4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/pc.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
45 #include "hw/pci/pci.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci/msix.h"
48 #include "migration/blocker.h"
49 #include "exec/memattrs.h"
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #define DPRINTF(fmt, ...) \
62 #define MSR_KVM_WALL_CLOCK 0x11
63 #define MSR_KVM_SYSTEM_TIME 0x12
65 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
66 * 255 kvm_msr_entry structs */
67 #define MSR_BUF_SIZE 4096
69 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
70 KVM_CAP_INFO(SET_TSS_ADDR
),
71 KVM_CAP_INFO(EXT_CPUID
),
72 KVM_CAP_INFO(MP_STATE
),
76 static bool has_msr_star
;
77 static bool has_msr_hsave_pa
;
78 static bool has_msr_tsc_aux
;
79 static bool has_msr_tsc_adjust
;
80 static bool has_msr_tsc_deadline
;
81 static bool has_msr_feature_control
;
82 static bool has_msr_misc_enable
;
83 static bool has_msr_smbase
;
84 static bool has_msr_bndcfgs
;
85 static int lm_capable_kernel
;
86 static bool has_msr_hv_hypercall
;
87 static bool has_msr_hv_crash
;
88 static bool has_msr_hv_reset
;
89 static bool has_msr_hv_vpindex
;
90 static bool hv_vpindex_settable
;
91 static bool has_msr_hv_runtime
;
92 static bool has_msr_hv_synic
;
93 static bool has_msr_hv_stimer
;
94 static bool has_msr_hv_frequencies
;
95 static bool has_msr_hv_reenlightenment
;
96 static bool has_msr_xss
;
97 static bool has_msr_spec_ctrl
;
98 static bool has_msr_virt_ssbd
;
99 static bool has_msr_smi_count
;
100 static bool has_msr_arch_capabs
;
101 static bool has_msr_core_capabs
;
103 static uint32_t has_architectural_pmu_version
;
104 static uint32_t num_architectural_pmu_gp_counters
;
105 static uint32_t num_architectural_pmu_fixed_counters
;
107 static int has_xsave
;
109 static int has_pit_state2
;
110 static int has_exception_payload
;
112 static bool has_msr_mcg_ext_ctl
;
114 static struct kvm_cpuid2
*cpuid_cache
;
115 static struct kvm_msr_list
*kvm_feature_msrs
;
117 int kvm_has_pit_state2(void)
119 return has_pit_state2
;
122 bool kvm_has_smm(void)
124 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
127 bool kvm_has_adjust_clock_stable(void)
129 int ret
= kvm_check_extension(kvm_state
, KVM_CAP_ADJUST_CLOCK
);
131 return (ret
== KVM_CLOCK_TSC_STABLE
);
134 bool kvm_has_exception_payload(void)
136 return has_exception_payload
;
139 bool kvm_allows_irq0_override(void)
141 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
144 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
146 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
148 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
151 #define MEMORIZE(fn, _result) \
153 static bool _memorized; \
162 static bool has_x2apic_api
;
164 bool kvm_has_x2apic_api(void)
166 return has_x2apic_api
;
169 bool kvm_enable_x2apic(void)
172 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
173 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
177 bool kvm_hv_vpindex_settable(void)
179 return hv_vpindex_settable
;
182 static int kvm_get_tsc(CPUState
*cs
)
184 X86CPU
*cpu
= X86_CPU(cs
);
185 CPUX86State
*env
= &cpu
->env
;
187 struct kvm_msrs info
;
188 struct kvm_msr_entry entries
[1];
192 if (env
->tsc_valid
) {
196 msr_data
.info
.nmsrs
= 1;
197 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
198 env
->tsc_valid
= !runstate_is_running();
200 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
206 env
->tsc
= msr_data
.entries
[0].data
;
210 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, run_on_cpu_data arg
)
215 void kvm_synchronize_all_tsc(void)
221 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, RUN_ON_CPU_NULL
);
226 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
228 struct kvm_cpuid2
*cpuid
;
231 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
232 cpuid
= g_malloc0(size
);
234 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
235 if (r
== 0 && cpuid
->nent
>= max
) {
243 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
251 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
254 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
256 struct kvm_cpuid2
*cpuid
;
259 if (cpuid_cache
!= NULL
) {
262 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
269 static const struct kvm_para_features
{
272 } para_features
[] = {
273 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
274 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
275 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
276 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
279 static int get_para_features(KVMState
*s
)
283 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
284 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
285 features
|= (1 << para_features
[i
].feature
);
292 static bool host_tsx_blacklisted(void)
294 int family
, model
, stepping
;\
295 char vendor
[CPUID_VENDOR_SZ
+ 1];
297 host_vendor_fms(vendor
, &family
, &model
, &stepping
);
299 /* Check if we are running on a Haswell host known to have broken TSX */
300 return !strcmp(vendor
, CPUID_VENDOR_INTEL
) &&
302 ((model
== 63 && stepping
< 4) ||
303 model
== 60 || model
== 69 || model
== 70);
306 /* Returns the value for a specific register on the cpuid entry
308 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
328 /* Find matching entry for function/index on kvm_cpuid2 struct
330 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
335 for (i
= 0; i
< cpuid
->nent
; ++i
) {
336 if (cpuid
->entries
[i
].function
== function
&&
337 cpuid
->entries
[i
].index
== index
) {
338 return &cpuid
->entries
[i
];
345 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
346 uint32_t index
, int reg
)
348 struct kvm_cpuid2
*cpuid
;
350 uint32_t cpuid_1_edx
;
353 cpuid
= get_supported_cpuid(s
);
355 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
358 ret
= cpuid_entry_get_reg(entry
, reg
);
361 /* Fixups for the data returned by KVM, below */
363 if (function
== 1 && reg
== R_EDX
) {
364 /* KVM before 2.6.30 misreports the following features */
365 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
366 } else if (function
== 1 && reg
== R_ECX
) {
367 /* We can set the hypervisor flag, even if KVM does not return it on
368 * GET_SUPPORTED_CPUID
370 ret
|= CPUID_EXT_HYPERVISOR
;
371 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
372 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
373 * and the irqchip is in the kernel.
375 if (kvm_irqchip_in_kernel() &&
376 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
377 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
380 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
381 * without the in-kernel irqchip
383 if (!kvm_irqchip_in_kernel()) {
384 ret
&= ~CPUID_EXT_X2APIC
;
388 int disable_exits
= kvm_check_extension(s
,
389 KVM_CAP_X86_DISABLE_EXITS
);
391 if (disable_exits
& KVM_X86_DISABLE_EXITS_MWAIT
) {
392 ret
|= CPUID_EXT_MONITOR
;
395 } else if (function
== 6 && reg
== R_EAX
) {
396 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
397 } else if (function
== 7 && index
== 0 && reg
== R_EBX
) {
398 if (host_tsx_blacklisted()) {
399 ret
&= ~(CPUID_7_0_EBX_RTM
| CPUID_7_0_EBX_HLE
);
401 } else if (function
== 7 && index
== 0 && reg
== R_EDX
) {
403 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
404 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
405 * returned by KVM_GET_MSR_INDEX_LIST.
407 if (!has_msr_arch_capabs
) {
408 ret
&= ~CPUID_7_0_EDX_ARCH_CAPABILITIES
;
410 } else if (function
== 0x80000001 && reg
== R_ECX
) {
412 * It's safe to enable TOPOEXT even if it's not returned by
413 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
414 * us to keep CPU models including TOPOEXT runnable on older kernels.
416 ret
|= CPUID_EXT3_TOPOEXT
;
417 } else if (function
== 0x80000001 && reg
== R_EDX
) {
418 /* On Intel, kvm returns cpuid according to the Intel spec,
419 * so add missing bits according to the AMD spec:
421 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
422 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
423 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
424 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
425 * be enabled without the in-kernel irqchip
427 if (!kvm_irqchip_in_kernel()) {
428 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
430 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EDX
) {
431 ret
|= 1U << KVM_HINTS_REALTIME
;
435 /* fallback for older kernels */
436 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
437 ret
= get_para_features(s
);
443 uint32_t kvm_arch_get_supported_msr_feature(KVMState
*s
, uint32_t index
)
446 struct kvm_msrs info
;
447 struct kvm_msr_entry entries
[1];
451 if (kvm_feature_msrs
== NULL
) { /* Host doesn't support feature MSRs */
455 /* Check if requested MSR is supported feature MSR */
457 for (i
= 0; i
< kvm_feature_msrs
->nmsrs
; i
++)
458 if (kvm_feature_msrs
->indices
[i
] == index
) {
461 if (i
== kvm_feature_msrs
->nmsrs
) {
462 return 0; /* if the feature MSR is not supported, simply return 0 */
465 msr_data
.info
.nmsrs
= 1;
466 msr_data
.entries
[0].index
= index
;
468 ret
= kvm_ioctl(s
, KVM_GET_MSRS
, &msr_data
);
470 error_report("KVM get MSR (index=0x%x) feature failed, %s",
471 index
, strerror(-ret
));
475 return msr_data
.entries
[0].data
;
479 typedef struct HWPoisonPage
{
481 QLIST_ENTRY(HWPoisonPage
) list
;
484 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
485 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
487 static void kvm_unpoison_all(void *param
)
489 HWPoisonPage
*page
, *next_page
;
491 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
492 QLIST_REMOVE(page
, list
);
493 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
498 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
502 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
503 if (page
->ram_addr
== ram_addr
) {
507 page
= g_new(HWPoisonPage
, 1);
508 page
->ram_addr
= ram_addr
;
509 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
512 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
517 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
520 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
525 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
527 CPUState
*cs
= CPU(cpu
);
528 CPUX86State
*env
= &cpu
->env
;
529 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
530 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
531 uint64_t mcg_status
= MCG_STATUS_MCIP
;
534 if (code
== BUS_MCEERR_AR
) {
535 status
|= MCI_STATUS_AR
| 0x134;
536 mcg_status
|= MCG_STATUS_EIPV
;
539 mcg_status
|= MCG_STATUS_RIPV
;
542 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
543 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
544 * guest kernel back into env->mcg_ext_ctl.
546 cpu_synchronize_state(cs
);
547 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
548 mcg_status
|= MCG_STATUS_LMCE
;
552 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
553 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
556 static void hardware_memory_error(void)
558 fprintf(stderr
, "Hardware memory error!\n");
562 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
564 X86CPU
*cpu
= X86_CPU(c
);
565 CPUX86State
*env
= &cpu
->env
;
569 /* If we get an action required MCE, it has been injected by KVM
570 * while the VM was running. An action optional MCE instead should
571 * be coming from the main thread, which qemu_init_sigbus identifies
572 * as the "early kill" thread.
