2 * ARM SBSA Reference Platform emulation
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/address-spaces.h"
30 #include "exec/hwaddr.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
44 #define RAMLIMIT_GB 8192
45 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
48 #define NUM_SMMU_IRQS 4
49 #define NUM_SATA_PORTS 6
51 #define VIRTUAL_PMU_IRQ 7
52 #define ARCH_GIC_MAINT_IRQ 9
53 #define ARCH_TIMER_VIRT_IRQ 11
54 #define ARCH_TIMER_S_EL1_IRQ 13
55 #define ARCH_TIMER_NS_EL1_IRQ 14
56 #define ARCH_TIMER_NS_EL2_IRQ 10
80 typedef struct MemMapEntry
{
87 struct arm_boot_info bootinfo
;
92 PFlashCFI01
*flash
[2];
95 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
96 #define SBSA_MACHINE(obj) \
97 OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
99 static const MemMapEntry sbsa_ref_memmap
[] = {
101 [SBSA_FLASH
] = { 0, 0x20000000 },
102 /* 512M secure memory */
103 [SBSA_SECURE_MEM
] = { 0x20000000, 0x20000000 },
104 /* Space reserved for CPU peripheral devices */
105 [SBSA_CPUPERIPHS
] = { 0x40000000, 0x00040000 },
106 [SBSA_GIC_DIST
] = { 0x40060000, 0x00010000 },
107 [SBSA_GIC_REDIST
] = { 0x40080000, 0x04000000 },
108 [SBSA_UART
] = { 0x60000000, 0x00001000 },
109 [SBSA_RTC
] = { 0x60010000, 0x00001000 },
110 [SBSA_GPIO
] = { 0x60020000, 0x00001000 },
111 [SBSA_SECURE_UART
] = { 0x60030000, 0x00001000 },
112 [SBSA_SECURE_UART_MM
] = { 0x60040000, 0x00001000 },
113 [SBSA_SMMU
] = { 0x60050000, 0x00020000 },
114 /* Space here reserved for more SMMUs */
115 [SBSA_AHCI
] = { 0x60100000, 0x00010000 },
116 [SBSA_EHCI
] = { 0x60110000, 0x00010000 },
117 /* Space here reserved for other devices */
118 [SBSA_PCIE_PIO
] = { 0x7fff0000, 0x00010000 },
119 /* 32-bit address PCIE MMIO space */
120 [SBSA_PCIE_MMIO
] = { 0x80000000, 0x70000000 },
121 /* 256M PCIE ECAM space */
122 [SBSA_PCIE_ECAM
] = { 0xf0000000, 0x10000000 },
123 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
124 [SBSA_PCIE_MMIO_HIGH
] = { 0x100000000ULL
, 0xFF00000000ULL
},
125 [SBSA_MEM
] = { 0x10000000000ULL
, RAMLIMIT_BYTES
},
128 static const int sbsa_ref_irqmap
[] = {
131 [SBSA_PCIE
] = 3, /* ... to 6 */
133 [SBSA_SECURE_UART
] = 8,
134 [SBSA_SECURE_UART_MM
] = 9,
140 * Firmware on this machine only uses ACPI table to load OS, these limited
141 * device tree nodes are just to let firmware know the info which varies from
142 * command line parameters, so it is not necessary to be fully compatible
143 * with the kernel CPU and NUMA binding rules.
145 static void create_fdt(SBSAMachineState
*sms
)
147 void *fdt
= create_device_tree(&sms
->fdt_size
);
148 const MachineState
*ms
= MACHINE(sms
);
152 error_report("create_device_tree() failed");
158 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,sbsa-ref");
159 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
160 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
162 if (have_numa_distance
) {
163 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
164 uint32_t *matrix
= g_malloc0(size
);
167 for (i
= 0; i
< nb_numa_nodes
; i
++) {
168 for (j
= 0; j
< nb_numa_nodes
; j
++) {
169 idx
= (i
* nb_numa_nodes
+ j
) * 3;
170 matrix
[idx
+ 0] = cpu_to_be32(i
);
171 matrix
[idx
+ 1] = cpu_to_be32(j
);
172 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
176 qemu_fdt_add_subnode(fdt
, "/distance-map");
177 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
182 qemu_fdt_add_subnode(sms
->fdt
, "/cpus");
184 for (cpu
= sms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
185 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
186 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
187 CPUState
*cs
= CPU(armcpu
);
189 qemu_fdt_add_subnode(sms
->fdt
, nodename
);
191 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
192 qemu_fdt_setprop_cell(sms
->fdt
, nodename
, "numa-node-id",
193 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
200 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
202 static PFlashCFI01
*sbsa_flash_create1(SBSAMachineState
*sms
,
204 const char *alias_prop_name
)
207 * Create a single flash device. We use the same parameters as
208 * the flash devices on the Versatile Express board.
