qapi/parser: enable pylint checks
[qemu/armbru.git] / target / arm / hvf / hvf.c
blobbff3e0cde7cf8ac07b47de522aceca0a6f814192
1 /*
2 * QEMU Hypervisor.framework support for Apple Silicon
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu-common.h"
14 #include "qemu/error-report.h"
16 #include "sysemu/runstate.h"
17 #include "sysemu/hvf.h"
18 #include "sysemu/hvf_int.h"
19 #include "sysemu/hw_accel.h"
20 #include "hvf_arm.h"
22 #include <mach/mach_time.h>
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
38 #define SYSREG(op0, op1, crn, crm, op2) \
39 ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
40 #define SYSREG_MASK SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
41 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
42 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
43 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
44 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
45 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
46 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
47 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
48 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
49 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
50 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
51 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
52 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
53 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
54 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
55 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
56 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
58 #define WFX_IS_WFE (1 << 0)
60 #define TMR_CTL_ENABLE (1 << 0)
61 #define TMR_CTL_IMASK (1 << 1)
62 #define TMR_CTL_ISTATUS (1 << 2)
64 static void hvf_wfi(CPUState *cpu);
66 typedef struct HVFVTimer {
67 /* Vtimer value during migration and paused state */
68 uint64_t vtimer_val;
69 } HVFVTimer;
71 static HVFVTimer vtimer;
73 typedef struct ARMHostCPUFeatures {
74 ARMISARegisters isar;
75 uint64_t features;
76 uint64_t midr;
77 uint32_t reset_sctlr;
78 const char *dtb_compatible;
79 } ARMHostCPUFeatures;
81 static ARMHostCPUFeatures arm_host_cpu_features;
83 struct hvf_reg_match {
84 int reg;
85 uint64_t offset;
88 static const struct hvf_reg_match hvf_reg_match[] = {
89 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
90 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
91 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
92 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
93 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
94 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
95 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
96 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
97 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
98 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
99 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
100 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
101 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
102 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
103 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
104 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
105 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
106 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
107 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
108 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
109 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
110 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
111 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
112 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
113 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
114 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
115 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
116 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
117 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
118 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
119 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
120 { HV_REG_PC, offsetof(CPUARMState, pc) },
123 static const struct hvf_reg_match hvf_fpreg_match[] = {
124 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
125 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
126 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
127 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
128 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
129 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
130 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
131 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
132 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
133 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
134 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
135 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
136 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
137 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
138 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
139 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
140 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
141 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
142 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
143 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
144 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
145 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
146 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
147 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
148 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
149 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
150 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
151 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
152 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
153 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
154 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
155 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
158 struct hvf_sreg_match {
159 int reg;
160 uint32_t key;
161 uint32_t cp_idx;
164 static struct hvf_sreg_match hvf_sreg_match[] = {
165 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
166 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
167 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
168 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
170 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
171 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
172 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
173 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
175 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
176 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
177 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
178 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
180 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
181 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
182 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
183 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
185 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
186 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
187 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
188 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
190 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
191 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
192 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
193 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
195 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
196 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
197 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
198 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
200 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
201 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
202 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
203 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
205 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
206 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
207 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
208 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
210 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
211 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
212 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
213 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
215 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
216 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
217 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
218 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
220 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
221 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
222 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
223 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
225 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
226 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
227 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
228 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
230 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
231 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
232 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
233 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
235 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
236 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
237 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
238 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
240 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
241 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
242 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
243 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
245 #ifdef SYNC_NO_RAW_REGS
247 * The registers below are manually synced on init because they are
248 * marked as NO_RAW. We still list them to make number space sync easier.
