2 * common defines for all CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #error cpu.h included from common code
26 #include "qemu/host-utils.h"
27 #include "qemu/thread.h"
29 #include "tcg-target.h"
31 #ifndef CONFIG_USER_ONLY
32 #include "exec/hwaddr.h"
34 #include "exec/memattrs.h"
35 #include "hw/core/cpu.h"
37 #include "cpu-param.h"
39 #ifndef TARGET_LONG_BITS
40 # error TARGET_LONG_BITS must be defined in cpu-param.h
43 # error NB_MMU_MODES must be defined in cpu-param.h
45 #ifndef TARGET_PHYS_ADDR_SPACE_BITS
46 # error TARGET_PHYS_ADDR_SPACE_BITS must be defined in cpu-param.h
48 #ifndef TARGET_VIRT_ADDR_SPACE_BITS
49 # error TARGET_VIRT_ADDR_SPACE_BITS must be defined in cpu-param.h
51 #ifndef TARGET_PAGE_BITS
52 # ifdef TARGET_PAGE_BITS_VARY
53 # ifndef TARGET_PAGE_BITS_MIN
54 # error TARGET_PAGE_BITS_MIN must be defined in cpu-param.h
57 # error TARGET_PAGE_BITS must be defined in cpu-param.h
61 #define TARGET_LONG_SIZE (TARGET_LONG_BITS / 8)
63 /* target_ulong is the type of a virtual address */
64 #if TARGET_LONG_SIZE == 4
65 typedef int32_t target_long
;
66 typedef uint32_t target_ulong
;
67 #define TARGET_FMT_lx "%08x"
68 #define TARGET_FMT_ld "%d"
69 #define TARGET_FMT_lu "%u"
70 #elif TARGET_LONG_SIZE == 8
71 typedef int64_t target_long
;
72 typedef uint64_t target_ulong
;
73 #define TARGET_FMT_lx "%016" PRIx64
74 #define TARGET_FMT_ld "%" PRId64
75 #define TARGET_FMT_lu "%" PRIu64
77 #error TARGET_LONG_SIZE undefined
80 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
82 /* use a fully associative victim tlb of 8 entries */
83 #define CPU_VTLB_SIZE 8
85 #if HOST_LONG_BITS == 32 && TARGET_LONG_BITS == 32
86 #define CPU_TLB_ENTRY_BITS 4
88 #define CPU_TLB_ENTRY_BITS 5
91 #define CPU_TLB_DYN_MIN_BITS 6
92 #define CPU_TLB_DYN_DEFAULT_BITS 8
94 # if HOST_LONG_BITS == 32
95 /* Make sure we do not require a double-word shift for the TLB load */
96 # define CPU_TLB_DYN_MAX_BITS (32 - TARGET_PAGE_BITS)
97 # else /* HOST_LONG_BITS == 64 */
99 * Assuming TARGET_PAGE_BITS==12, with 2**22 entries we can cover 2**(22+12) ==
100 * 2**34 == 16G of address space. This is roughly what one would expect a
101 * TLB to cover in a modern (as of 2018) x86_64 CPU. For instance, Intel
102 * Skylake's Level-2 STLB has 16 1G entries.
103 * Also, make sure we do not size the TLB past the guest's address space.