210 DeviceState
*dev
= qdev_create(NULL
, TYPE_PFLASH_CFI01
);
212 qdev_prop_set_uint64(dev
, "sector-length", SBSA_FLASH_SECTOR_SIZE
);
213 qdev_prop_set_uint8(dev
, "width", 4);
214 qdev_prop_set_uint8(dev
, "device-width", 2);
215 qdev_prop_set_bit(dev
, "big-endian", false);
216 qdev_prop_set_uint16(dev
, "id0", 0x89);
217 qdev_prop_set_uint16(dev
, "id1", 0x18);
218 qdev_prop_set_uint16(dev
, "id2", 0x00);
219 qdev_prop_set_uint16(dev
, "id3", 0x00);
220 qdev_prop_set_string(dev
, "name", name
);
221 object_property_add_child(OBJECT(sms
), name
, OBJECT(dev
),
223 object_property_add_alias(OBJECT(sms
), alias_prop_name
,
224 OBJECT(dev
), "drive", &error_abort
);
225 return PFLASH_CFI01(dev
);
228 static void sbsa_flash_create(SBSAMachineState
*sms
)
230 sms
->flash
[0] = sbsa_flash_create1(sms
, "sbsa.flash0", "pflash0");
231 sms
->flash
[1] = sbsa_flash_create1(sms
, "sbsa.flash1", "pflash1");
234 static void sbsa_flash_map1(PFlashCFI01
*flash
,
235 hwaddr base
, hwaddr size
,
236 MemoryRegion
*sysmem
)
238 DeviceState
*dev
= DEVICE(flash
);
240 assert(size
% SBSA_FLASH_SECTOR_SIZE
== 0);
241 assert(size
/ SBSA_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
242 qdev_prop_set_uint32(dev
, "num-blocks", size
/ SBSA_FLASH_SECTOR_SIZE
);
243 qdev_init_nofail(dev
);
245 memory_region_add_subregion(sysmem
, base
,
246 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
250 static void sbsa_flash_map(SBSAMachineState
*sms
,
251 MemoryRegion
*sysmem
,
252 MemoryRegion
*secure_sysmem
)
255 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
256 * sysmem is the system memory space. secure_sysmem is the secure view
257 * of the system, and the first flash device should be made visible only
258 * there. The second flash device is visible to both secure and nonsecure.
