2 * MIPS internal definitions and helpers
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
11 #include "exec/memattrs.h"
13 #include "tcg/tcg-internal.h"
17 * MMU types, the first four entries have the same layout as the
22 MMU_TYPE_R4000
= 1, /* Standard TLB */
23 MMU_TYPE_BAT
= 2, /* Block Address Translation */
24 MMU_TYPE_FMT
= 3, /* Fixed Mapping */
25 MMU_TYPE_DVF
= 4, /* Dual VTLB and FTLB */
39 int32_t CP0_Config4_rw_bitmask
;
41 int32_t CP0_Config5_rw_bitmask
;
43 int32_t CP0_Config6_rw_bitmask
;
45 int32_t CP0_Config7_rw_bitmask
;
46 target_ulong CP0_LLAddr_rw_bitmask
;
50 int32_t CP0_Status_rw_bitmask
;
51 int32_t CP0_TCStatus_rw_bitmask
;
54 int32_t CP1_fcr31_rw_bitmask
;
59 int32_t CP0_SRSConf0_rw_bitmask
;
61 int32_t CP0_SRSConf1_rw_bitmask
;
63 int32_t CP0_SRSConf2_rw_bitmask
;
65 int32_t CP0_SRSConf3_rw_bitmask
;
67 int32_t CP0_SRSConf4_rw_bitmask
;
69 int32_t CP0_PageGrain_rw_bitmask
;
70 int32_t CP0_PageGrain
;
71 target_ulong CP0_EBaseWG_rw_bitmask
;
73 enum mips_mmu_types mmu_type
;
77 extern const char regnames
[32][3];
78 extern const char fregnames
[32][4];
80 extern const struct mips_def_t mips_defs
[];
81 extern const int mips_defs_number
;
83 int mips_cpu_gdb_read_register(CPUState
*cpu
, GByteArray
*buf
, int reg
);
84 int mips_cpu_gdb_write_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
86 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
87 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
88 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
89 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
90 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
92 #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
93 #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
95 #if !defined(CONFIG_USER_ONLY)
107 int get_physical_address(CPUMIPSState
*env
, hwaddr
*physical
,
108 int *prot
, target_ulong real_address
,
109 MMUAccessType access_type
, int mmu_idx
);
110 hwaddr
mips_cpu_get_phys_page_debug(CPUState
*cpu
, vaddr addr
);
112 typedef struct r4k_tlb_t r4k_tlb_t
;
129 unsigned int EHINV
:1;
133 struct CPUMIPSTLBContext
{
136 int (*map_address
)(struct CPUMIPSState
*env
, hwaddr
*physical
, int *prot
,
137 target_ulong address
, MMUAccessType access_type
);
138 void (*helper_tlbwi
)(struct CPUMIPSState
*env
);
139 void (*helper_tlbwr
)(struct CPUMIPSState
*env
);
140 void (*helper_tlbp
)(struct CPUMIPSState
*env
);
141 void (*helper_tlbr
)(struct CPUMIPSState
*env
);
142 void (*helper_tlbinv
)(struct CPUMIPSState
*env
);
143 void (*helper_tlbinvf
)(struct CPUMIPSState
*env
);
146 r4k_tlb_t tlb
[MIPS_TLB_MAX
];
151 void sync_c0_status(CPUMIPSState
*env
, CPUMIPSState
*cpu
, int tc
);
152 void cpu_mips_store_status(CPUMIPSState
*env
, target_ulong val
);
153 void cpu_mips_store_cause(CPUMIPSState
*env
, target_ulong val
);
155 extern const VMStateDescription vmstate_mips_cpu
;
157 #endif /* !CONFIG_USER_ONLY */
159 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState
*env
)
161 return (env
->CP0_Status
& (1 << CP0St_IE
)) &&
162 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
163 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
164 !(env
->hflags
& MIPS_HFLAG_DM
) &&
166 * Note that the TCStatus IXMT field is initialized to zero,
167 * and only MT capable cores can set it to one. So we don't
168 * need to check for MT capabilities here.