574 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
576 if ((env
->mcg_cap
& MCG_SER_P
) && addr
) {
577 ram_addr
= qemu_ram_addr_from_host(addr
);
578 if (ram_addr
!= RAM_ADDR_INVALID
&&
579 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
580 kvm_hwpoison_page_add(ram_addr
);
581 kvm_mce_inject(cpu
, paddr
, code
);
585 fprintf(stderr
, "Hardware memory error for memory used by "
586 "QEMU itself instead of guest system!\n");
589 if (code
== BUS_MCEERR_AR
) {
590 hardware_memory_error();
593 /* Hope we are lucky for AO MCE */
596 static void kvm_reset_exception(CPUX86State
*env
)
598 env
->exception_nr
= -1;
599 env
->exception_pending
= 0;
600 env
->exception_injected
= 0;
601 env
->exception_has_payload
= false;
602 env
->exception_payload
= 0;
605 static void kvm_queue_exception(CPUX86State
*env
,
606 int32_t exception_nr
,
607 uint8_t exception_has_payload
,
608 uint64_t exception_payload
)
610 assert(env
->exception_nr
== -1);
611 assert(!env
->exception_pending
);
612 assert(!env
->exception_injected
);
613 assert(!env
->exception_has_payload
);
615 env
->exception_nr
= exception_nr
;
617 if (has_exception_payload
) {
618 env
->exception_pending
= 1;
620 env
->exception_has_payload
= exception_has_payload
;
621 env
->exception_payload
= exception_payload
;
623 env
->exception_injected
= 1;
625 if (exception_nr
== EXCP01_DB
) {
626 assert(exception_has_payload
);
627 env
->dr
[6] = exception_payload
;
628 } else if (exception_nr
== EXCP0E_PAGE
) {
629 assert(exception_has_payload
);
630 env
->cr
[2] = exception_payload
;
632 assert(!exception_has_payload
);
637 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
639 CPUX86State
*env
= &cpu
->env
;
641 if (!kvm_has_vcpu_events() && env
->exception_nr
== EXCP12_MCHK
) {
642 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
643 struct kvm_x86_mce mce
;
645 kvm_reset_exception(env
);
648 * There must be at least one bank in use if an MCE is pending.
649 * Find it and use its values for the event injection.
651 for (bank
= 0; bank
< bank_num
; bank
++) {
652 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
656 assert(bank
< bank_num
);
659 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
660 mce
.mcg_status
= env
->mcg_status
;
661 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
662 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
664 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
669 static void cpu_update_state(void *opaque
, int running
, RunState state
)
671 CPUX86State
*env
= opaque
;
674 env
->tsc_valid
= false;
678 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
680 X86CPU
*cpu
= X86_CPU(cs
);
684 #ifndef KVM_CPUID_SIGNATURE_NEXT
685 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
688 static bool hyperv_enabled(X86CPU
*cpu
)
690 CPUState
*cs
= CPU(cpu
);
691 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
692 ((cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
) ||
693 cpu
->hyperv_features
|| cpu
->hyperv_passthrough
);
696 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
698 X86CPU
*cpu
= X86_CPU(cs
);
699 CPUX86State
*env
= &cpu
->env
;
706 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
707 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
710 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
711 * TSC frequency doesn't match the one we want.
713 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
714 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
716 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
717 warn_report("TSC frequency mismatch between "
718 "VM (%" PRId64
" kHz) and host (%d kHz), "
719 "and TSC scaling unavailable",
720 env
->tsc_khz
, cur_freq
);
728 static bool tsc_is_stable_and_known(CPUX86State
*env
)
733 return (env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
)
734 || env
->user_tsc_khz
;
743 uint64_t dependencies
;
744 } kvm_hyperv_properties
[] = {
745 [HYPERV_FEAT_RELAXED
] = {
746 .desc
= "relaxed timing (hv-relaxed)",
748 {.fw
= FEAT_HYPERV_EAX
,
749 .bits
= HV_HYPERCALL_AVAILABLE
},
750 {.fw
= FEAT_HV_RECOMM_EAX
,
751 .bits
= HV_RELAXED_TIMING_RECOMMENDED
}
754 [HYPERV_FEAT_VAPIC
] = {
755 .desc
= "virtual APIC (hv-vapic)",
757 {.fw
= FEAT_HYPERV_EAX
,
758 .bits
= HV_HYPERCALL_AVAILABLE
| HV_APIC_ACCESS_AVAILABLE
},
759 {.fw
= FEAT_HV_RECOMM_EAX
,
760 .bits
= HV_APIC_ACCESS_RECOMMENDED
}
763 [HYPERV_FEAT_TIME
] = {
764 .desc
= "clocksources (hv-time)",
766 {.fw
= FEAT_HYPERV_EAX
,
767 .bits
= HV_HYPERCALL_AVAILABLE
| HV_TIME_REF_COUNT_AVAILABLE
|
768 HV_REFERENCE_TSC_AVAILABLE
}
771 [HYPERV_FEAT_CRASH
] = {
772 .desc
= "crash MSRs (hv-crash)",
774 {.fw
= FEAT_HYPERV_EDX
,
775 .bits
= HV_GUEST_CRASH_MSR_AVAILABLE
}
778 [HYPERV_FEAT_RESET
] = {
779 .desc
= "reset MSR (hv-reset)",
781 {.fw
= FEAT_HYPERV_EAX
,
782 .bits
= HV_RESET_AVAILABLE
}
785 [HYPERV_FEAT_VPINDEX
] = {
786 .desc
= "VP_INDEX MSR (hv-vpindex)",
788 {.fw
= FEAT_HYPERV_EAX
,
789 .bits
= HV_VP_INDEX_AVAILABLE
}
792 [HYPERV_FEAT_RUNTIME
] = {
793 .desc
= "VP_RUNTIME MSR (hv-runtime)",
795 {.fw
= FEAT_HYPERV_EAX
,
796 .bits
= HV_VP_RUNTIME_AVAILABLE
}
799 [HYPERV_FEAT_SYNIC
] = {
800 .desc
= "synthetic interrupt controller (hv-synic)",
802 {.fw
= FEAT_HYPERV_EAX
,
803 .bits
= HV_SYNIC_AVAILABLE
}
806 [HYPERV_FEAT_STIMER
] = {
807 .desc
= "synthetic timers (hv-stimer)",
809 {.fw
= FEAT_HYPERV_EAX
,
810 .bits
= HV_SYNTIMERS_AVAILABLE
}
812 .dependencies
= BIT(HYPERV_FEAT_SYNIC
) | BIT(HYPERV_FEAT_TIME
)
814 [HYPERV_FEAT_FREQUENCIES
] = {
815 .desc
= "frequency MSRs (hv-frequencies)",
817 {.fw
= FEAT_HYPERV_EAX
,
818 .bits
= HV_ACCESS_FREQUENCY_MSRS
},
819 {.fw
= FEAT_HYPERV_EDX
,
820 .bits
= HV_FREQUENCY_MSRS_AVAILABLE
}
823 [HYPERV_FEAT_REENLIGHTENMENT
] = {
824 .desc
= "reenlightenment MSRs (hv-reenlightenment)",
826 {.fw
= FEAT_HYPERV_EAX
,
827 .bits
= HV_ACCESS_REENLIGHTENMENTS_CONTROL
}
830 [HYPERV_FEAT_TLBFLUSH
] = {
831 .desc
= "paravirtualized TLB flush (hv-tlbflush)",
833 {.fw
= FEAT_HV_RECOMM_EAX
,
834 .bits
= HV_REMOTE_TLB_FLUSH_RECOMMENDED
|
835 HV_EX_PROCESSOR_MASKS_RECOMMENDED
}
837 .dependencies
= BIT(HYPERV_FEAT_VPINDEX
)
839 [HYPERV_FEAT_EVMCS
] = {
840 .desc
= "enlightened VMCS (hv-evmcs)",
842 {.fw
= FEAT_HV_RECOMM_EAX
,
843 .bits
= HV_ENLIGHTENED_VMCS_RECOMMENDED
}
845 .dependencies
= BIT(HYPERV_FEAT_VAPIC
)
847 [HYPERV_FEAT_IPI
] = {
848 .desc
= "paravirtualized IPI (hv-ipi)",
850 {.fw
= FEAT_HV_RECOMM_EAX
,
851 .bits
= HV_CLUSTER_IPI_RECOMMENDED
|
852 HV_EX_PROCESSOR_MASKS_RECOMMENDED
}
854 .dependencies
= BIT(HYPERV_FEAT_VPINDEX
)
856 [HYPERV_FEAT_STIMER_DIRECT
] = {
857 .desc
= "direct mode synthetic timers (hv-stimer-direct)",
859 {.fw
= FEAT_HYPERV_EDX
,
860 .bits
= HV_STIMER_DIRECT_MODE_AVAILABLE
}
862 .dependencies
= BIT(HYPERV_FEAT_STIMER
)
866 static struct kvm_cpuid2
*try_get_hv_cpuid(CPUState
*cs
, int max
)
868 struct kvm_cpuid2
*cpuid
;
871 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
872 cpuid
= g_malloc0(size
);
875 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SUPPORTED_HV_CPUID
, cpuid
);
876 if (r
== 0 && cpuid
->nent
>= max
) {
884 fprintf(stderr
, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
893 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
896 static struct kvm_cpuid2
*get_supported_hv_cpuid(CPUState
*cs
)
898 struct kvm_cpuid2
*cpuid
;
899 int max
= 7; /* 0x40000000..0x40000005, 0x4000000A */
902 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
903 * -E2BIG, however, it doesn't report back the right size. Keep increasing
904 * it and re-trying until we succeed.
906 while ((cpuid
= try_get_hv_cpuid(cs
, max
)) == NULL
) {
913 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
914 * leaves from KVM_CAP_HYPERV* and present MSRs data.