260 hwaddr flashsize
= sbsa_ref_memmap
[SBSA_FLASH
].size
/ 2;
261 hwaddr flashbase
= sbsa_ref_memmap
[SBSA_FLASH
].base
;
263 sbsa_flash_map1(sms
->flash
[0], flashbase
, flashsize
,
265 sbsa_flash_map1(sms
->flash
[1], flashbase
+ flashsize
, flashsize
,
269 static bool sbsa_firmware_init(SBSAMachineState
*sms
,
270 MemoryRegion
*sysmem
,
271 MemoryRegion
*secure_sysmem
)
274 BlockBackend
*pflash_blk0
;
276 /* Map legacy -drive if=pflash to machine properties */
277 for (i
= 0; i
< ARRAY_SIZE(sms
->flash
); i
++) {
278 pflash_cfi01_legacy_drive(sms
->flash
[i
],
279 drive_get(IF_PFLASH
, 0, i
));
282 sbsa_flash_map(sms
, sysmem
, secure_sysmem
);
284 pflash_blk0
= pflash_cfi01_get_blk(sms
->flash
[0]);
292 error_report("The contents of the first flash device may be "
293 "specified with -bios or with -drive if=pflash... "
294 "but you cannot use both options at once");
298 /* Fall back to -bios */
300 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
302 error_report("Could not find ROM image '%s'", bios_name
);
305 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(sms
->flash
[0]), 0);
306 image_size
= load_image_mr(fname
, mr
);
308 if (image_size
< 0) {
309 error_report("Could not load ROM image '%s'", bios_name
);
314 return pflash_blk0
|| bios_name
;
317 static void create_secure_ram(SBSAMachineState
*sms
,
318 MemoryRegion
*secure_sysmem
)
320 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
321 hwaddr base
= sbsa_ref_memmap
[SBSA_SECURE_MEM
].base
;
322 hwaddr size
= sbsa_ref_memmap
[SBSA_SECURE_MEM
].size
;
324 memory_region_init_ram(secram
, NULL
, "sbsa-ref.secure-ram", size
,
326 memory_region_add_subregion(secure_sysmem
, base
, secram
);
329 static void create_gic(SBSAMachineState
*sms
, qemu_irq
*pic
)
331 unsigned int smp_cpus
= MACHINE(sms
)->smp
.cpus
;
333 SysBusDevice
*gicbusdev
;
335 uint32_t redist0_capacity
, redist0_count
;
338 gictype
= gicv3_class_name();
340 gicdev
= qdev_create(NULL
, gictype
);
341 qdev_prop_set_uint32(gicdev
, "revision", 3);
342 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
344 * Note that the num-irq property counts both internal and external
345 * interrupts; there are always 32 of the former (mandated by GIC spec).
347 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
348 qdev_prop_set_bit(gicdev
, "has-security-extensions", true);
351 sbsa_ref_memmap
[SBSA_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
352 redist0_count
= MIN(smp_cpus
, redist0_capacity
);
354 qdev_prop_set_uint32(gicdev
, "len-redist-region-count", 1);
355 qdev_prop_set_uint32(gicdev
, "redist-region-count[0]", redist0_count
);
357 qdev_init_nofail(gicdev
);
358 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
359 sysbus_mmio_map(gicbusdev
, 0, sbsa_ref_memmap
[SBSA_GIC_DIST
].base
);
360 sysbus_mmio_map(gicbusdev
, 1, sbsa_ref_memmap
[SBSA_GIC_REDIST
].base
);
363 * Wire the outputs from each CPU's generic timer and the GICv3
364 * maintenance interrupt signal to the appropriate GIC PPI inputs,
365 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
367 for (i
= 0; i
< smp_cpus
; i
++) {
368 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
369 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
372 * Mapping from the output timer irq lines from the CPU to the
373 * GIC PPI inputs used for this board.
375 const int timer_irq
[] = {
376 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
377 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
378 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
379 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
382 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
383 qdev_connect_gpio_out(cpudev
, irq
,
384 qdev_get_gpio_in(gicdev
,
385 ppibase
+ timer_irq
[irq
]));