170 !(env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_IXMT
));
173 /* Check if there is pending and not masked out interrupt */
174 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState
*env
)
180 pending
= env
->CP0_Cause
& CP0Ca_IP_mask
;
181 status
= env
->CP0_Status
& CP0Ca_IP_mask
;
183 if (env
->CP0_Config3
& (1 << CP0C3_VEIC
)) {
185 * A MIPS configured with a vectorizing external interrupt controller
186 * will feed a vector into the Cause pending lines. The core treats
187 * the status lines as a vector level, not as individual masks.
189 r
= pending
> status
;
192 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
193 * treats the pending lines as individual interrupt lines, the status
194 * lines are individual masks.
196 r
= (pending
& status
) != 0;
201 void msa_reset(CPUMIPSState
*env
);
204 uint32_t cpu_mips_get_count(CPUMIPSState
*env
);
205 void cpu_mips_store_count(CPUMIPSState
*env
, uint32_t value
);
206 void cpu_mips_store_compare(CPUMIPSState
*env
, uint32_t value
);
207 void cpu_mips_start_count(CPUMIPSState
*env
);
208 void cpu_mips_stop_count(CPUMIPSState
*env
);
210 static inline void mips_env_set_pc(CPUMIPSState
*env
, target_ulong value
)
212 env
->active_tc
.PC
= value
& ~(target_ulong
)1;
214 env
->hflags
|= MIPS_HFLAG_M16
;
216 env
->hflags
&= ~(MIPS_HFLAG_M16
);
220 static inline void restore_pamask(CPUMIPSState
*env
)
222 if (env
->hflags
& MIPS_HFLAG_ELPA
) {
223 env
->PAMask
= (1ULL << env
->PABITS
) - 1;
225 env
->PAMask
= PAMASK_BASE
;
229 static inline int mips_vpe_active(CPUMIPSState
*env
)
233 /* Check that the VPE is enabled. */
234 if (!(env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_EVP
))) {
237 /* Check that the VPE is activated. */
238 if (!(env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))) {
243 * Now verify that there are active thread contexts in the VPE.
245 * This assumes the CPU model will internally reschedule threads
246 * if the active one goes to sleep. If there are no threads available
247 * the active one will be in a sleeping state, and we can turn off
250 if (!(env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_A
))) {
251 /* TC is not activated. */
254 if (env
->active_tc
.CP0_TCHalt
& 1) {
255 /* TC is in halt state. */
262 static inline int mips_vp_active(CPUMIPSState
*env
)
264 CPUState
*other_cs
= first_cpu
;
266 /* Check if the VP disabled other VPs (which means the VP is enabled) */
267 if ((env
->CP0_VPControl
>> CP0VPCtl_DIS
) & 1) {
271 /* Check if the virtual processor is disabled due to a DVP */
272 CPU_FOREACH(other_cs
) {
273 MIPSCPU
*other_cpu
= MIPS_CPU(other_cs
);
274 if ((&other_cpu
->env
!= env
) &&
275 ((other_cpu
->env
.CP0_VPControl
>> CP0VPCtl_DIS
) & 1)) {
282 static inline void compute_hflags(CPUMIPSState
*env
)
284 env
->hflags
&= ~(MIPS_HFLAG_COP1X
| MIPS_HFLAG_64
| MIPS_HFLAG_CP0
|
285 MIPS_HFLAG_F64
| MIPS_HFLAG_FPU
| MIPS_HFLAG_KSU
|
286 MIPS_HFLAG_AWRAP
| MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
|
287 MIPS_HFLAG_DSP_R3
| MIPS_HFLAG_SBRI
| MIPS_HFLAG_MSA
|
288 MIPS_HFLAG_FRE
| MIPS_HFLAG_ELPA
| MIPS_HFLAG_ERL
);
289 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
290 env
->hflags
|= MIPS_HFLAG_ERL
;
292 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