250 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
251 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
252 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
253 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
254 #endif
255 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
256 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
257 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
258 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
259 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
260 #ifdef SYNC_NO_MMFR0
261 /* We keep the hardware MMFR0 around. HW limits are there anyway */
262 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
263 #endif
264 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
265 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
267 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
268 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
269 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
270 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
271 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
272 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
274 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
275 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
276 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
277 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
278 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
279 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
280 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
281 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
282 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
283 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
285 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
286 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
287 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
288 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
289 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
290 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
291 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
292 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
293 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
294 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
295 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
296 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
297 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
298 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
299 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
300 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
301 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
302 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
303 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
304 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
307 int hvf_get_registers(CPUState *cpu)
309 ARMCPU *arm_cpu = ARM_CPU(cpu);
310 CPUARMState *env = &arm_cpu->env;
311 hv_return_t ret;
312 uint64_t val;
313 hv_simd_fp_uchar16_t fpval;
314 int i;
316 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
317 ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
318 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
319 assert_hvf_ok(ret);
322 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
323 ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
324 &fpval);
325 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
326 assert_hvf_ok(ret);
329 val = 0;
330 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
331 assert_hvf_ok(ret);
332 vfp_set_fpcr(env, val);
334 val = 0;
335 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
336 assert_hvf_ok(ret);
337 vfp_set_fpsr(env, val);
339 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
340 assert_hvf_ok(ret);
341 pstate_write(env, val);
343 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
344 if (hvf_sreg_match[i].cp_idx == -1) {
345 continue;
348 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
349 assert_hvf_ok(ret);
351 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
353 assert(write_list_to_cpustate(arm_cpu));
355 aarch64_restore_sp(env, arm_current_el(env));
357 return 0;
360 int hvf_put_registers(CPUState *cpu)
362 ARMCPU *arm_cpu = ARM_CPU(cpu);
363 CPUARMState *env = &arm_cpu->env;
364 hv_return_t ret;
365 uint64_t val;
366 hv_simd_fp_uchar16_t fpval;
367 int i;
369 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
370 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
371 ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
372 assert_hvf_ok(ret);
375 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
376 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
377 ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
378 fpval);
379 assert_hvf_ok(ret);
382 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
383 assert_hvf_ok(ret);
385 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
386 assert_hvf_ok(ret);
388 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
389 assert_hvf_ok(ret);
391 aarch64_save_sp(env, arm_current_el(env));
393 assert(write_cpustate_to_list(arm_cpu, false));
394 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
395 if (hvf_sreg_match[i].cp_idx == -1) {
396 continue;
399 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
400 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
401 assert_hvf_ok(ret);
404 ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
405 assert_hvf_ok(ret);
407 return 0;
410 static void flush_cpu_state(CPUState *cpu)
412 if (cpu->vcpu_dirty) {
413 hvf_put_registers(cpu);
414 cpu->vcpu_dirty = false;
418 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
420 hv_return_t r;
422 flush_cpu_state(cpu);
424 if (rt < 31) {
425 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
426 assert_hvf_ok(r);
430 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
432 uint64_t val = 0;
433 hv_return_t r;
435 flush_cpu_state(cpu);
437 if (rt < 31) {
438 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
439 assert_hvf_ok(r);
442 return val;
445 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
447 ARMISARegisters host_isar = {};
448 const struct isar_regs {
449 int reg;
450 uint64_t *val;
451 } regs[] = {
452 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
453 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
454 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
455 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
456 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
457 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
458 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
459 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
460 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
462 hv_vcpu_t fd;
463 hv_return_t r = HV_SUCCESS;
464 hv_vcpu_exit_t *exit;
465 int i;
467 ahcf->dtb_compatible = "arm,arm-v8";
468 ahcf->features = (1ULL << ARM_FEATURE_V8) |
469 (1ULL << ARM_FEATURE_NEON) |
470 (1ULL << ARM_FEATURE_AARCH64) |
471 (1ULL << ARM_FEATURE_PMU) |
472 (1ULL << ARM_FEATURE_GENERIC_TIMER);
474 /* We set up a small vcpu to extract host registers */
476 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
477 return false;
480 for (i = 0; i < ARRAY_SIZE(regs); i++) {
481 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
483 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
484 r |= hv_vcpu_destroy(fd);
486 ahcf->isar = host_isar;
489 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
490 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
492 ahcf->reset_sctlr = 0x30100180;
494 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
495 * let's disable it on boot and then allow guest software to turn it on by
496 * setting it to 0.
498 ahcf->reset_sctlr |= 0x00800000;
500 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
501 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
502 return false;
505 return r == HV_SUCCESS;
508 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
510 if (!arm_host_cpu_features.dtb_compatible) {
511 if (!hvf_enabled() ||
512 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
514 * We can't report this error yet, so flag that we need to
515 * in arm_cpu_realizefn().