916 static struct kvm_cpuid2
*get_supported_hv_cpuid_legacy(CPUState
*cs
)
918 X86CPU
*cpu
= X86_CPU(cs
);
919 struct kvm_cpuid2
*cpuid
;
920 struct kvm_cpuid_entry2
*entry_feat
, *entry_recomm
;
922 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
923 cpuid
= g_malloc0(sizeof(*cpuid
) + 2 * sizeof(*cpuid
->entries
));
926 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
927 entry_feat
= &cpuid
->entries
[0];
928 entry_feat
->function
= HV_CPUID_FEATURES
;
930 entry_recomm
= &cpuid
->entries
[1];
931 entry_recomm
->function
= HV_CPUID_ENLIGHTMENT_INFO
;
932 entry_recomm
->ebx
= cpu
->hyperv_spinlock_attempts
;
934 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0) {
935 entry_feat
->eax
|= HV_HYPERCALL_AVAILABLE
;
936 entry_feat
->eax
|= HV_APIC_ACCESS_AVAILABLE
;
937 entry_feat
->edx
|= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
938 entry_recomm
->eax
|= HV_RELAXED_TIMING_RECOMMENDED
;
939 entry_recomm
->eax
|= HV_APIC_ACCESS_RECOMMENDED
;
942 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
943 entry_feat
->eax
|= HV_TIME_REF_COUNT_AVAILABLE
;
944 entry_feat
->eax
|= HV_REFERENCE_TSC_AVAILABLE
;
947 if (has_msr_hv_frequencies
) {
948 entry_feat
->eax
|= HV_ACCESS_FREQUENCY_MSRS
;
949 entry_feat
->edx
|= HV_FREQUENCY_MSRS_AVAILABLE
;
952 if (has_msr_hv_crash
) {
953 entry_feat
->edx
|= HV_GUEST_CRASH_MSR_AVAILABLE
;
956 if (has_msr_hv_reenlightenment
) {
957 entry_feat
->eax
|= HV_ACCESS_REENLIGHTENMENTS_CONTROL
;
960 if (has_msr_hv_reset
) {
961 entry_feat
->eax
|= HV_RESET_AVAILABLE
;
964 if (has_msr_hv_vpindex
) {
965 entry_feat
->eax
|= HV_VP_INDEX_AVAILABLE
;
968 if (has_msr_hv_runtime
) {
969 entry_feat
->eax
|= HV_VP_RUNTIME_AVAILABLE
;
972 if (has_msr_hv_synic
) {
973 unsigned int cap
= cpu
->hyperv_synic_kvm_only
?
974 KVM_CAP_HYPERV_SYNIC
: KVM_CAP_HYPERV_SYNIC2
;
976 if (kvm_check_extension(cs
->kvm_state
, cap
) > 0) {
977 entry_feat
->eax
|= HV_SYNIC_AVAILABLE
;
981 if (has_msr_hv_stimer
) {
982 entry_feat
->eax
|= HV_SYNTIMERS_AVAILABLE
;
985 if (kvm_check_extension(cs
->kvm_state
,
986 KVM_CAP_HYPERV_TLBFLUSH
) > 0) {
987 entry_recomm
->eax
|= HV_REMOTE_TLB_FLUSH_RECOMMENDED
;
988 entry_recomm
->eax
|= HV_EX_PROCESSOR_MASKS_RECOMMENDED
;
991 if (kvm_check_extension(cs
->kvm_state
,
992 KVM_CAP_HYPERV_ENLIGHTENED_VMCS
) > 0) {
993 entry_recomm
->eax
|= HV_ENLIGHTENED_VMCS_RECOMMENDED
;
996 if (kvm_check_extension(cs
->kvm_state
,
997 KVM_CAP_HYPERV_SEND_IPI
) > 0) {
998 entry_recomm
->eax
|= HV_CLUSTER_IPI_RECOMMENDED
;
999 entry_recomm
->eax
|= HV_EX_PROCESSOR_MASKS_RECOMMENDED
;
1005 static int hv_cpuid_get_fw(struct kvm_cpuid2
*cpuid
, int fw
, uint32_t *r
)
1007 struct kvm_cpuid_entry2
*entry
;
1012 case FEAT_HYPERV_EAX
:
1014 func
= HV_CPUID_FEATURES
;
1016 case FEAT_HYPERV_EDX
:
1018 func
= HV_CPUID_FEATURES
;
1020 case FEAT_HV_RECOMM_EAX
:
1022 func
= HV_CPUID_ENLIGHTMENT_INFO
;
1028 entry
= cpuid_find_entry(cpuid
, func
, 0);
1047 static int hv_cpuid_check_and_set(CPUState
*cs
, struct kvm_cpuid2
*cpuid
,
1050 X86CPU
*cpu
= X86_CPU(cs
);
1051 CPUX86State
*env
= &cpu
->env
;
1052 uint32_t r
, fw
, bits
;
1056 if (!hyperv_feat_enabled(cpu
, feature
) && !cpu
->hyperv_passthrough
) {
1060 deps
= kvm_hyperv_properties
[feature
].dependencies
;
1062 dep_feat
= ctz64(deps
);
1063 if (!(hyperv_feat_enabled(cpu
, dep_feat
))) {
1065 "Hyper-V %s requires Hyper-V %s\n",
1066 kvm_hyperv_properties
[feature
].desc
,
1067 kvm_hyperv_properties
[dep_feat
].desc
);
1070 deps
&= ~(1ull << dep_feat
);
1073 for (i
= 0; i
< ARRAY_SIZE(kvm_hyperv_properties
[feature
].flags
); i
++) {
1074 fw
= kvm_hyperv_properties
[feature
].flags
[i
].fw
;
1075 bits
= kvm_hyperv_properties
[feature
].flags
[i
].bits
;
1081 if (hv_cpuid_get_fw(cpuid
, fw
, &r
) || (r
& bits
) != bits
) {
1082 if (hyperv_feat_enabled(cpu
, feature
)) {
1084 "Hyper-V %s is not supported by kernel\n",
1085 kvm_hyperv_properties
[feature
].desc
);
1092 env
->features
[fw
] |= bits
;
1095 if (cpu
->hyperv_passthrough
) {
1096 cpu
->hyperv_features
|= BIT(feature
);
1103 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1104 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1105 * extentions are enabled.
1107 static int hyperv_handle_properties(CPUState
*cs
,
1108 struct kvm_cpuid_entry2
*cpuid_ent
)
1110 X86CPU
*cpu
= X86_CPU(cs
);
1111 CPUX86State
*env
= &cpu
->env
;
1112 struct kvm_cpuid2
*cpuid
;
1113 struct kvm_cpuid_entry2
*c
;
1114 uint32_t signature
[3];
1115 uint32_t cpuid_i
= 0;
1118 if (!hyperv_enabled(cpu
))
1121 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
) ||
1122 cpu
->hyperv_passthrough
) {
1123 uint16_t evmcs_version
;
1125 r
= kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_ENLIGHTENED_VMCS
, 0,
1126 (uintptr_t)&evmcs_version
);
1128 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
) && r
) {
1129 fprintf(stderr
, "Hyper-V %s is not supported by kernel\n",
1130 kvm_hyperv_properties
[HYPERV_FEAT_EVMCS
].desc
);
1135 env
->features
[FEAT_HV_RECOMM_EAX
] |=
1136 HV_ENLIGHTENED_VMCS_RECOMMENDED
;
1137 env
->features
[FEAT_HV_NESTED_EAX
] = evmcs_version
;
1141 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_CPUID
) > 0) {
1142 cpuid
= get_supported_hv_cpuid(cs
);
1144 cpuid
= get_supported_hv_cpuid_legacy(cs
);
1147 if (cpu
->hyperv_passthrough
) {
1148 memcpy(cpuid_ent
, &cpuid
->entries
[0],
1149 cpuid
->nent
* sizeof(cpuid
->entries
[0]));
1151 c
= cpuid_find_entry(cpuid
, HV_CPUID_FEATURES
, 0);
1153 env
->features
[FEAT_HYPERV_EAX
] = c
->eax
;
1154 env
->features
[FEAT_HYPERV_EBX
] = c
->ebx
;
1155 env
->features
[FEAT_HYPERV_EDX
] = c
->eax
;
1157 c
= cpuid_find_entry(cpuid
, HV_CPUID_ENLIGHTMENT_INFO
, 0);
1159 env
->features
[FEAT_HV_RECOMM_EAX
] = c
->eax
;
1161 /* hv-spinlocks may have been overriden */
1162 if (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
) {
1163 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
1166 c
= cpuid_find_entry(cpuid
, HV_CPUID_NESTED_FEATURES
, 0);
1168 env
->features
[FEAT_HV_NESTED_EAX
] = c
->eax
;
1173 r
= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_RELAXED
);
1174 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_VAPIC
);
1175 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_TIME
);
1176 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_CRASH
);
1177 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_RESET
);
1178 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_VPINDEX
);
1179 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_RUNTIME
);
1180 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_SYNIC
);
1181 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_STIMER
);
1182 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_FREQUENCIES
);
1183 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_REENLIGHTENMENT
);
1184 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_TLBFLUSH
);
1185 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_EVMCS
);
1186 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_IPI
);
1187 r
|= hv_cpuid_check_and_set(cs
, cpuid
, HYPERV_FEAT_STIMER_DIRECT
);
1189 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1190 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
) &&
1191 !cpu
->hyperv_synic_kvm_only
&&
1192 !hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
)) {
1193 fprintf(stderr
, "Hyper-V %s requires Hyper-V %s\n",
1194 kvm_hyperv_properties
[HYPERV_FEAT_SYNIC
].desc
,
1195 kvm_hyperv_properties
[HYPERV_FEAT_VPINDEX
].desc
);
1199 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1200 env
->features
[FEAT_HYPERV_EDX
] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
1207 if (cpu
->hyperv_passthrough
) {
1208 /* We already copied all feature words from KVM as is */
1213 c
= &cpuid_ent
[cpuid_i
++];
1214 c
->function
= HV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
1215 if (!cpu
->hyperv_vendor_id
) {
1216 memcpy(signature
, "Microsoft Hv", 12);
1218 size_t len
= strlen(cpu
->hyperv_vendor_id
);
1221 error_report("hv-vendor-id truncated to 12 characters");
1224 memset(signature
, 0, 12);
1225 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
1227 c
->eax
= hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
) ?
