->cp15
.c14_pmevtyper
[counter
];
838 filtered
= filter
& PMXEVTYPER_U
;
839 } else if (el
== 1) {
840 filtered
= filter
& PMXEVTYPER_P
;
845 * If not checking PMCCNTR, ensure the counter is setup to an event we
848 uint16_t event
= filter
& PMXEVTYPER_EVTCOUNT
;
849 if (!pmu_event_supported(event
)) {
854 return enabled
&& !filtered
;
857 static void pmswinc_write(CPUARMState
*env
, uint64_t value
)
860 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
861 /* Increment a counter's count iff: */
862 if ((value
& (1 << i
)) && /* counter's bit is set */
863 /* counter is enabled and not filtered */
864 pmu_counter_enabled(env
, i
) &&
865 /* counter is SW_INCR */
866 (env
->cp15
.c14_pmevtyper
[i
] & PMXEVTYPER_EVTCOUNT
) == 0x0) {
868 * Detect if this write causes an overflow since we can't predict
869 * PMSWINC overflows like we can for other events
871 uint32_t new_pmswinc
= env
->cp15
.c14_pmevcntr
[i
] + 1;
873 if (env
->cp15
.c14_pmevcntr
[i
] & ~new_pmswinc
& INT32_MIN
) {
874 env
->cp15
.c9_pmovsr
|= (1 << i
);
878 env
->cp15
.c14_pmevcntr
[i
] = new_pmswinc
;
883 static int hvf_sysreg_write(CPUState
*cpu
, uint32_t reg
, uint64_t val
)
885 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
886 CPUARMState
*env
= &arm_cpu
->env
;
888 trace_hvf_sysreg_write(reg
,
897 case SYSREG_PMCCNTR_EL0
:
899 env
->cp15
.c15_ccnt
= val
;
902 case SYSREG_PMCR_EL0
:
906 /* The counter has been reset */
907 env
->cp15
.c15_ccnt
= 0;
912 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
913 env
->cp15
.c14_pmevcntr
[i
] = 0;
917 env
->cp15
.c9_pmcr
&= ~PMCR_WRITEABLE_MASK
;
918 env
->cp15
.c9_pmcr
|= (val
& PMCR_WRITEABLE_MASK
);
922 case SYSREG_PMUSERENR_EL0
:
923 env
->cp15
.c9_pmuserenr
= val
& 0xf;
925 case SYSREG_PMCNTENSET_EL0
:
926 env
->cp15
.c9_pmcnten
|= (val
& pmu_counter_mask(env
));
928 case SYSREG_PMCNTENCLR_EL0
:
929 env
->cp15
.c9_pmcnten
&= ~(val
& pmu_counter_mask(env
));
931 case SYSREG_PMINTENCLR_EL1
:
933 env
->cp15
.c9_pminten
|= val
;
936 case SYSREG_PMOVSCLR_EL0
:
938 env
->cp15
.c9_pmovsr
&= ~val
;
941 case SYSREG_PMSWINC_EL0
:
943 pmswinc_write(env
, val
);
946 case SYSREG_PMSELR_EL0
:
947 env
->cp15
.c9_pmselr
= val
& 0x1f;
949 case SYSREG_PMCCFILTR_EL0
:
951 env
->cp15
.pmccfiltr_el0
= val
& PMCCFILTR_EL0
;
954 case SYSREG_OSLAR_EL1
:
955 env
->cp15
.oslsr_el1
= val
& 1;
957 case SYSREG_OSDLR_EL1
:
961 cpu_synchronize_state(cpu
);
962 trace_hvf_unhandled_sysreg_write(env
->pc
, reg
,
968 hvf_raise_exception(cpu
, EXCP_UDEF
, syn_uncategorized());
975 static int hvf_inject_interrupts(CPUState
*cpu
)
977 if (cpu
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
978 trace_hvf_inject_fiq();
979 hv_vcpu_set_pending_interrupt(cpu
->hvf
->fd
, HV_INTERRUPT_TYPE_FIQ
,
983 if (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) {
984 trace_hvf_inject_irq();
985 hv_vcpu_set_pending_interrupt(cpu
->hvf
->fd
, HV_INTERRUPT_TYPE_IRQ
,
992 static uint64_t hvf_vtimer_val_raw(void)
995 * mach_absolute_time() returns the vtimer value without the VM
996 * offset that we define. Add our own offset on top.