517 cpu->host_cpu_probe_failed = true;
518 return;
522 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
523 cpu->isar = arm_host_cpu_features.isar;
524 cpu->env.features = arm_host_cpu_features.features;
525 cpu->midr = arm_host_cpu_features.midr;
526 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
529 void hvf_arch_vcpu_destroy(CPUState *cpu)
533 int hvf_arch_init_vcpu(CPUState *cpu)
535 ARMCPU *arm_cpu = ARM_CPU(cpu);
536 CPUARMState *env = &arm_cpu->env;
537 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
538 uint32_t sregs_cnt = 0;
539 uint64_t pfr;
540 hv_return_t ret;
541 int i;
543 env->aarch64 = 1;
544 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
546 /* Allocate enough space for our sysreg sync */
547 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
548 sregs_match_len);
549 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
550 sregs_match_len);
551 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
552 arm_cpu->cpreg_vmstate_indexes,
553 sregs_match_len);
554 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
555 arm_cpu->cpreg_vmstate_values,
556 sregs_match_len);
558 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
560 /* Populate cp list for all known sysregs */
561 for (i = 0; i < sregs_match_len; i++) {
562 const ARMCPRegInfo *ri;
563 uint32_t key = hvf_sreg_match[i].key;
565 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
566 if (ri) {
567 assert(!(ri->type & ARM_CP_NO_RAW));
568 hvf_sreg_match[i].cp_idx = sregs_cnt;
569 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
570 } else {
571 hvf_sreg_match[i].cp_idx = -1;
574 arm_cpu->cpreg_array_len = sregs_cnt;
575 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
577 assert(write_cpustate_to_list(arm_cpu, false));
579 /* Set CP_NO_RAW system registers on init */
580 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
581 arm_cpu->midr);
582 assert_hvf_ok(ret);
584 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
585 arm_cpu->mp_affinity);
586 assert_hvf_ok(ret);
588 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
589 assert_hvf_ok(ret);
590 pfr |= env->gicv3state ? (1 << 24) : 0;
591 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
592 assert_hvf_ok(ret);
594 /* We're limited to underlying hardware caps, override internal versions */
595 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
596 &arm_cpu->isar.id_aa64mmfr0);
597 assert_hvf_ok(ret);
599 return 0;
602 void hvf_kick_vcpu_thread(CPUState *cpu)
604 cpus_kick_thread(cpu);
605 hv_vcpus_exit(&cpu->hvf->fd, 1);
608 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
609 uint32_t syndrome)
611 ARMCPU *arm_cpu = ARM_CPU(cpu);
612 CPUARMState *env = &arm_cpu->env;
614 cpu->exception_index = excp;
615 env->exception.target_el = 1;
616 env->exception.syndrome = syndrome;
618 arm_cpu_do_interrupt(cpu);
621 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
623 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
624 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
628 * Handle a PSCI call.
630 * Returns 0 on success
631 * -1 when the PSCI call is unknown,
633 static bool hvf_handle_psci_call(CPUState *cpu)
635 ARMCPU *arm_cpu = ARM_CPU(cpu);
636 CPUARMState *env = &arm_cpu->env;
637 uint64_t param[4] = {
638 env->xregs[0],
639 env->xregs[1],
640 env->xregs[2],
641 env->xregs[3]
643 uint64_t context_id, mpidr;
644 bool target_aarch64 = true;
645 CPUState *target_cpu_state;
646 ARMCPU *target_cpu;
647 target_ulong entry;
648 int target_el = 1;
649 int32_t ret = 0;
651 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
652 arm_cpu->mp_affinity);
654 switch (param[0]) {
655 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
656 ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
657 break;
658 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
659 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
660 break;
661 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
662 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
663 mpidr = param[1];
665 switch (param[2]) {
666 case 0:
667 target_cpu_state = arm_get_cpu_by_id(mpidr);
668 if (!target_cpu_state) {
669 ret = QEMU_PSCI_RET_INVALID_PARAMS;
670 break;
672 target_cpu = ARM_CPU(target_cpu_state);
674 ret = target_cpu->power_state;
675 break;
676 default:
677 /* Everything above affinity level 0 is always on. */
678 ret = 0;
680 break;
681 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
682 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
684 * QEMU reset and shutdown are async requests, but PSCI
685 * mandates that we never return from the reset/shutdown
686 * call, so power the CPU off now so it doesn't execute
687 * anything further.