1228 HV_CPUID_NESTED_FEATURES
: HV_CPUID_IMPLEMENT_LIMITS
;
1229 c
->ebx
= signature
[0];
1230 c
->ecx
= signature
[1];
1231 c
->edx
= signature
[2];
1233 c
= &cpuid_ent
[cpuid_i
++];
1234 c
->function
= HV_CPUID_INTERFACE
;
1235 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
1236 c
->eax
= signature
[0];
1241 c
= &cpuid_ent
[cpuid_i
++];
1242 c
->function
= HV_CPUID_VERSION
;
1243 c
->eax
= 0x00001bbc;
1244 c
->ebx
= 0x00060001;
1246 c
= &cpuid_ent
[cpuid_i
++];
1247 c
->function
= HV_CPUID_FEATURES
;
1248 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
1249 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
1250 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
1252 c
= &cpuid_ent
[cpuid_i
++];
1253 c
->function
= HV_CPUID_ENLIGHTMENT_INFO
;
1254 c
->eax
= env
->features
[FEAT_HV_RECOMM_EAX
];
1255 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
1257 c
= &cpuid_ent
[cpuid_i
++];
1258 c
->function
= HV_CPUID_IMPLEMENT_LIMITS
;
1259 c
->eax
= cpu
->hv_max_vps
;
1262 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_EVMCS
)) {
1265 /* Create zeroed 0x40000006..0x40000009 leaves */
1266 for (function
= HV_CPUID_IMPLEMENT_LIMITS
+ 1;
1267 function
< HV_CPUID_NESTED_FEATURES
; function
++) {
1268 c
= &cpuid_ent
[cpuid_i
++];
1269 c
->function
= function
;
1272 c
= &cpuid_ent
[cpuid_i
++];
1273 c
->function
= HV_CPUID_NESTED_FEATURES
;
1274 c
->eax
= env
->features
[FEAT_HV_NESTED_EAX
];
1284 static Error
*hv_passthrough_mig_blocker
;
1286 static int hyperv_init_vcpu(X86CPU
*cpu
)
1288 CPUState
*cs
= CPU(cpu
);
1289 Error
*local_err
= NULL
;
1292 if (cpu
->hyperv_passthrough
&& hv_passthrough_mig_blocker
== NULL
) {
1293 error_setg(&hv_passthrough_mig_blocker
,
1294 "'hv-passthrough' CPU flag prevents migration, use explicit"
1295 " set of hv-* flags instead");
1296 ret
= migrate_add_blocker(hv_passthrough_mig_blocker
, &local_err
);
1298 error_report_err(local_err
);
1299 error_free(hv_passthrough_mig_blocker
);
1304 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
) && !hv_vpindex_settable
) {
1306 * the kernel doesn't support setting vp_index; assert that its value
1310 struct kvm_msrs info
;
1311 struct kvm_msr_entry entries
[1];
1314 .entries
[0].index
= HV_X64_MSR_VP_INDEX
,
1317 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MSRS
, &msr_data
);
1323 if (msr_data
.entries
[0].data
!= hyperv_vp_index(CPU(cpu
))) {
1324 error_report("kernel's vp_index != QEMU's vp_index");
1329 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
1330 uint32_t synic_cap
= cpu
->hyperv_synic_kvm_only
?
1331 KVM_CAP_HYPERV_SYNIC
: KVM_CAP_HYPERV_SYNIC2
;
1332 ret
= kvm_vcpu_enable_cap(cs
, synic_cap
, 0);
1334 error_report("failed to turn on HyperV SynIC in KVM: %s",
1339 if (!cpu
->hyperv_synic_kvm_only
) {
1340 ret
= hyperv_x86_synic_add(cpu
);
1342 error_report("failed to create HyperV SynIC: %s",
1352 static Error
*invtsc_mig_blocker
;
1354 #define KVM_MAX_CPUID_ENTRIES 100
1356 int kvm_arch_init_vcpu(CPUState
*cs
)
1359 struct kvm_cpuid2 cpuid
;
1360 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
1363 * The kernel defines these structs with padding fields so there
1364 * should be no extra padding in our cpuid_data struct.
1366 QEMU_BUILD_BUG_ON(sizeof(cpuid_data
) !=
1367 sizeof(struct kvm_cpuid2
) +
1368 sizeof(struct kvm_cpuid_entry2
) * KVM_MAX_CPUID_ENTRIES
);
1370 X86CPU
*cpu
= X86_CPU(cs
);
1371 CPUX86State
*env
= &cpu
->env
;
1372 uint32_t limit
, i
, j
, cpuid_i
;
1374 struct kvm_cpuid_entry2
*c
;
1375 uint32_t signature
[3];
1376 int kvm_base
= KVM_CPUID_SIGNATURE
;
1377 int max_nested_state_len
;
1379 Error
*local_err
= NULL
;
1381 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
1385 r
= kvm_arch_set_tsc_khz(cs
);
1390 /* vcpu's TSC frequency is either specified by user, or following
1391 * the value used by KVM if the former is not present. In the
1392 * latter case, we query it from KVM and record in env->tsc_khz,
1393 * so that vcpu's TSC frequency can be migrated later via this field.
1395 if (!env
->tsc_khz
) {
1396 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
1397 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
1404 /* Paravirtualization CPUIDs */
1405 r
= hyperv_handle_properties(cs
, cpuid_data
.entries
);
1410 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
1411 has_msr_hv_hypercall
= true;
1414 if (cpu
->expose_kvm
) {
1415 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
1416 c
= &cpuid_data
.entries
[cpuid_i
++];
1417 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
1418 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
1419 c
->ebx
= signature
[0];
1420 c
->ecx
= signature
[1];
1421 c
->edx
= signature
[2];
1423 c
= &cpuid_data
.entries
[cpuid_i
++];
1424 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
1425 c
->eax
= env
->features
[FEAT_KVM
];
1426 c
->edx
= env
->features
[FEAT_KVM_HINTS
];
1429 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
1431 for (i
= 0; i
<= limit
; i
++) {
1432 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1433 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
1436 c
= &cpuid_data
.entries
[cpuid_i
++];
1440 /* Keep reading function 2 till all the input is received */
1444 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
1445 KVM_CPUID_FLAG_STATE_READ_NEXT
;
1446 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1447 times
= c
->eax
& 0xff;
1449 for (j
= 1; j
< times
; ++j
) {
1450 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1451 fprintf(stderr
, "cpuid_data is full, no space for "
1452 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
1455 c
= &cpuid_data
.entries
[cpuid_i
++];
1457 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1458 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1463 if (env
->nr_dies
< 2) {
1469 for (j
= 0; ; j
++) {
1470 if (i
== 0xd && j
== 64) {
1474 if (i
== 0x1f && j
== 64) {
1479 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1481 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1483 if (i
== 4 && c
->eax
== 0) {
1486 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
1489 if (i
== 0x1f && !(c
->ecx
& 0xff00)) {
1492 if (i
== 0xd && c
->eax
== 0) {
1495 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1496 fprintf(stderr
, "cpuid_data is full, no space for "
1497 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
1500 c
= &cpuid_data
.entries
[cpuid_i
++];
1508 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1509 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1512 for (j
= 1; j
<= times
; ++j
) {
1513 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1514 fprintf(stderr
, "cpuid_data is full, no space for "
1515 "cpuid(eax:0x14,ecx:0x%x)\n", j
);
1518 c
= &cpuid_data
.entries
[cpuid_i
++];
1521 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1522 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1529 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1534 if (limit
>= 0x0a) {
1537 cpu_x86_cpuid(env
, 0x0a, 0, &eax
, &unused
, &unused
, &edx
);
1539 has_architectural_pmu_version
= eax
& 0xff;
1540 if (has_architectural_pmu_version
> 0) {
1541 num_architectural_pmu_gp_counters
= (eax
& 0xff00) >> 8;
1543 /* Shouldn't be more than 32, since that's the number of bits
1544 * available in EBX to tell us _which_ counters are available.
1547 if (num_architectural_pmu_gp_counters
> MAX_GP_COUNTERS
) {
1548 num_architectural_pmu_gp_counters
= MAX_GP_COUNTERS
;
1551 if (has_architectural_pmu_version
> 1) {
1552 num_architectural_pmu_fixed_counters
= edx
& 0x1f;
1554 if (num_architectural_pmu_fixed_counters
> MAX_FIXED_COUNTERS
) {
1555 num_architectural_pmu_fixed_counters
= MAX_FIXED_COUNTERS
;
1561 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
1563 for (i
= 0x80000000; i
<= limit
; i
++) {
1564 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1565 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
1568 c
= &cpuid_data
.entries
[cpuid_i
++];
1572 /* Query for all AMD cache information leaves */
1573 for (j
= 0; ; j
++) {
1575 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1577 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1582 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1583 fprintf(stderr
, "cpuid_data is full, no space for "
1584 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
1587 c
= &cpuid_data
.entries
[cpuid_i
++];
1593 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1598 /* Call Centaur's CPUID instructions they are supported. */
1599 if (env
->cpuid_xlevel2
> 0) {
1600 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
1602 for (i
= 0xC0000000; i
<= limit
; i
++) {
1603 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
1604 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
1607 c
= &cpuid_data
.entries
[cpuid_i
++];
1611 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
1615 cpuid_data
.cpuid
.nent
= cpuid_i
;
1617 if (((env
->cpuid_version
>> 8)&0xF) >= 6
1618 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
1619 (CPUID_MCE
| CPUID_MCA
)
1620 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
1621 uint64_t mcg_cap
, unsupported_caps
;
1625 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
1627 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
1631 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
1632 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1633 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
1637 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
1638 if (unsupported_caps
) {
1639 if (unsupported_caps
& MCG_LMCE_P
) {
1640 error_report("kvm: LMCE not supported");
1643 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64
,
1647 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
1648 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
1650 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
1655 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
1657 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
1659 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
1660 !!(c
->ecx
& CPUID_EXT_SMX
);
1663 if (env
->mcg_cap
& MCG_LMCE_P
) {
1664 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
1667 if (!env
->user_tsc_khz
) {
1668 if ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
) &&
1669 invtsc_mig_blocker
== NULL
) {
1670 error_setg(&invtsc_mig_blocker
,
1671 "State blocked by non-migratable CPU device"
1673 r
= migrate_add_blocker(invtsc_mig_blocker
, &local_err
);
1675 error_report_err(local_err
);
1676 error_free(invtsc_mig_blocker
);
1682 if (cpu
->vmware_cpuid_freq
1683 /* Guests depend on 0x40000000 to detect this feature, so only expose
1684 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1686 && kvm_base
== KVM_CPUID_SIGNATURE
1687 /* TSC clock must be stable and known for this feature. */
1688 && tsc_is_stable_and_known(env
)) {
1690 c
= &cpuid_data
.entries
[cpuid_i
++];
1691 c
->function
= KVM_CPUID_SIGNATURE
| 0x10;
1692 c
->eax
= env
->tsc_khz
;
1693 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1694 * APIC_BUS_CYCLE_NS */
1696 c
->ecx
= c
->edx
= 0;
1698 c
= cpuid_find_entry(&cpuid_data
.cpuid
, kvm_base
, 0);
1699 c
->eax
= MAX(c
->eax
, KVM_CPUID_SIGNATURE
| 0x10);
1702 cpuid_data
.cpuid
.nent
= cpuid_i
;
1704 cpuid_data
.cpuid
.padding
= 0;
1705 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
1711 env
->xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
1714 max_nested_state_len
= kvm_max_nested_state_length();
1715 if (max_nested_state_len
> 0) {
1716 assert(max_nested_state_len
>= offsetof(struct kvm_nested_state
, data
));
1718 if (cpu_has_vmx(env
)) {
1719 struct kvm_vmx_nested_state_hdr
*vmx_hdr
;
1721 env
->nested_state
= g_malloc0(max_nested_state_len
);
1722 env
->nested_state
->size
= max_nested_state_len
;
1723 env
->nested_state
->format
= KVM_STATE_NESTED_FORMAT_VMX
;
1725 vmx_hdr
= &env
->nested_state
->hdr
.vmx
;
1726 vmx_hdr
->vmxon_pa
= -1ull;
1727 vmx_hdr
->vmcs12_pa
= -1ull;
1731 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
1733 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1734 has_msr_tsc_aux
= false;
1737 r
= hyperv_init_vcpu(cpu
);
1745 migrate_del_blocker(invtsc_mig_blocker
);
1750 int kvm_arch_destroy_vcpu(CPUState
*cs
)
1752 X86CPU
*cpu
= X86_CPU(cs
);
1753 CPUX86State
*env