998 return mach_absolute_time() - hvf_state
->vtimer_offset
;
1001 static uint64_t hvf_vtimer_val(void)
1003 if (!runstate_is_running()) {
1004 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1005 return vtimer
.vtimer_val
;
1008 return hvf_vtimer_val_raw();
1011 static void hvf_wait_for_ipi(CPUState
*cpu
, struct timespec
*ts
)
1014 * Use pselect to sleep so that other threads can IPI us while we're
1017 qatomic_mb_set(&cpu
->thread_kicked
, false);
1018 qemu_mutex_unlock_iothread();
1019 pselect(0, 0, 0, 0, ts
, &cpu
->hvf
->unblock_ipi_mask
);
1020 qemu_mutex_lock_iothread();
1023 static void hvf_wfi(CPUState
*cpu
)
1025 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
1030 int64_t ticks_to_sleep
;
1035 if (cpu
->interrupt_request
& (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_FIQ
)) {
1036 /* Interrupt pending, no need to wait */
1040 r
= hv_vcpu_get_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_CNTV_CTL_EL0
, &ctl
);
1043 if (!(ctl
& 1) || (ctl
& 2)) {
1044 /* Timer disabled or masked, just wait for an IPI. */
1045 hvf_wait_for_ipi(cpu
, NULL
);
1049 r
= hv_vcpu_get_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_CNTV_CVAL_EL0
, &cval
);
1052 ticks_to_sleep
= cval
- hvf_vtimer_val();
1053 if (ticks_to_sleep
< 0) {
1057 cntfrq
= gt_cntfrq_period_ns(arm_cpu
);
1058 seconds
= muldiv64(ticks_to_sleep
, cntfrq
, NANOSECONDS_PER_SECOND
);
1059 ticks_to_sleep
-= muldiv64(seconds
, NANOSECONDS_PER_SECOND
, cntfrq
);
1060 nanos
= ticks_to_sleep
* cntfrq
;
1063 * Don't sleep for less than the time a context switch would take,
1064 * so that we can satisfy fast timer requests on the same CPU.
1065 * Measurements on M1 show the sweet spot to be ~2ms.
1067 if (!seconds
&& nanos
< (2 * SCALE_MS
)) {
1071 ts
= (struct timespec
) { seconds
, nanos
};
1072 hvf_wait_for_ipi(cpu
, &ts
);
1075 static void hvf_sync_vtimer(CPUState
*cpu
)
1077 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
1082 if (!cpu
->hvf
->vtimer_masked
) {
1083 /* We will get notified on vtimer changes by hvf, nothing to do */
1087 r
= hv_vcpu_get_sys_reg(cpu
->hvf
->fd
, HV_SYS_REG_CNTV_CTL_EL0
, &ctl
);
1090 irq_state
= (ctl
& (TMR_CTL_ENABLE
| TMR_CTL_IMASK
| TMR_CTL_ISTATUS
)) ==
1091 (TMR_CTL_ENABLE
| TMR_CTL_ISTATUS
);
1092 qemu_set_irq(arm_cpu
->gt_timer_outputs
[GTIMER_VIRT
], irq_state
);
1095 /* Timer no longer asserting, we can unmask it */
1096 hv_vcpu_set_vtimer_mask(cpu
->hvf
->fd
, false);
1097 cpu
->hvf
->vtimer_masked
= false;
1101 int hvf_vcpu_exec(CPUState
*cpu
)
1103 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
1104 CPUARMState
*env
= &arm_cpu
->env
;
1105 hv_vcpu_exit_t
*hvf_exit
= cpu
->hvf
->exit
;
1107 bool advance_pc
= false;
1109 if (hvf_inject_interrupts(cpu
)) {
1110 return EXCP_INTERRUPT
;
1117 flush_cpu_state(cpu
);
1119 qemu_mutex_unlock_iothread();
1120 assert_hvf_ok(hv_vcpu_run(cpu
->hvf
->fd
));
1123 uint64_t exit_reason
= hvf_exit
->reason
;
1124 uint64_t syndrome
= hvf_exit
->exception
.syndrome
;
1125 uint32_t ec
= syn_get_ec(syndrome
);
1127 qemu_mutex_lock_iothread();
1128 switch (exit_reason
) {
1129 case HV_EXIT_REASON_EXCEPTION
:
1130 /* This is the main one, handle below. */