388 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt", 0,
389 qdev_get_gpio_in(gicdev
, ppibase
390 + ARCH_GIC_MAINT_IRQ
));
391 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
392 qdev_get_gpio_in(gicdev
, ppibase
395 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
396 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
397 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
398 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
399 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
400 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
401 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
404 for (i
= 0; i
< NUM_IRQS
; i
++) {
405 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
409 static void create_uart(const SBSAMachineState
*sms
, qemu_irq
*pic
, int uart
,
410 MemoryRegion
*mem
, Chardev
*chr
)
412 hwaddr base
= sbsa_ref_memmap
[uart
].base
;
413 int irq
= sbsa_ref_irqmap
[uart
];
414 DeviceState
*dev
= qdev_create(NULL
, "pl011");
415 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
417 qdev_prop_set_chr(dev
, "chardev", chr
);
418 qdev_init_nofail(dev
);
419 memory_region_add_subregion(mem
, base
,
420 sysbus_mmio_get_region(s
, 0));
421 sysbus_connect_irq(s
, 0, pic
[irq
]);
424 static void create_rtc(const SBSAMachineState
*sms
, qemu_irq
*pic
)
426 hwaddr base
= sbsa_ref_memmap
[SBSA_RTC
].base
;
427 int irq
= sbsa_ref_irqmap
[SBSA_RTC
];
429 sysbus_create_simple("pl031", base
, pic
[irq
]);
432 static DeviceState
*gpio_key_dev
;
433 static void sbsa_ref_powerdown_req(Notifier
*n
, void *opaque
)
435 /* use gpio Pin 3 for power button event */
436 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
439 static Notifier sbsa_ref_powerdown_notifier
= {
440 .notify
= sbsa_ref_powerdown_req
443 static void create_gpio(const SBSAMachineState
*sms
, qemu_irq
*pic
)
445 DeviceState
*pl061_dev
;
446 hwaddr base
= sbsa_ref_memmap
[SBSA_GPIO
].base
;
447 int irq
= sbsa_ref_irqmap
[SBSA_GPIO
];
449 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
451 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
452 qdev_get_gpio_in(pl061_dev
, 3));
454 /* connect powerdown request */
455 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier
);
458 static void create_ahci(const SBSAMachineState
*sms
, qemu_irq
*pic
)
460 hwaddr base
= sbsa_ref_memmap
[SBSA_AHCI
].base
;
461 int irq
= sbsa_ref_irqmap
[SBSA_AHCI
];
463 DriveInfo
*hd
[NUM_SATA_PORTS
];
464 SysbusAHCIState
*sysahci
;
468 dev
= qdev_create(NULL
, "sysbus-ahci");
469 qdev_prop_set_uint32(dev
, "num-ports", NUM_SATA_PORTS
);
470 qdev_init_nofail(dev
);
471 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
472 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), 0, pic
[irq
]);
474 sysahci
= SYSBUS_AHCI(dev
);
475 ahci
= &sysahci
->ahci
;
476 ide_drive_get(hd
, ARRAY_SIZE(hd
));
477 for (i
= 0; i
< ahci
->ports
; i
++) {
481 ide_create_drive(&ahci
->dev
[i
].port
, 0, hd
[i
]);
485 static void create_ehci(const SBSAMachineState
*sms
, qemu_irq
*pic
)
487 hwaddr base
= sbsa_ref_memmap
[SBSA_EHCI
].base
;
488 int irq
= sbsa_ref_irqmap
[SBSA_EHCI
];
490 sysbus_create_simple("platform-ehci-usb", base
, pic
[irq
]);
493 static void create_smmu(const SBSAMachineState
*sms
, qemu_irq
*pic
,
496 hwaddr base
= sbsa_ref_memmap
[SBSA_SMMU
].base
;
497 int irq
= sbsa_ref_irqmap
[SBSA_SMMU
];
501 dev
= qdev_create(NULL
, "arm-smmuv3");
503 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
505 qdev_init_nofail(dev
);
506 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
507 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
508 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
512 static void create_pcie(SBSAMachineState
*sms
, qemu_irq
*pic
)
514 hwaddr base_ecam
= sbsa_ref_memmap
[SBSA_PCIE_ECAM
].base
;
515 hwaddr size_ecam