= &cpu
->env
;
1755 if (cpu
->kvm_msr_buf
) {
1756 g_free(cpu
->kvm_msr_buf
);
1757 cpu
->kvm_msr_buf
= NULL
;
1760 if (env
->nested_state
) {
1761 g_free(env
->nested_state
);
1762 env
->nested_state
= NULL
;
1768 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1770 CPUX86State
*env
= &cpu
->env
;
1773 if (kvm_irqchip_in_kernel()) {
1774 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1775 KVM_MP_STATE_UNINITIALIZED
;
1777 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1780 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
1782 for (i
= 0; i
< ARRAY_SIZE(env
->msr_hv_synic_sint
); i
++) {
1783 env
->msr_hv_synic_sint
[i
] = HV_SINT_MASKED
;
1786 hyperv_x86_synic_reset(cpu
);
1790 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1792 CPUX86State
*env
= &cpu
->env
;
1794 /* APs get directly into wait-for-SIPI state. */
1795 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1796 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1800 static int kvm_get_supported_feature_msrs(KVMState
*s
)
1804 if (kvm_feature_msrs
!= NULL
) {
1808 if (!kvm_check_extension(s
, KVM_CAP_GET_MSR_FEATURES
)) {
1812 struct kvm_msr_list msr_list
;
1815 ret
= kvm_ioctl(s
, KVM_GET_MSR_FEATURE_INDEX_LIST
, &msr_list
);
1816 if (ret
< 0 && ret
!= -E2BIG
) {
1817 error_report("Fetch KVM feature MSR list failed: %s",
1822 assert(msr_list
.nmsrs
> 0);
1823 kvm_feature_msrs
= (struct kvm_msr_list
*) \
1824 g_malloc0(sizeof(msr_list
) +
1825 msr_list
.nmsrs
* sizeof(msr_list
.indices
[0]));
1827 kvm_feature_msrs
->nmsrs
= msr_list
.nmsrs
;
1828 ret
= kvm_ioctl(s
, KVM_GET_MSR_FEATURE_INDEX_LIST
, kvm_feature_msrs
);
1831 error_report("Fetch KVM feature MSR list failed: %s",
1833 g_free(kvm_feature_msrs
);
1834 kvm_feature_msrs
= NULL
;
1841 static int kvm_get_supported_msrs(KVMState
*s
)
1843 static int kvm_supported_msrs
;
1847 if (kvm_supported_msrs
== 0) {
1848 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1850 kvm_supported_msrs
= -1;
1852 /* Obtain MSR list from KVM. These are the MSRs that we must
1855 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1856 if (ret
< 0 && ret
!= -E2BIG
) {
1859 /* Old kernel modules had a bug and could write beyond the provided
1860 memory. Allocate at least a safe amount of 1K. */
1861 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1863 sizeof(msr_list
.indices
[0])));
1865 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1866 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1870 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1871 switch (kvm_msr_list
->indices
[i
]) {
1873 has_msr_star
= true;
1875 case MSR_VM_HSAVE_PA
:
1876 has_msr_hsave_pa
= true;
1879 has_msr_tsc_aux
= true;
1881 case MSR_TSC_ADJUST
:
1882 has_msr_tsc_adjust
= true;
1884 case MSR_IA32_TSCDEADLINE
:
1885 has_msr_tsc_deadline
= true;
1887 case MSR_IA32_SMBASE
:
1888 has_msr_smbase
= true;
1891 has_msr_smi_count
= true;
1893 case MSR_IA32_MISC_ENABLE
:
1894 has_msr_misc_enable
= true;
1896 case MSR_IA32_BNDCFGS
:
1897 has_msr_bndcfgs
= true;
1902 case HV_X64_MSR_CRASH_CTL
:
1903 has_msr_hv_crash
= true;
1905 case HV_X64_MSR_RESET
:
1906 has_msr_hv_reset
= true;
1908 case HV_X64_MSR_VP_INDEX
:
1909 has_msr_hv_vpindex
= true;
1911 case HV_X64_MSR_VP_RUNTIME
:
1912 has_msr_hv_runtime
= true;
1914 case HV_X64_MSR_SCONTROL
:
1915 has_msr_hv_synic
= true;
1917 case HV_X64_MSR_STIMER0_CONFIG
:
1918 has_msr_hv_stimer
= true;
1920 case HV_X64_MSR_TSC_FREQUENCY
:
1921 has_msr_hv_frequencies
= true;
1923 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1924 has_msr_hv_reenlightenment
= true;
1926 case MSR_IA32_SPEC_CTRL
:
1927 has_msr_spec_ctrl
= true;
1930 has_msr_virt_ssbd
= true;
1932 case MSR_IA32_ARCH_CAPABILITIES
:
1933 has_msr_arch_capabs
= true;
1935 case MSR_IA32_CORE_CAPABILITY
:
1936 has_msr_core_capabs
= true;
1942 g_free(kvm_msr_list
);
1948 static Notifier smram_machine_done
;
1949 static KVMMemoryListener smram_listener
;
1950 static AddressSpace smram_address_space
;
1951 static MemoryRegion smram_as_root
;
1952 static MemoryRegion smram_as_mem
;
1954 static void register_smram_listener(Notifier
*n
, void *unused
)
1956 MemoryRegion
*smram
=
1957 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1959 /* Outer container... */
1960 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1961 memory_region_set_enabled(&smram_as_root
, true);
1963 /* ... with two regions inside: normal system memory with low
1966 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1967 get_system_memory(), 0, ~0ull);
1968 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1969 memory_region_set_enabled(&smram_as_mem
, true);
1972 /* ... SMRAM with higher priority */
1973 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1974 memory_region_set_enabled(smram
, true);
1977 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1978 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1979 &smram_address_space
, 1);
1982 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1984 uint64_t identity_base
= 0xfffbc000;
1985 uint64_t shadow_mem
;
1987 struct utsname utsname
;
1989 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1990 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1991 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1993 hv_vpindex_settable
= kvm_check_extension(s
, KVM_CAP_HYPERV_VP_INDEX
);
1995 has_exception_payload
= kvm_check_extension(s
, KVM_CAP_EXCEPTION_PAYLOAD
);
1996 if (has_exception_payload
) {
1997 ret
= kvm_vm_enable_cap(s
, KVM_CAP_EXCEPTION_PAYLOAD
, 0, true);
1999 error_report("kvm: Failed to enable exception payload cap: %s",
2005 ret
= kvm_get_supported_msrs(s
);
2010 kvm_get_supported_feature_msrs(s
);
2013 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
2016 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2017 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2018 * Since these must be part of guest physical memory, we need to allocate
2019 * them, both by setting their start addresses in the kernel and by
2020 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2022 * Older KVM versions may not support setting the identity map base. In
2023 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2026 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
2027 /* Allows up to 16M BIOSes. */
2028 identity_base
= 0xfeffc000;
2030 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
2036 /* Set TSS base one page after EPT identity map. */
2037 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
2042 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2043 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
2045 fprintf(stderr
, "e820_add_entry() table is full\n");
2048 qemu_register_reset(kvm_unpoison_all
, NULL
);
2050 shadow_mem
= machine_kvm_shadow_mem(ms
);
2051 if (shadow_mem
!= -1) {
2053 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
2059 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
) &&
2060 object_dynamic_cast(OBJECT(ms
), TYPE_PC_MACHINE
) &&
2061 pc_machine_is_smm_enabled(PC_MACHINE(ms
))) {
2062 smram_machine_done
.notify
= register_smram_listener
;
2063 qemu_add_machine_init_done_notifier(&smram_machine_done
);
2066 if (enable_cpu_pm
) {
2067 int disable_exits
= kvm_check_extension(s
, KVM_CAP_X86_DISABLE_EXITS
);
2070 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2071 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2072 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2074 if (disable_exits
) {
2075 disable_exits
&= (KVM_X86_DISABLE_EXITS_MWAIT
|
2076 KVM_X86_DISABLE_EXITS_HLT
|
2077 KVM_X86_DISABLE_EXITS_PAUSE
);
2080 ret
= kvm_vm_enable_cap(s
, KVM_CAP_X86_DISABLE_EXITS
, 0,
2083 error_report("kvm: guest stopping CPU not supported: %s",
2091 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
2093 lhs
->selector
= rhs
->selector
;
2094 lhs
->base
= rhs
->base
;
2095 lhs
->limit
= rhs
->limit
;
2107 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
2109 unsigned flags
= rhs
->flags
;
2110 lhs
->selector
= rhs
->selector
;
2111 lhs
->base
= rhs
->base
;
2112 lhs
->limit
= rhs
->limit
;
2113 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
2114 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
2115 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
2116 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
2117 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
2118 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
2119 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
2120 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
2121 lhs
->unusable
= !lhs
->present
;
2125 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
2127 lhs
->selector
= rhs
->selector
;
2128 lhs
->base
= rhs
->base
;
2129 lhs
->limit
= rhs
->limit
;
2130 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
2131 ((rhs
->present
&& !rhs
->unusable
) * DESC_P_MASK
) |
2132 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
2133 (rhs
->db
<< DESC_B_SHIFT
) |
2134 (rhs
->s
* DESC_S_MASK
) |
2135 (rhs
->l
<< DESC_L_SHIFT
) |
2136 (rhs
->g
* DESC_G_MASK
) |
2137 (rhs
->avl
* DESC_AVL_MASK
);
2140 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
2143 *kvm_reg
= *qemu_reg
;
2145 *qemu_reg
= *kvm_reg
;
2149 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
2151 CPUX86State
*env
= &cpu
->env
;
2152 struct kvm_regs regs
;
2156 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
2162 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
2163 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
2164 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
2165 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
2166 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
2167 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
2168 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
2169 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
2170 #ifdef TARGET_X86_64
2171 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
2172 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
2173 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
2174 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
2175 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
2176 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
2177 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
2178 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
2181 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
2182 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
2185 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
2191 static int kvm_put_fpu(X86CPU
*cpu
)
2193 CPUX86State
*env
= &cpu
->env
;
2197 memset(&fpu
, 0, sizeof fpu
);
2198 fpu
.fsw
= env
->fpus
& ~(7 << 11);
2199 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
2200 fpu
.fcw
= env
->fpuc
;
2201 fpu
.last_opcode
= env
->fpop
;
2202 fpu
.last_ip
= env
->fpip
;
2203 fpu
.last_dp
= env
->fpdp
;
2204 for (i
= 0; i
< 8; ++i
) {
2205 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
2207 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
2208 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
2209 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
2210 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
2212 fpu
.mxcsr
= env
->mxcsr
;
2214 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
2217 #define XSAVE_FCW_FSW 0
2218 #define XSAVE_FTW_FOP 1
2219 #define XSAVE_CWD_RIP 2
2220 #define XSAVE_CWD_RDP 4
2221 #define XSAVE_MXCSR 6
2222 #define XSAVE_ST_SPACE 8
2223 #define XSAVE_XMM_SPACE 40
2224 #define XSAVE_XSTATE_BV 128
2225 #define XSAVE_YMMH_SPACE 144
2226 #define XSAVE_BNDREGS 240
2227 #define XSAVE_BNDCSR 256
2228 #define XSAVE_OPMASK 272
2229 #define XSAVE_ZMM_Hi256 288
2230 #define XSAVE_Hi16_ZMM 416
2231 #define XSAVE_PKRU 672
2233 #define XSAVE_BYTE_OFFSET(word_offset) \
2234 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2236 #define ASSERT_OFFSET(word_offset, field) \
2237 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2238 offsetof(X86XSaveArea, field))
2240 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
2241 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
2242 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
2243 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