689 hvf_psci_cpu_off(arm_cpu);
690 break;
691 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
692 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
693 hvf_psci_cpu_off(arm_cpu);
694 break;
695 case QEMU_PSCI_0_1_FN_CPU_ON:
696 case QEMU_PSCI_0_2_FN_CPU_ON:
697 case QEMU_PSCI_0_2_FN64_CPU_ON:
698 mpidr = param[1];
699 entry = param[2];
700 context_id = param[3];
701 ret = arm_set_cpu_on(mpidr, entry, context_id,
702 target_el, target_aarch64);
703 break;
704 case QEMU_PSCI_0_1_FN_CPU_OFF:
705 case QEMU_PSCI_0_2_FN_CPU_OFF:
706 hvf_psci_cpu_off(arm_cpu);
707 break;
708 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
709 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
710 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
711 /* Affinity levels are not supported in QEMU */
712 if (param[1] & 0xfffe0000) {
713 ret = QEMU_PSCI_RET_INVALID_PARAMS;
714 break;
716 /* Powerdown is not supported, we always go into WFI */
717 env->xregs[0] = 0;
718 hvf_wfi(cpu);
719 break;
720 case QEMU_PSCI_0_1_FN_MIGRATE:
721 case QEMU_PSCI_0_2_FN_MIGRATE:
722 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
723 break;
724 default:
725 return false;
728 env->xregs[0] = ret;
729 return true;
732 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
734 ARMCPU *arm_cpu = ARM_CPU(cpu);
735 CPUARMState *env = &arm_cpu->env;
736 uint64_t val = 0;
738 switch (reg) {
739 case SYSREG_CNTPCT_EL0:
740 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
741 gt_cntfrq_period_ns(arm_cpu);
742 break;
743 case SYSREG_PMCR_EL0:
744 val = env->cp15.c9_pmcr;
745 break;
746 case SYSREG_PMCCNTR_EL0:
747 pmu_op_start(env);
748 val = env->cp15.c15_ccnt;
749 pmu_op_finish(env);
750 break;
751 case SYSREG_PMCNTENCLR_EL0:
752 val = env->cp15.c9_pmcnten;
753 break;
754 case SYSREG_PMOVSCLR_EL0:
755 val = env->cp15.c9_pmovsr;
756 break;
757 case SYSREG_PMSELR_EL0:
758 val = env->cp15.c9_pmselr;
759 break;
760 case SYSREG_PMINTENCLR_EL1:
761 val = env->cp15.c9_pminten;
762 break;
763 case SYSREG_PMCCFILTR_EL0:
764 val = env->cp15.pmccfiltr_el0;
765 break;
766 case SYSREG_PMCNTENSET_EL0:
767 val = env->cp15.c9_pmcnten;
768 break;
769 case SYSREG_PMUSERENR_EL0:
770 val = env->cp15.c9_pmuserenr;
771 break;
772 case SYSREG_PMCEID0_EL0:
773 case SYSREG_PMCEID1_EL0:
774 /* We can't really count anything yet, declare all events invalid */
775 val = 0;
776 break;
777 case SYSREG_OSLSR_EL1:
778 val = env->cp15.oslsr_el1;
779 break;
780 case SYSREG_OSDLR_EL1:
781 /* Dummy register */
782 break;
783 default:
784 cpu_synchronize_state(cpu);
785 trace_hvf_unhandled_sysreg_read(env->pc, reg,
786 (reg >> 20) & 0x3,
787 (reg >> 14) & 0x7,
788 (reg >> 10) & 0xf,
789 (reg >> 1) & 0xf,
790 (reg >> 17) & 0x7);
791 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
792 return 1;
795 trace_hvf_sysreg_read(reg,
796 (reg >> 20) & 0x3,
797 (reg >> 14) & 0x7,
798 (reg >> 10) & 0xf,
799 (reg >> 1) & 0xf,
800 (reg >> 17) & 0x7,
801 val);
802 hvf_set_reg(cpu, rt, val);
804 return 0;
807 static void pmu_update_irq(CPUARMState *env)
809 ARMCPU *cpu = env_archcpu(env);
810 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
811 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
814 static bool pmu_event_supported(uint16_t number)
816 return false;
819 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
820 * the current EL, security state, and register configuration.