293 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
294 !(env
->hflags
& MIPS_HFLAG_DM
)) {
295 env
->hflags
|= (env
->CP0_Status
>> CP0St_KSU
) &
298 #if defined(TARGET_MIPS64)
299 if ((env
->insn_flags
& ISA_MIPS3
) &&
300 (((env
->hflags
& MIPS_HFLAG_KSU
) != MIPS_HFLAG_UM
) ||
301 (env
->CP0_Status
& (1 << CP0St_PX
)) ||
302 (env
->CP0_Status
& (1 << CP0St_UX
)))) {
303 env
->hflags
|= MIPS_HFLAG_64
;
306 if (!(env
->insn_flags
& ISA_MIPS3
)) {
307 env
->hflags
|= MIPS_HFLAG_AWRAP
;
308 } else if (((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_UM
) &&
309 !(env
->CP0_Status
& (1 << CP0St_UX
))) {
310 env
->hflags
|= MIPS_HFLAG_AWRAP
;
311 } else if (env
->insn_flags
& ISA_MIPS_R6
) {
312 /* Address wrapping for Supervisor and Kernel is specified in R6 */
313 if ((((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_SM
) &&
314 !(env
->CP0_Status
& (1 << CP0St_SX
))) ||
315 (((env
->hflags
& MIPS_HFLAG_KSU
) == MIPS_HFLAG_KM
) &&
316 !(env
->CP0_Status
& (1 << CP0St_KX
)))) {
317 env
->hflags
|= MIPS_HFLAG_AWRAP
;
321 if (((env
->CP0_Status
& (1 << CP0St_CU0
)) &&
322 !(env
->insn_flags
& ISA_MIPS_R6
)) ||
323 !(env
->hflags
& MIPS_HFLAG_KSU
)) {
324 env
->hflags
|= MIPS_HFLAG_CP0
;
326 if (env
->CP0_Status
& (1 << CP0St_CU1
)) {
327 env
->hflags
|= MIPS_HFLAG_FPU
;
329 if (env
->CP0_Status
& (1 << CP0St_FR
)) {
330 env
->hflags
|= MIPS_HFLAG_F64
;
332 if (((env
->hflags
& MIPS_HFLAG_KSU
) != MIPS_HFLAG_KM
) &&
333 (env
->CP0_Config5
& (1 << CP0C5_SBRI
))) {
334 env
->hflags
|= MIPS_HFLAG_SBRI
;
336 if (env
->insn_flags
& ASE_DSP_R3
) {
338 * Our cpu supports DSP R3 ASE, so enable
339 * access to DSP R3 resources.
341 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
342 env
->hflags
|= MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
|
345 } else if (env
->insn_flags
& ASE_DSP_R2
) {
347 * Our cpu supports DSP R2 ASE, so enable
348 * access to DSP R2 resources.
350 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
351 env
->hflags
|= MIPS_HFLAG_DSP
| MIPS_HFLAG_DSP_R2
;
354 } else if (env
->insn_flags
& ASE_DSP
) {
356 * Our cpu supports DSP ASE, so enable
357 * access to DSP resources.
359 if (env
->CP0_Status
& (1 << CP0St_MX
)) {
360 env
->hflags
|= MIPS_HFLAG_DSP
;
364 if (env
->insn_flags
& ISA_MIPS_R2
) {
365 if (env
->active_fpu
.fcr0
& (1 << FCR0_F64
)) {
366 env
->hflags
|= MIPS_HFLAG_COP1X
;
368 } else if (env
->insn_flags
& ISA_MIPS_R1
) {
369 if (env
->hflags
& MIPS_HFLAG_64
) {
370 env
->hflags
|= MIPS_HFLAG_COP1X
;
372 } else if (env
->insn_flags
& ISA_MIPS4
) {
374 * All supported MIPS IV CPUs use the XX (CU3) to enable
375 * and disable the MIPS IV extensions to the MIPS III ISA.
376 * Some other MIPS IV CPUs ignore the bit, so the check here
377 * would be too restrictive for them.
379 if (env
->CP0_Status
& (1U << CP0St_CU3
)) {
380 env
->hflags
|= MIPS_HFLAG_COP1X
;
383 if (ase_msa_available(env
)) {
384 if (env
->CP0_Config5
& (1 << CP0C5_MSAEn
)) {
385 env
->hflags
|= MIPS_HFLAG_MSA
;
388 if (env
->active_fpu
.fcr0
& (1 << FCR0_FREP
)) {
389 if (env
->CP0_Config5
& (1 << CP0C5_FRE
)) {
390 env
->hflags
|= MIPS_HFLAG_FRE
;
393 if (env
->CP0_Config3
& (1 << CP0C3_LPA
)) {
394 if (env
->CP0_PageGrain
& (1 << CP0PG_ELPA
)) {
395 env
->hflags
|= MIPS_HFLAG_ELPA
;