2244 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
2245 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
2246 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
2247 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
2248 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
2249 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
2250 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
2251 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
2252 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
2253 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
2254 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
2256 static int kvm_put_xsave(X86CPU
*cpu
)
2258 CPUX86State
*env
= &cpu
->env
;
2259 X86XSaveArea
*xsave
= env
->xsave_buf
;
2262 return kvm_put_fpu(cpu
);
2264 x86_cpu_xsave_all_areas(cpu
, xsave
);
2266 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
2269 static int kvm_put_xcrs(X86CPU
*cpu
)
2271 CPUX86State
*env
= &cpu
->env
;
2272 struct kvm_xcrs xcrs
= {};
2280 xcrs
.xcrs
[0].xcr
= 0;
2281 xcrs
.xcrs
[0].value
= env
->xcr0
;
2282 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
2285 static int kvm_put_sregs(X86CPU
*cpu
)
2287 CPUX86State
*env
= &cpu
->env
;
2288 struct kvm_sregs sregs
;
2290 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
2291 if (env
->interrupt_injected
>= 0) {
2292 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
2293 (uint64_t)1 << (env
->interrupt_injected
% 64);
2296 if ((env
->eflags
& VM_MASK
)) {
2297 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
2298 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
2299 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
2300 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
2301 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
2302 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
2304 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
2305 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
2306 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
2307 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
2308 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
2309 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
2312 set_seg(&sregs
.tr
, &env
->tr
);
2313 set_seg(&sregs
.ldt
, &env
->ldt
);
2315 sregs
.idt
.limit
= env
->idt
.limit
;
2316 sregs
.idt
.base
= env
->idt
.base
;
2317 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
2318 sregs
.gdt
.limit
= env
->gdt
.limit
;
2319 sregs
.gdt
.base
= env
->gdt
.base
;
2320 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
2322 sregs
.cr0
= env
->cr
[0];
2323 sregs
.cr2
= env
->cr
[2];
2324 sregs
.cr3
= env
->cr
[3];
2325 sregs
.cr4
= env
->cr
[4];
2327 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
2328 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
2330 sregs
.efer
= env
->efer
;
2332 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
2335 static void kvm_msr_buf_reset(X86CPU
*cpu
)
2337 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
2340 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
2342 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
2343 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
2344 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
2346 assert((void *)(entry
+ 1) <= limit
);
2348 entry
->index
= index
;
2349 entry
->reserved
= 0;
2350 entry
->data
= value
;
2354 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
2356 kvm_msr_buf_reset(cpu
);
2357 kvm_msr_entry_add(cpu
, index
, value
);
2359 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
2362 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
2366 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
2370 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
2372 CPUX86State
*env
= &cpu
->env
;
2375 if (!has_msr_tsc_deadline
) {
2379 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
2389 * Provide a separate write service for the feature control MSR in order to
2390 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2391 * before writing any other state because forcibly leaving nested mode
2392 * invalidates the VCPU state.
2394 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
2398 if (!has_msr_feature_control
) {
2402 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
2403 cpu
->env
.msr_ia32_feature_control
);
2412 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
2414 CPUX86State
*env
= &cpu
->env
;
2418 kvm_msr_buf_reset(cpu
);
2420 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
2421 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
2422 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
2423 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
2425 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
2427 if (has_msr_hsave_pa
) {
2428 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
2430 if (has_msr_tsc_aux
) {
2431 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
2433 if (has_msr_tsc_adjust
) {
2434 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
2436 if (has_msr_misc_enable
) {
2437 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
2438 env
->msr_ia32_misc_enable
);
2440 if (has_msr_smbase
) {
2441 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
2443 if (has_msr_smi_count
) {
2444 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, env
->msr_smi_count
);
2446 if (has_msr_bndcfgs
) {
2447 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
2450 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
2452 if (has_msr_spec_ctrl
) {
2453 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, env
->spec_ctrl
);
2455 if (has_msr_virt_ssbd
) {
2456 kvm_msr_entry_add(cpu
, MSR_VIRT_SSBD
, env
->virt_ssbd
);
2459 #ifdef TARGET_X86_64
2460 if (lm_capable_kernel
) {
2461 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
2462 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
2463 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
2464 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
2468 /* If host supports feature MSR, write down. */
2469 if (has_msr_arch_capabs
) {
2470 kvm_msr_entry_add(cpu
, MSR_IA32_ARCH_CAPABILITIES
,
2471 env
->features
[FEAT_ARCH_CAPABILITIES
]);
2474 if (has_msr_core_capabs
) {
2475 kvm_msr_entry_add(cpu
, MSR_IA32_CORE_CAPABILITY
,
2476 env
->features
[FEAT_CORE_CAPABILITY
]);
2480 * The following MSRs have side effects on the guest or are too heavy
2481 * for normal writeback. Limit them to reset or full state updates.
2483 if (level
>= KVM_PUT_RESET_STATE
) {
2484 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
2485 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
2486 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
2487 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2488 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
2490 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2491 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
2493 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2494 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
2496 if (has_architectural_pmu_version
> 0) {
2497 if (has_architectural_pmu_version
> 1) {
2498 /* Stop the counter. */
2499 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2500 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2503 /* Set the counter values. */
2504 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
2505 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
2506 env
->msr_fixed_counters
[i
]);
2508 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
2509 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
2510 env
->msr_gp_counters
[i
]);
2511 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
2512 env
->msr_gp_evtsel
[i
]);
2514 if (has_architectural_pmu_version
> 1) {
2515 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
2516 env
->msr_global_status
);
2517 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
2518 env
->msr_global_ovf_ctrl
);
2520 /* Now start the PMU. */
2521 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
2522 env
->msr_fixed_ctr_ctrl
);
2523 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
2524 env
->msr_global_ctrl
);
2528 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2529 * only sync them to KVM on the first cpu
2531 if (current_cpu
== first_cpu
) {
2532 if (has_msr_hv_hypercall
) {
2533 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
2534 env
->msr_hv_guest_os_id
);
2535 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
2536 env
->msr_hv_hypercall
);
2538 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_TIME
)) {
2539 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
,
2542 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_REENLIGHTENMENT
)) {
2543 kvm_msr_entry_add(cpu
, HV_X64_MSR_REENLIGHTENMENT_CONTROL
,
2544 env
->msr_hv_reenlightenment_control
);
2545 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_CONTROL
,
2546 env
->msr_hv_tsc_emulation_control
);
2547 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_STATUS
,
2548 env
->msr_hv_tsc_emulation_status
);
2551 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VAPIC
)) {
2552 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
2555 if (has_msr_hv_crash
) {
2558 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++)
2559 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
2560 env
->msr_hv_crash_params
[j
]);
2562 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
, HV_CRASH_CTL_NOTIFY
);
2564 if (has_msr_hv_runtime
) {
2565 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
2567 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
)
2568 && hv_vpindex_settable
) {
2569 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_INDEX
,
2570 hyperv_vp_index(CPU(cpu
)));
2572 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
2575 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, HV_SYNIC_VERSION
);
2577 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
2578 env
->msr_hv_synic_control
);
2579 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
2580 env
->msr_hv_synic_evt_page
);
2581 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
2582 env
->msr_hv_synic_msg_page
);
2584 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
2585 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
2586 env
->msr_hv_synic_sint
[j
]);
2589 if (has_msr_hv_stimer
) {
2592 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
2593 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
2594 env
->msr_hv_stimer_config
[j
]);
2597 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
2598 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
2599 env
->msr_hv_stimer_count
[j
]);
2602 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2603 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
2605 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
2606 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
2607 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
2608 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
2609 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
2610 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
2611 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
2612 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
2613 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
2614 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
2615 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
2616 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
2617 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2618 /* The CPU GPs if we write to a bit above the physical limit of
2619 * the host CPU (and KVM emulates that)
2621 uint64_t mask
= env
->mtrr_var
[i
].mask
;
2624 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
2625 env
->mtrr_var
[i
].base
);
2626 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
2629 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
2630 int addr_num
= kvm_arch_get_supported_cpuid(kvm_state
,
2631 0x14, 1, R_EAX
) & 0x7;
2633 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
,
2634 env
->msr_rtit_ctrl
);
2635 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
,
2636 env
->msr_rtit_status
);
2637 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
,
2638 env