= sbsa_ref_memmap
[SBSA_PCIE_ECAM
].size
;
516 hwaddr base_mmio
= sbsa_ref_memmap
[SBSA_PCIE_MMIO
].base
;
517 hwaddr size_mmio
= sbsa_ref_memmap
[SBSA_PCIE_MMIO
].size
;
518 hwaddr base_mmio_high
= sbsa_ref_memmap
[SBSA_PCIE_MMIO_HIGH
].base
;
519 hwaddr size_mmio_high
= sbsa_ref_memmap
[SBSA_PCIE_MMIO_HIGH
].size
;
520 hwaddr base_pio
= sbsa_ref_memmap
[SBSA_PCIE_PIO
].base
;
521 int irq
= sbsa_ref_irqmap
[SBSA_PCIE
];
522 MemoryRegion
*mmio_alias
, *mmio_alias_high
, *mmio_reg
;
523 MemoryRegion
*ecam_alias
, *ecam_reg
;
528 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
529 qdev_init_nofail(dev
);
532 ecam_alias
= g_new0(MemoryRegion
, 1);
533 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
534 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
535 ecam_reg
, 0, size_ecam
);
536 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
538 /* Map the MMIO space */
539 mmio_alias
= g_new0(MemoryRegion
, 1);
540 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
541 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
542 mmio_reg
, base_mmio
, size_mmio
);
543 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
545 /* Map the MMIO_HIGH space */
546 mmio_alias_high
= g_new0(MemoryRegion
, 1);
547 memory_region_init_alias(mmio_alias_high
, OBJECT(dev
), "pcie-mmio-high",
548 mmio_reg
, base_mmio_high
, size_mmio_high
);
549 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
552 /* Map IO port space */
553 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
555 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
556 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
557 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
560 pci
= PCI_HOST_BRIDGE(dev
);
562 for (i
= 0; i
< nb_nics
; i
++) {
563 NICInfo
*nd
= &nd_table
[i
];
566 nd
->model
= g_strdup("e1000e");
569 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
573 pci_create_simple(pci
->bus
, -1, "VGA");
575 create_smmu(sms
, pic
, pci
->bus
);
578 static void *sbsa_ref_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
580 const SBSAMachineState
*board
= container_of(binfo
, SBSAMachineState
,
583 *fdt_size
= board
->fdt_size
;
587 static void sbsa_ref_init(MachineState
*machine
)
589 unsigned int smp_cpus
= machine
->smp
.cpus
;
590 unsigned int max_cpus
= machine
->smp
.max_cpus
;
591 SBSAMachineState
*sms
= SBSA_MACHINE(machine
);
592 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
593 MemoryRegion
*sysmem
= get_system_memory();
594 MemoryRegion
*secure_sysmem
= g_new(MemoryRegion
, 1);
595 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
596 bool firmware_loaded
;
597 const CPUArchIdList
*possible_cpus
;
598 int n
, sbsa_max_cpus
;
599 qemu_irq pic
[NUM_IRQS
];
601 if (strcmp(machine
->cpu_type
, ARM_CPU_TYPE_NAME("cortex-a57"))) {
602 error_report("sbsa-ref: CPU type other than the built-in "
603 "cortex-a57 not supported");
608 error_report("sbsa-ref: KVM is not supported for this machine");
613 * The Secure view of the world is the same as the NonSecure,
614 * but with a few extra devices. Create it as a container region
615 * containing the system memory at low priority; any secure-only
616 * devices go in at higher priority and take precedence.
618 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
620 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
622 firmware_loaded
= sbsa_firmware_init(sms
, sysmem
, secure_sysmem
);
624 if (machine
->kernel_filename
&& firmware_loaded
) {
625 error_report("sbsa-ref: No fw_cfg device on this machine, "
626 "so -kernel option is not supported when firmware loaded, "
627 "please load OS from hard disk instead");
632 * This machine has EL3 enabled, external firmware should supply PSCI
633 * implementation, so the QEMU's internal PSCI is disabled.