822 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
824 uint64_t filter;
825 bool enabled, filtered = true;
826 int el = arm_current_el(env);
828 enabled = (env->cp15.c9_pmcr & PMCRE) &&
829 (env->cp15.c9_pmcnten & (1 << counter));
831 if (counter == 31) {
832 filter = env->cp15.pmccfiltr_el0;
833 } else {
834 filter = env->cp15.c14_pmevtyper[counter];
837 if (el == 0) {
838 filtered = filter & PMXEVTYPER_U;
839 } else if (el == 1) {
840 filtered = filter & PMXEVTYPER_P;
843 if (counter != 31) {
845 * If not checking PMCCNTR, ensure the counter is setup to an event we
846 * support
848 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
849 if (!pmu_event_supported(event)) {
850 return false;
854 return enabled && !filtered;
857 static void pmswinc_write(CPUARMState *env, uint64_t value)
859 unsigned int i;
860 for (i = 0; i < pmu_num_counters(env); i++) {
861 /* Increment a counter's count iff: */
862 if ((value & (1 << i)) && /* counter's bit is set */
863 /* counter is enabled and not filtered */
864 pmu_counter_enabled(env, i) &&
865 /* counter is SW_INCR */
866 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
868 * Detect if this write causes an overflow since we can't predict
869 * PMSWINC overflows like we can for other events
871 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
873 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
874 env->cp15.c9_pmovsr |= (1 << i);
875 pmu_update_irq(env);
878 env->cp15.c14_pmevcntr[i] = new_pmswinc;
883 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
885 ARMCPU *arm_cpu = ARM_CPU(cpu);
886 CPUARMState *env = &arm_cpu->env;
888 trace_hvf_sysreg_write(reg,
889 (reg >> 20) & 0x3,
890 (reg >> 14) & 0x7,
891 (reg >> 10) & 0xf,
892 (reg >> 1) & 0xf,
893 (reg >> 17) & 0x7,
894 val);
896 switch (reg) {
897 case SYSREG_PMCCNTR_EL0:
898 pmu_op_start(env);
899 env->cp15.c15_ccnt = val;
900 pmu_op_finish(env);
901 break;
902 case SYSREG_PMCR_EL0:
903 pmu_op_start(env);
905 if (val & PMCRC) {
906 /* The counter has been reset */
907 env->cp15.c15_ccnt = 0;
910 if (val & PMCRP) {
911 unsigned int i;
912 for (i = 0; i < pmu_num_counters(env); i++) {
913 env->cp15.c14_pmevcntr[i] = 0;
917 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
918 env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);
920 pmu_op_finish(env);
921 break;
922 case SYSREG_PMUSERENR_EL0:
923 env->cp15.c9_pmuserenr = val & 0xf;
924 break;
925 case SYSREG_PMCNTENSET_EL0:
926 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
927 break;
928 case SYSREG_PMCNTENCLR_EL0:
929 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
930 break;
931 case SYSREG_PMINTENCLR_EL1:
932 pmu_op_start(env);
933 env->cp15.c9_pminten |= val;
934 pmu_op_finish(env);
935 break;
936 case SYSREG_PMOVSCLR_EL0:
937 pmu_op_start(env);
938 env->cp15.c9_pmovsr &= ~val;
939 pmu_op_finish(env);
940 break;
941 case SYSREG_PMSWINC_EL0:
942 pmu_op_start(env);
943 pmswinc_write(env, val);
944 pmu_op_finish(env);
945 break;
946 case SYSREG_PMSELR_EL0:
947 env->cp15.c9_pmselr = val & 0x1f;
948 break;
949 case SYSREG_PMCCFILTR_EL0:
950 pmu_op_start(env);
951 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
952 pmu_op_finish(env);
953 break;
954 case SYSREG_OSLAR_EL1:
955 env->cp15.oslsr_el1 = val & 1;
956 break;
957 case SYSREG_OSDLR_EL1:
958 /* Dummy register */
959 break;
960 default:
961 cpu_synchronize_state(cpu);
962 trace_hvf_unhandled_sysreg_write(env->pc, reg,
963 (reg >> 20) & 0x3,
964 (reg >> 14) & 0x7,
965 (reg >> 10) & 0xf,
966 (reg >> 1) & 0xf,
967 (reg >> 17) & 0x7);
968 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
969 return 1;
972 return 0;
975 static int hvf_inject_interrupts(CPUState *cpu)
977 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
978 trace_hvf_inject_fiq();
979 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
980 true);
983 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
984 trace_hvf_inject_irq();
985 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
986 true);
989 return 0;
992 static uint64_t hvf_vtimer_val_raw(void)
995 * mach_absolute_time() returns the vtimer value without the VM
996 * offset that we define. Add our own offset on top.