->msr_rtit_output_base
);
2639 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
,
2640 env
->msr_rtit_output_mask
);
2641 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
,
2642 env
->msr_rtit_cr3_match
);
2643 for (i
= 0; i
< addr_num
; i
++) {
2644 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
,
2645 env
->msr_rtit_addrs
[i
]);
2649 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2650 * kvm_put_msr_feature_control. */
2655 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
2656 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
2657 if (has_msr_mcg_ext_ctl
) {
2658 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
2660 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2661 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
2665 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
2670 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2671 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2672 error_report("error: failed to set MSR 0x%" PRIx32
" to 0x%" PRIx64
,
2673 (uint32_t)e
->index
, (uint64_t)e
->data
);
2676 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2681 static int kvm_get_fpu(X86CPU
*cpu
)
2683 CPUX86State
*env
= &cpu
->env
;
2687 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
2692 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
2693 env
->fpus
= fpu
.fsw
;
2694 env
->fpuc
= fpu
.fcw
;
2695 env
->fpop
= fpu
.last_opcode
;
2696 env
->fpip
= fpu
.last_ip
;
2697 env
->fpdp
= fpu
.last_dp
;
2698 for (i
= 0; i
< 8; ++i
) {
2699 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
2701 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
2702 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
2703 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
2704 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
2706 env
->mxcsr
= fpu
.mxcsr
;
2711 static int kvm_get_xsave(X86CPU
*cpu
)
2713 CPUX86State
*env
= &cpu
->env
;
2714 X86XSaveArea
*xsave
= env
->xsave_buf
;
2718 return kvm_get_fpu(cpu
);
2721 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
2725 x86_cpu_xrstor_all_areas(cpu
, xsave
);
2730 static int kvm_get_xcrs(X86CPU
*cpu
)
2732 CPUX86State
*env
= &cpu
->env
;
2734 struct kvm_xcrs xcrs
;
2740 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
2745 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
2746 /* Only support xcr0 now */
2747 if (xcrs
.xcrs
[i
].xcr
== 0) {
2748 env
->xcr0
= xcrs
.xcrs
[i
].value
;
2755 static int kvm_get_sregs(X86CPU
*cpu
)
2757 CPUX86State
*env
= &cpu
->env
;
2758 struct kvm_sregs sregs
;
2761 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
2766 /* There can only be one pending IRQ set in the bitmap at a time, so try
2767 to find it and save its number instead (-1 for none). */
2768 env
->interrupt_injected
= -1;
2769 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
2770 if (sregs
.interrupt_bitmap
[i
]) {
2771 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
2772 env
->interrupt_injected
= i
* 64 + bit
;
2777 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
2778 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
2779 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
2780 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
2781 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
2782 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
2784 get_seg(&env
->tr
, &sregs
.tr
);
2785 get_seg(&env
->ldt
, &sregs
.ldt
);
2787 env
->idt
.limit
= sregs
.idt
.limit
;
2788 env
->idt
.base
= sregs
.idt
.base
;
2789 env
->gdt
.limit
= sregs
.gdt
.limit
;
2790 env
->gdt
.base
= sregs
.gdt
.base
;
2792 env
->cr
[0] = sregs
.cr0
;
2793 env
->cr
[2] = sregs
.cr2
;
2794 env
->cr
[3] = sregs
.cr3
;
2795 env
->cr
[4] = sregs
.cr4
;
2797 env
->efer
= sregs
.efer
;
2799 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2800 x86_update_hflags(env
);
2805 static int kvm_get_msrs(X86CPU
*cpu
)
2807 CPUX86State
*env
= &cpu
->env
;
2808 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
2810 uint64_t mtrr_top_bits
;
2812 kvm_msr_buf_reset(cpu
);
2814 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
2815 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
2816 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
2817 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
2819 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
2821 if (has_msr_hsave_pa
) {
2822 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
2824 if (has_msr_tsc_aux
) {
2825 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2827 if (has_msr_tsc_adjust
) {
2828 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2830 if (has_msr_tsc_deadline
) {
2831 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2833 if (has_msr_misc_enable
) {
2834 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2836 if (has_msr_smbase
) {
2837 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2839 if (has_msr_smi_count
) {
2840 kvm_msr_entry_add(cpu
, MSR_SMI_COUNT
, 0);
2842 if (has_msr_feature_control
) {
2843 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2845 if (has_msr_bndcfgs
) {
2846 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2849 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2851 if (has_msr_spec_ctrl
) {
2852 kvm_msr_entry_add(cpu
, MSR_IA32_SPEC_CTRL
, 0);
2854 if (has_msr_virt_ssbd
) {
2855 kvm_msr_entry_add(cpu
, MSR_VIRT_SSBD
, 0);
2857 if (!env
->tsc_valid
) {
2858 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2859 env
->tsc_valid
= !runstate_is_running();
2862 #ifdef TARGET_X86_64
2863 if (lm_capable_kernel
) {
2864 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2865 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2866 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2867 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2870 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2871 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2872 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2873 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2875 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2876 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2878 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2879 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2881 if (has_architectural_pmu_version
> 0) {
2882 if (has_architectural_pmu_version
> 1) {
2883 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2884 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2885 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2886 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2888 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
2889 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2891 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
2892 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2893 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2898 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2899 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2900 if (has_msr_mcg_ext_ctl
) {
2901 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2903 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2904 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2908 if (has_msr_hv_hypercall
) {
2909 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2910 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2912 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VAPIC
)) {
2913 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2915 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_TIME
)) {
2916 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2918 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_REENLIGHTENMENT
)) {
2919 kvm_msr_entry_add(cpu
, HV_X64_MSR_REENLIGHTENMENT_CONTROL
, 0);
2920 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_CONTROL
, 0);
2921 kvm_msr_entry_add(cpu
, HV_X64_MSR_TSC_EMULATION_STATUS
, 0);
2923 if (has_msr_hv_crash
) {
2926 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++) {
2927 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2930 if (has_msr_hv_runtime
) {
2931 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2933 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_SYNIC
)) {
2936 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2937 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2938 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2939 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2940 kvm_msr_entry_add(cpu
, msr
, 0);
2943 if (has_msr_hv_stimer
) {
2946 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2948 kvm_msr_entry_add(cpu
, msr
, 0);
2951 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2952 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2953 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2954 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2955 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2956 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2957 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2958 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2959 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2960 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2961 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2962 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2963 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2964 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2965 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2966 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2970 if (env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_INTEL_PT
) {
2972 kvm_arch_get_supported_cpuid(kvm_state
, 0x14, 1, R_EAX
) & 0x7;
2974 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CTL
, 0);
2975 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_STATUS
, 0);
2976 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_BASE
, 0);
2977 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_OUTPUT_MASK
, 0);
2978 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_CR3_MATCH
, 0);
2979 for (i
= 0; i
< addr_num
; i
++) {
2980 kvm_msr_entry_add(cpu
, MSR_IA32_RTIT_ADDR0_A
+ i
, 0);
2984 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2989 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2990 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2991 error_report("error: failed to get MSR 0x%" PRIx32
,
2992 (uint32_t)e
->index
);
2995 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2997 * MTRR masks: Each mask consists of 5 parts
2998 * a 10..0: must be zero
3000 * c n-1.12: actual mask bits
3001 * d 51..n: reserved must be zero
3002 * e 63.52: reserved must be zero
3004 * 'n' is the number of physical bits supported by the CPU and is
3005 * apparently always <= 52. We know our 'n' but don't know what
3006 * the destinations 'n' is; it might be smaller, in which case
3007 * it masks (c) on loading. It might be larger, in which case
3008 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3009 * we're migrating to.
3012 if (cpu
->fill_mtrr_mask
) {
3013 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
3014 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
3015 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
3020 for (i
= 0; i
< ret
; i
++) {
3021 uint32_t index
= msrs
[i
].index
;
3023 case MSR_IA32_SYSENTER_CS
:
3024 env
->sysenter_cs
= msrs
[i
].data
;
3026 case MSR_IA32_SYSENTER_ESP
:
3027 env
->sysenter_esp
= msrs
[i
].data
;
3029 case MSR_IA32_SYSENTER_EIP
:
3030 env
->sysenter_eip
= msrs
[i
].data
;
3033 env
->pat
= msrs
[i
].data
;
3036 env
->star
= msrs
[i
].data
;
3038 #ifdef TARGET_X86_64
3040 env
->cstar
= msrs
[i
].data
;
3042 case MSR_KERNELGSBASE
:
3043 env
->kernelgsbase
= msrs
[i
].data
;
3046 env
->fmask
= msrs
[i
].data
;
3049 env
->lstar
= msrs
[i
].data
;
3053 env
->tsc
= msrs
[i
].data
;
3056 env
->tsc_aux
= msrs
[i
].data
;
3058 case MSR_TSC_ADJUST
:
3059 env
->tsc_adjust
= msrs
[i
].data
;
3061 case MSR_IA32_TSCDEADLINE
:
3062 env
->tsc_deadline
= msrs
[i
].data
;
3064 case MSR_VM_HSAVE_PA
:
3065 env
->vm_hsave
= msrs
[i
].data
;
3067 case MSR_KVM_SYSTEM_TIME
:
3068 env
->system_time_msr
= msrs
[i
].data
;
3070 case MSR_KVM_WALL_CLOCK
:
3071 env
->wall_clock_msr
= msrs
[i
].data
;
3073 case MSR_MCG_STATUS
:
3074 env