1132 case HV_EXIT_REASON_VTIMER_ACTIVATED
:
1133 qemu_set_irq(arm_cpu
->gt_timer_outputs
[GTIMER_VIRT
], 1);
1134 cpu
->hvf
->vtimer_masked
= true;
1136 case HV_EXIT_REASON_CANCELED
:
1137 /* we got kicked, no exit to process */
1143 hvf_sync_vtimer(cpu
);
1146 case EC_DATAABORT
: {
1147 bool isv
= syndrome
& ARM_EL_ISV
;
1148 bool iswrite
= (syndrome
>> 6) & 1;
1149 bool s1ptw
= (syndrome
>> 7) & 1;
1150 uint32_t sas
= (syndrome
>> 22) & 3;
1151 uint32_t len
= 1 << sas
;
1152 uint32_t srt
= (syndrome
>> 16) & 0x1f;
1155 trace_hvf_data_abort(env
->pc
, hvf_exit
->exception
.virtual_address
,
1156 hvf_exit
->exception
.physical_address
, isv
,
1157 iswrite
, s1ptw
, len
, srt
);
1162 val
= hvf_get_reg(cpu
, srt
);
1163 address_space_write(&address_space_memory
,
1164 hvf_exit
->exception
.physical_address
,
1165 MEMTXATTRS_UNSPECIFIED
, &val
, len
);
1167 address_space_read(&address_space_memory
,
1168 hvf_exit
->exception
.physical_address
,
1169 MEMTXATTRS_UNSPECIFIED
, &val
, len
);
1170 hvf_set_reg(cpu
, srt
, val
);
1176 case EC_SYSTEMREGISTERTRAP
: {
1177 bool isread
= (syndrome
>> 0) & 1;
1178 uint32_t rt
= (syndrome
>> 5) & 0x1f;
1179 uint32_t reg
= syndrome
& SYSREG_MASK
;
1184 ret
= hvf_sysreg_read(cpu
, reg
, rt
);
1186 val
= hvf_get_reg(cpu
, rt
);
1187 ret
= hvf_sysreg_write(cpu
, reg
, val
);
1195 if (!(syndrome
& WFX_IS_WFE
)) {
1200 cpu_synchronize_state(cpu
);
1201 if (arm_cpu
->psci_conduit
== QEMU_PSCI_CONDUIT_HVC
) {
1202 if (!hvf_handle_psci_call(cpu
)) {
1203 trace_hvf_unknown_hvc(env
->xregs
[0]);
1204 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1208 trace_hvf_unknown_hvc(env
->xregs
[0]);
1209 hvf_raise_exception(cpu
, EXCP_UDEF
, syn_uncategorized());
1213 cpu_synchronize_state(cpu
);
1214 if (arm_cpu
->psci_conduit
== QEMU_PSCI_CONDUIT_SMC
) {
1217 if (!hvf_handle_psci_call(cpu
)) {
1218 trace_hvf_unknown_smc(env
->xregs
[0]);
1219 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1223 trace_hvf_unknown_smc(env
->xregs
[0]);
1224 hvf_raise_exception(cpu
, EXCP_UDEF
, syn_uncategorized());
1228 cpu_synchronize_state(cpu
);
1229 trace_hvf_exit(syndrome
, ec
, env
->pc
);
1230 error_report("0x%llx: unhandled exception ec=0x%x", env
->pc
, ec
);
1236 flush_cpu_state(cpu
);
1238 r
= hv_vcpu_get_reg(cpu
->hvf
->fd
, HV_REG_PC
, &pc
);
1241 r
= hv_vcpu_set_reg(cpu
->hvf
->fd
, HV_REG_PC
, pc
);
1248 static const VMStateDescription vmstate_hvf_vtimer
= {
1249 .name
= "hvf-vtimer",
1251 .minimum_version_id
= 1,
1252 .fields
= (VMStateField
[]) {
1253 VMSTATE_UINT64(vtimer_val
, HVFVTimer
),
1254 VMSTATE_END_OF_LIST()
1258 static void hvf_vm_state_change(void *opaque
, bool running
, RunState state
)
1260 HVFVTimer
*s
= opaque
;
1263 /* Update vtimer offset on all CPUs */
1264 hvf_state
->vtimer_offset
= mach_absolute_time() - s
->vtimer_val
;
1265 cpu_synchronize_all_states();
1267 /* Remember vtimer value on every pause */
1268 s
->vtimer_val
= hvf_vtimer_val_raw();
1272 int hvf_arch_init(void)
1274 hvf_state
->vtimer_offset
= mach_absolute_time();
1275 vmstate_register(NULL
, 0, &vmstate_hvf_vtimer
, &vtimer
);
1276 qemu_add_vm_change_state_handler(hvf_vm_state_change
, &vtimer
);