998 return mach_absolute_time() - hvf_state->vtimer_offset;
1001 static uint64_t hvf_vtimer_val(void)
1003 if (!runstate_is_running()) {
1004 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1005 return vtimer.vtimer_val;
1008 return hvf_vtimer_val_raw();
1011 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1014 * Use pselect to sleep so that other threads can IPI us while we're
1015 * sleeping.
1017 qatomic_mb_set(&cpu->thread_kicked, false);
1018 qemu_mutex_unlock_iothread();
1019 pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1020 qemu_mutex_lock_iothread();
1023 static void hvf_wfi(CPUState *cpu)
1025 ARMCPU *arm_cpu = ARM_CPU(cpu);
1026 struct timespec ts;
1027 hv_return_t r;
1028 uint64_t ctl;
1029 uint64_t cval;
1030 int64_t ticks_to_sleep;
1031 uint64_t seconds;
1032 uint64_t nanos;
1033 uint32_t cntfrq;
1035 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1036 /* Interrupt pending, no need to wait */
1037 return;
1040 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1041 assert_hvf_ok(r);
1043 if (!(ctl & 1) || (ctl & 2)) {
1044 /* Timer disabled or masked, just wait for an IPI. */
1045 hvf_wait_for_ipi(cpu, NULL);
1046 return;
1049 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1050 assert_hvf_ok(r);
1052 ticks_to_sleep = cval - hvf_vtimer_val();
1053 if (ticks_to_sleep < 0) {
1054 return;
1057 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1058 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1059 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1060 nanos = ticks_to_sleep * cntfrq;
1063 * Don't sleep for less than the time a context switch would take,
1064 * so that we can satisfy fast timer requests on the same CPU.
1065 * Measurements on M1 show the sweet spot to be ~2ms.
1067 if (!seconds && nanos < (2 * SCALE_MS)) {
1068 return;
1071 ts = (struct timespec) { seconds, nanos };
1072 hvf_wait_for_ipi(cpu, &ts);
1075 static void hvf_sync_vtimer(CPUState *cpu)
1077 ARMCPU *arm_cpu = ARM_CPU(cpu);
1078 hv_return_t r;
1079 uint64_t ctl;
1080 bool irq_state;
1082 if (!cpu->hvf->vtimer_masked) {
1083 /* We will get notified on vtimer changes by hvf, nothing to do */
1084 return;
1087 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1088 assert_hvf_ok(r);
1090 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1091 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1092 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1094 if (!irq_state) {
1095 /* Timer no longer asserting, we can unmask it */
1096 hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1097 cpu->hvf->vtimer_masked = false;
1101 int hvf_vcpu_exec(CPUState *cpu)
1103 ARMCPU *arm_cpu = ARM_CPU(cpu);
1104 CPUARMState *env = &arm_cpu->env;
1105 hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1106 hv_return_t r;
1107 bool advance_pc = false;
1109 if (hvf_inject_interrupts(cpu)) {
1110 return EXCP_INTERRUPT;
1113 if (cpu->halted) {
1114 return EXCP_HLT;
1117 flush_cpu_state(cpu);
1119 qemu_mutex_unlock_iothread();
1120 assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1122 /* handle VMEXIT */
1123 uint64_t exit_reason = hvf_exit->reason;
1124 uint64_t syndrome = hvf_exit->exception.syndrome;
1125 uint32_t ec = syn_get_ec(syndrome);
1127 qemu_mutex_lock_iothread();
1128 switch (exit_reason) {
1129 case HV_EXIT_REASON_EXCEPTION:
1130 /* This is the main one, handle below. */
1131 break;
1132 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1133 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1134 cpu->hvf->vtimer_masked = true;
1135 return 0;