105 # define CPU_TLB_DYN_MAX_BITS \
106 MIN(22, TARGET_VIRT_ADDR_SPACE_BITS - TARGET_PAGE_BITS)
109 typedef struct CPUTLBEntry
{
110 /* bit TARGET_LONG_BITS to TARGET_PAGE_BITS : virtual address
111 bit TARGET_PAGE_BITS-1..4 : Nonzero for accesses that should not
113 bit 3 : indicates that the entry is invalid
118 target_ulong addr_read
;
119 target_ulong addr_write
;
120 target_ulong addr_code
;
121 /* Addend to virtual address to get host address. IO accesses
122 use the corresponding iotlb value. */
125 /* padding to get a power of two size */
126 uint8_t dummy
[1 << CPU_TLB_ENTRY_BITS
];
130 QEMU_BUILD_BUG_ON(sizeof(CPUTLBEntry
) != (1 << CPU_TLB_ENTRY_BITS
));
132 /* The IOTLB is not accessed directly inline by generated TCG code,
133 * so the CPUIOTLBEntry layout is not as critical as that of the
134 * CPUTLBEntry. (This is also why we don't want to combine the two
137 typedef struct CPUIOTLBEntry
{
140 * - in the lower TARGET_PAGE_BITS, a physical section number
141 * - with the lower TARGET_PAGE_BITS masked off, an offset which
142 * must be added to the virtual address to obtain:
143 * + the ram_addr_t of the target RAM (if the physical section
144 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
145 * + the offset within the target MemoryRegion (otherwise)
152 * Data elements that are per MMU mode, minus the bits accessed by
155 typedef struct CPUTLBDesc
{
157 * Describe a region covering all of the large pages allocated
158 * into the tlb. When any page within this region is flushed,
159 * we must flush the entire tlb. The region is matched if
160 * (addr & large_page_mask) == large_page_addr.
162 target_ulong large_page_addr
;
163 target_ulong large_page_mask
;
164 /* host time (in ns) at the beginning of the time window */
165 int64_t window_begin_ns
;
166 /* maximum number of entries observed in the window */
167 size_t window_max_entries
;
168 size_t n_used_entries
;
169 /* The next index to use in the tlb victim table. */
171 /* The tlb victim table, in two parts. */
172 CPUTLBEntry vtable
[CPU_VTLB_SIZE
];
173 CPUIOTLBEntry viotlb
[CPU_VTLB_SIZE
];
175 CPUIOTLBEntry
*iotlb
;
179 * Data elements that are per MMU mode, accessed by the fast path.
180 * The structure is aligned to aid loading the pair with one insn.
182 typedef struct CPUTLBDescFast
{
183 /* Contains (n_entries - 1) << CPU_TLB_ENTRY_BITS */
185 /* The array of tlb entries itself. */
187 } CPUTLBDescFast
QEMU_ALIGNED(2 * sizeof(void *));
190 * Data elements that are shared between all MMU modes.
192 typedef struct CPUTLBCommon
{
193 /* Serialize updates to f.table and d.vtable, and others as noted. */
196 * Within dirty, for each bit N, modifications have been made to
197 * mmu_idx N since the last time that mmu_idx was flushed.
198 * Protected by tlb_c.lock.
202 * Statistics. These are not lock protected, but are read and
203 * written atomically. This allows the monitor to print a snapshot
204 * of the stats without interfering with the cpu.
206 size_t full_flush_count
;
207 size_t part_flush_count
;
208 size_t elide_flush_count
;
212 * The entire softmmu tlb, for all MMU modes.
213 * The meaning of each of the MMU modes is defined in the target code.
214 * Since this is placed within CPUNegativeOffsetState, the smallest
215 * negative offsets are at the end of the struct.
217 typedef struct CPUTLB
{
219 CPUTLBDesc d
[NB_MMU_MODES
];
220 CPUTLBDescFast f
[NB_MMU_MODES
];
223 /* This will be used by TCG backends to compute offsets. */
224 #define TLB_MASK_TABLE_OFS(IDX) \
225 ((int)offsetof(ArchCPU, neg.tlb.f[IDX]) - (int)offsetof(ArchCPU, env))
229 typedef struct CPUTLB
{ } CPUTLB
;
231 #endif /* !CONFIG_USER_ONLY && CONFIG_TCG */
234 * This structure must be placed in ArchCPU immedately
235 * before CPUArchState, as a field named "neg".
237 typedef struct CPUNegativeOffsetState
{
239 IcountDecr icount_decr
;
240 } CPUNegativeOffsetState
;