635 sms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
637 sbsa_max_cpus
= sbsa_ref_memmap
[SBSA_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
639 if (max_cpus
> sbsa_max_cpus
) {
640 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
641 "supported by machine 'sbsa-ref' (%d)",
642 max_cpus
, sbsa_max_cpus
);
646 sms
->smp_cpus
= smp_cpus
;
648 if (machine
->ram_size
> sbsa_ref_memmap
[SBSA_MEM
].size
) {
649 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB
);
653 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
654 for (n
= 0; n
< possible_cpus
->len
; n
++) {
662 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
663 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
664 "mp-affinity", NULL
);
669 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
672 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
673 object_property_set_int(cpuobj
,
674 sbsa_ref_memmap
[SBSA_CPUPERIPHS
].base
,
675 "reset-cbar", &error_abort
);
678 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
681 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
682 "secure-memory", &error_abort
);
684 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
685 object_unref(cpuobj
);
688 memory_region_allocate_system_memory(ram
, NULL
, "sbsa-ref.ram",
690 memory_region_add_subregion(sysmem
, sbsa_ref_memmap
[SBSA_MEM
].base
, ram
);
694 create_secure_ram(sms
, secure_sysmem
);
696 create_gic(sms
, pic
);
698 create_uart(sms
, pic
, SBSA_UART
, sysmem
, serial_hd(0));
699 create_uart(sms
, pic
, SBSA_SECURE_UART
, secure_sysmem
, serial_hd(1));
700 /* Second secure UART for RAS and MM from EL0 */
701 create_uart(sms
, pic
, SBSA_SECURE_UART_MM
, secure_sysmem
, serial_hd(2));
703 create_rtc(sms
, pic
);
705 create_gpio(sms
, pic
);
707 create_ahci(sms
, pic
);
709 create_ehci(sms
, pic
);
711 create_pcie(sms
, pic
);
713 sms
->bootinfo
.ram_size
= machine
->ram_size
;
714 sms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
715 sms
->bootinfo
.nb_cpus
= smp_cpus
;
716 sms
->bootinfo
.board_id
= -1;
717 sms
->bootinfo
.loader_start
= sbsa_ref_memmap
[SBSA_MEM
].base
;
718 sms
->bootinfo
.get_dtb
= sbsa_ref_dtb
;
719 sms
->bootinfo
.firmware_loaded
= firmware_loaded
;
720 arm_load_kernel(ARM_CPU(first_cpu
), &sms
->bootinfo
);
723 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState
*sms
, int idx
)
725 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
726 return arm_cpu_mp_affinity(idx
, clustersz
);
729 static const CPUArchIdList
*sbsa_ref_possible_cpu_arch_ids(MachineState
*ms
)
731 unsigned int max_cpus
= ms
->smp
.max_cpus
;
732 SBSAMachineState
*sms
= SBSA_MACHINE(ms
);
735 if (ms
->possible_cpus
) {
736 assert(ms
->possible_cpus
->len
== max_cpus
);
737 return ms
->possible_cpus
;
740 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
741 sizeof(CPUArchId
) * max_cpus
);
742 ms
->possible_cpus
->len
= max_cpus
;
743 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
744 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
745 ms
->possible_cpus
->cpus
[n
].arch_id
=
746 sbsa_ref_cpu_mp_affinity(sms
, n
);
747 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
748 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
750 return ms
->possible_cpus
;
753 static CpuInstanceProperties
754 sbsa_ref_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
756 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
757 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
759 assert(cpu_index
< possible_cpus
->len
);
760 return possible_cpus
->cpus
[cpu_index
].props
;
764 sbsa_ref_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
766 return idx
% nb_numa_nodes
;
769 static void sbsa_ref_instance_init(Object
*obj
)
771 SBSAMachineState
*sms
= SBSA_MACHINE(obj
);
773 sbsa_flash_create(sms
);
776 static void sbsa_ref_class_init(ObjectClass
*oc
, void *data
)
778 MachineClass
*mc
= MACHINE_CLASS(oc
);
780 mc
->init
= sbsa_ref_init
;
781 mc
->desc
= "QEMU 'SBSA Reference' ARM Virtual Machine";
782 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a57");
784 mc
->pci_allow_0_address
= true;
785 mc
->minimum_page_bits
= 12;
786 mc
->block_default_type
= IF_IDE
;
788 mc
->default_ram_size
= 1 * GiB
;
789 mc
->default_cpus
= 4;
790 mc
->possible_cpu_arch_ids
= sbsa_ref_possible_cpu_arch_ids
;
791 mc
->cpu_index_to_instance_props
= sbsa_ref_cpu_index_to_props
;
792 mc
->get_default_cpu_node_id
= sbsa_ref_get_default_cpu_node_id
;
795 static const TypeInfo sbsa_ref_info
= {
796 .name
= TYPE_SBSA_MACHINE
,
797 .parent
= TYPE_MACHINE
,
798 .instance_init
= sbsa_ref_instance_init
,
799 .class_init
= sbsa_ref_class_init
,
800 .instance_size
= sizeof(SBSAMachineState
),
803 static void sbsa_ref_machine_init(void)
805 type_register_static(&sbsa_ref_info
);
808 type_init(sbsa_ref_machine_init
);