1136 case HV_EXIT_REASON_CANCELED:
1137 /* we got kicked, no exit to process */
1138 return 0;
1139 default:
1140 assert(0);
1143 hvf_sync_vtimer(cpu);
1145 switch (ec) {
1146 case EC_DATAABORT: {
1147 bool isv = syndrome & ARM_EL_ISV;
1148 bool iswrite = (syndrome >> 6) & 1;
1149 bool s1ptw = (syndrome >> 7) & 1;
1150 uint32_t sas = (syndrome >> 22) & 3;
1151 uint32_t len = 1 << sas;
1152 uint32_t srt = (syndrome >> 16) & 0x1f;
1153 uint64_t val = 0;
1155 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1156 hvf_exit->exception.physical_address, isv,
1157 iswrite, s1ptw, len, srt);
1159 assert(isv);
1161 if (iswrite) {
1162 val = hvf_get_reg(cpu, srt);
1163 address_space_write(&address_space_memory,
1164 hvf_exit->exception.physical_address,
1165 MEMTXATTRS_UNSPECIFIED, &val, len);
1166 } else {
1167 address_space_read(&address_space_memory,
1168 hvf_exit->exception.physical_address,
1169 MEMTXATTRS_UNSPECIFIED, &val, len);
1170 hvf_set_reg(cpu, srt, val);
1173 advance_pc = true;
1174 break;
1176 case EC_SYSTEMREGISTERTRAP: {
1177 bool isread = (syndrome >> 0) & 1;
1178 uint32_t rt = (syndrome >> 5) & 0x1f;
1179 uint32_t reg = syndrome & SYSREG_MASK;
1180 uint64_t val;
1181 int ret = 0;
1183 if (isread) {
1184 ret = hvf_sysreg_read(cpu, reg, rt);
1185 } else {
1186 val = hvf_get_reg(cpu, rt);
1187 ret = hvf_sysreg_write(cpu, reg, val);
1190 advance_pc = !ret;
1191 break;
1193 case EC_WFX_TRAP:
1194 advance_pc = true;
1195 if (!(syndrome & WFX_IS_WFE)) {
1196 hvf_wfi(cpu);
1198 break;
1199 case EC_AA64_HVC:
1200 cpu_synchronize_state(cpu);
1201 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1202 if (!hvf_handle_psci_call(cpu)) {
1203 trace_hvf_unknown_hvc(env->xregs[0]);
1204 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1205 env->xregs[0] = -1;
1207 } else {
1208 trace_hvf_unknown_hvc(env->xregs[0]);
1209 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1211 break;
1212 case EC_AA64_SMC:
1213 cpu_synchronize_state(cpu);
1214 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1215 advance_pc = true;
1217 if (!hvf_handle_psci_call(cpu)) {
1218 trace_hvf_unknown_smc(env->xregs[0]);
1219 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1220 env->xregs[0] = -1;
1222 } else {
1223 trace_hvf_unknown_smc(env->xregs[0]);
1224 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1226 break;
1227 default:
1228 cpu_synchronize_state(cpu);
1229 trace_hvf_exit(syndrome, ec, env->pc);
1230 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1233 if (advance_pc) {
1234 uint64_t pc;
1236 flush_cpu_state(cpu);
1238 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1239 assert_hvf_ok(r);
1240 pc += 4;
1241 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1242 assert_hvf_ok(r);
1245 return 0;
1248 static const VMStateDescription vmstate_hvf_vtimer = {
1249 .name = "hvf-vtimer",
1250 .version_id = 1,
1251 .minimum_version_id = 1,
1252 .fields = (VMStateField[]) {
1253 VMSTATE_UINT64(vtimer_val, HVFVTimer),
1254 VMSTATE_END_OF_LIST()
1258 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1260 HVFVTimer *s = opaque;
1262 if (running) {
1263 /* Update vtimer offset on all CPUs */
1264 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1265 cpu_synchronize_all_states();
1266 } else {
1267 /* Remember vtimer value on every pause */
1268 s->vtimer_val = hvf_vtimer_val_raw();
1272 int hvf_arch_init(void)
1274 hvf_state->vtimer_offset = mach_absolute_time();
1275 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1276 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1277 return 0;