->mcg_status
= msrs
[i
].data
;
3077 env
->mcg_ctl
= msrs
[i
].data
;
3079 case MSR_MCG_EXT_CTL
:
3080 env
->mcg_ext_ctl
= msrs
[i
].data
;
3082 case MSR_IA32_MISC_ENABLE
:
3083 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
3085 case MSR_IA32_SMBASE
:
3086 env
->smbase
= msrs
[i
].data
;
3089 env
->msr_smi_count
= msrs
[i
].data
;
3091 case MSR_IA32_FEATURE_CONTROL
:
3092 env
->msr_ia32_feature_control
= msrs
[i
].data
;
3094 case MSR_IA32_BNDCFGS
:
3095 env
->msr_bndcfgs
= msrs
[i
].data
;
3098 env
->xss
= msrs
[i
].data
;
3101 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
3102 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
3103 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
3106 case MSR_KVM_ASYNC_PF_EN
:
3107 env
->async_pf_en_msr
= msrs
[i
].data
;
3109 case MSR_KVM_PV_EOI_EN
:
3110 env
->pv_eoi_en_msr
= msrs
[i
].data
;
3112 case MSR_KVM_STEAL_TIME
:
3113 env
->steal_time_msr
= msrs
[i
].data
;
3115 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
3116 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
3118 case MSR_CORE_PERF_GLOBAL_CTRL
:
3119 env
->msr_global_ctrl
= msrs
[i
].data
;
3121 case MSR_CORE_PERF_GLOBAL_STATUS
:
3122 env
->msr_global_status
= msrs
[i
].data
;
3124 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
3125 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
3127 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
3128 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
3130 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
3131 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
3133 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
3134 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
3136 case HV_X64_MSR_HYPERCALL
:
3137 env
->msr_hv_hypercall
= msrs
[i
].data
;
3139 case HV_X64_MSR_GUEST_OS_ID
:
3140 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
3142 case HV_X64_MSR_APIC_ASSIST_PAGE
:
3143 env
->msr_hv_vapic
= msrs
[i
].data
;
3145 case HV_X64_MSR_REFERENCE_TSC
:
3146 env
->msr_hv_tsc
= msrs
[i
].data
;
3148 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
3149 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
3151 case HV_X64_MSR_VP_RUNTIME
:
3152 env
->msr_hv_runtime
= msrs
[i
].data
;
3154 case HV_X64_MSR_SCONTROL
:
3155 env
->msr_hv_synic_control
= msrs
[i
].data
;
3157 case HV_X64_MSR_SIEFP
:
3158 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
3160 case HV_X64_MSR_SIMP
:
3161 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
3163 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
3164 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
3166 case HV_X64_MSR_STIMER0_CONFIG
:
3167 case HV_X64_MSR_STIMER1_CONFIG
:
3168 case HV_X64_MSR_STIMER2_CONFIG
:
3169 case HV_X64_MSR_STIMER3_CONFIG
:
3170 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
3173 case HV_X64_MSR_STIMER0_COUNT
:
3174 case HV_X64_MSR_STIMER1_COUNT
:
3175 case HV_X64_MSR_STIMER2_COUNT
:
3176 case HV_X64_MSR_STIMER3_COUNT
:
3177 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
3180 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
3181 env
->msr_hv_reenlightenment_control
= msrs
[i
].data
;
3183 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
3184 env
->msr_hv_tsc_emulation_control
= msrs
[i
].data
;
3186 case HV_X64_MSR_TSC_EMULATION_STATUS
:
3187 env
->msr_hv_tsc_emulation_status
= msrs
[i
].data
;
3189 case MSR_MTRRdefType
:
3190 env
->mtrr_deftype
= msrs
[i
].data
;
3192 case MSR_MTRRfix64K_00000
:
3193 env
->mtrr_fixed
[0] = msrs
[i
].data
;
3195 case MSR_MTRRfix16K_80000
:
3196 env
->mtrr_fixed
[1] = msrs
[i
].data
;
3198 case MSR_MTRRfix16K_A0000
:
3199 env
->mtrr_fixed
[2] = msrs
[i
].data
;
3201 case MSR_MTRRfix4K_C0000
:
3202 env
->mtrr_fixed
[3] = msrs
[i
].data
;
3204 case MSR_MTRRfix4K_C8000
:
3205 env
->mtrr_fixed
[4] = msrs
[i
].data
;
3207 case MSR_MTRRfix4K_D0000
:
3208 env
->mtrr_fixed
[5] = msrs
[i
].data
;
3210 case MSR_MTRRfix4K_D8000
:
3211 env
->mtrr_fixed
[6] = msrs
[i
].data
;
3213 case MSR_MTRRfix4K_E0000
:
3214 env
->mtrr_fixed
[7] = msrs
[i
].data
;
3216 case MSR_MTRRfix4K_E8000
:
3217 env
->mtrr_fixed
[8] = msrs
[i
].data
;
3219 case MSR_MTRRfix4K_F0000
:
3220 env
->mtrr_fixed
[9] = msrs
[i
].data
;
3222 case MSR_MTRRfix4K_F8000
:
3223 env
->mtrr_fixed
[10] = msrs
[i
].data
;
3225 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
3227 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
3230 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
3233 case MSR_IA32_SPEC_CTRL
:
3234 env
->spec_ctrl
= msrs
[i
].data
;
3237 env
->virt_ssbd
= msrs
[i
].data
;
3239 case MSR_IA32_RTIT_CTL
:
3240 env
->msr_rtit_ctrl
= msrs
[i
].data
;
3242 case MSR_IA32_RTIT_STATUS
:
3243 env
->msr_rtit_status
= msrs
[i
].data
;
3245 case MSR_IA32_RTIT_OUTPUT_BASE
:
3246 env
->msr_rtit_output_base
= msrs
[i
].data
;
3248 case MSR_IA32_RTIT_OUTPUT_MASK
:
3249 env
->msr_rtit_output_mask
= msrs
[i
].data
;
3251 case MSR_IA32_RTIT_CR3_MATCH
:
3252 env
->msr_rtit_cr3_match
= msrs
[i
].data
;
3254 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
3255 env
->msr_rtit_addrs
[index
- MSR_IA32_RTIT_ADDR0_A
] = msrs
[i
].data
;
3263 static int kvm_put_mp_state(X86CPU
*cpu
)
3265 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
3267 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
3270 static int kvm_get_mp_state(X86CPU
*cpu
)
3272 CPUState
*cs
= CPU(cpu
);
3273 CPUX86State
*env
= &cpu
->env
;
3274 struct kvm_mp_state mp_state
;
3277 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
3281 env
->mp_state
= mp_state
.mp_state
;
3282 if (kvm_irqchip_in_kernel()) {
3283 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
3288 static int kvm_get_apic(X86CPU
*cpu
)
3290 DeviceState
*apic
= cpu
->apic_state
;
3291 struct kvm_lapic_state kapic
;
3294 if (apic
&& kvm_irqchip_in_kernel()) {
3295 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
3300 kvm_get_apic_state(apic
, &kapic
);
3305 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
3307 CPUState
*cs
= CPU(cpu
);
3308 CPUX86State
*env
= &cpu
->env
;
3309 struct kvm_vcpu_events events
= {};
3311 if (!kvm_has_vcpu_events()) {
3317 if (has_exception_payload
) {
3318 events
.flags
|= KVM_VCPUEVENT_VALID_PAYLOAD
;
3319 events
.exception
.pending
= env
->exception_pending
;
3320 events
.exception_has_payload
= env
->exception_has_payload
;
3321 events
.exception_payload
= env
->exception_payload
;
3323 events
.exception
.nr
= env
->exception_nr
;
3324 events
.exception
.injected
= env
->exception_injected
;
3325 events
.exception
.has_error_code
= env
->has_error_code
;
3326 events
.exception
.error_code
= env
->error_code
;
3328 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
3329 events
.interrupt
.nr
= env
->interrupt_injected
;
3330 events
.interrupt
.soft
= env
->soft_interrupt
;
3332 events
.nmi
.injected
= env
->nmi_injected
;
3333 events
.nmi
.pending
= env
->nmi_pending
;
3334 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
3336 events
.sipi_vector
= env
->sipi_vector
;
3338 if (has_msr_smbase
) {
3339 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
3340 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
3341 if (kvm_irqchip_in_kernel()) {
3342 /* As soon as these are moved to the kernel, remove them
3343 * from cs->interrupt_request.
3345 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
3346 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
3347 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
3349 /* Keep these in cs->interrupt_request. */
3350 events
.smi
.pending
= 0;
3351 events
.smi
.latched_init
= 0;
3353 /* Stop SMI delivery on old machine types to avoid a reboot
3354 * on an inward migration of an old VM.
3356 if (!cpu
->kvm_no_smi_migration
) {
3357 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
3361 if (level
>= KVM_PUT_RESET_STATE
) {
3362 events
.flags
|= KVM_VCPUEVENT_VALID_NMI_PENDING
;
3363 if (env
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
3364 events
.flags
|= KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
3368 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
3371 static int kvm_get_vcpu_events(X86CPU
*cpu
)
3373 CPUX86State
*env
= &cpu
->env
;
3374 struct kvm_vcpu_events events
;
3377 if (!kvm_has_vcpu_events()) {
3381 memset(&events
, 0, sizeof(events
));
3382 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
3387 if (events
.flags
& KVM_VCPUEVENT_VALID_PAYLOAD
) {
3388 env
->exception_pending
= events
.exception
.pending
;
3389 env
->exception_has_payload
= events
.exception_has_payload
;
3390 env
->exception_payload
= events
.exception_payload
;
3392 env
->exception_pending
= 0;
3393 env
->exception_has_payload
= false;
3395 env
->exception_injected
= events
.exception
.injected
;
3397 (env
->exception_pending
|| env
->exception_injected
) ?
3398 events
.exception
.nr
: -1;
3399 env
->has_error_code
= events
.exception
.has_error_code
;
3400 env
->error_code
= events
.exception
.error_code
;
3402 env
->interrupt_injected
=
3403 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
3404 env
->soft_interrupt
= events
.interrupt
.soft
;
3406 env
->nmi_injected
= events
.nmi
.injected
;
3407 env
->nmi_pending
= events
.nmi
.pending
;
3408 if (events
.nmi
.masked
) {
3409 env
->hflags2
|= HF2_NMI_MASK
;
3411 env
->hflags2
&= ~HF2_NMI_MASK
;
3414 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
3415 if (events
.smi
.smm
) {
3416 env
->hflags
|= HF_SMM_MASK
;
3418 env
->hflags
&= ~HF_SMM_MASK
;
3420 if (events
.smi
.pending
) {
3421 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
3423 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
3425 if (events
.smi
.smm_inside_nmi
) {
3426 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
3428 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
3430 if (events
.smi
.latched_init
) {
3431 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
3433 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
3437 env
->sipi_vector
= events
.sipi_vector
;
3442 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
3444 CPUState
*cs
= CPU(cpu
);
3445 CPUX86State
*env
= &cpu
->env
;
3447 unsigned long reinject_trap
= 0;
3449 if (!kvm_has_vcpu_events()) {
3450 if (env
->exception_nr
== EXCP01_DB
) {
3451 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
3452 } else if (env
->exception_injected
== EXCP03_INT3
) {
3453 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
3455 kvm_reset_exception(env
);
3459 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3460 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3461 * by updating the debug state once again if single-stepping is on.
3462 * Another reason to call kvm_update_guest_debug here is a pending debug
3463 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3464 * reinject them via SET_GUEST_DEBUG.
3466 if (reinject_trap
||
3467 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
3468 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
3473 static int kvm_put_debugregs(X86CPU
*cpu
)
3475 CPUX86State
*env
= &cpu
->env
;
3476 struct kvm_debugregs dbgregs
;
3479 if (!kvm_has_debugregs()) {
3483 for (i
= 0; i
< 4; i
++) {
3484 dbgregs
.db
[i
] = env
->dr
[i
];
3486 dbgregs
.dr6
= env
->dr
[6];
3487 dbgregs
.dr7
= env
->dr
[7];
3490 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
3493 static int kvm_get_debugregs(X86CPU
*cpu
)
3495 CPUX86State
*env
= &cpu
->env
;
3496 struct kvm_debugregs dbgregs
;
3499 if (!kvm_has_debugregs()) {
3503 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
3507 for (i
= 0; i
< 4; i
++) {
3508 env
->dr
[i
] = dbgregs
.db
[i
];
3510 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
3511 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
3516 static int kvm_put_nested_state(X86CPU
*cpu
)
3518 CPUX86State
*env
= &cpu
->env
;
3519 int max_nested_state_len
= kvm_max_nested_state_length();
3521 if (!env
->nested_state
) {
3525 assert(env
->nested_state
->size
<= max_nested_state_len
);
3526 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_NESTED_STATE
, env
->nested_state
);
3529 static int kvm_get_nested_state(X86CPU
*cpu
)
3531 CPUX86State
*env
= &cpu
->env
;
3532 int max_nested_state_len
= kvm_max_nested_state_length();
3535 if (!env
->nested_state
) {
3540 * It is possible that migration restored a smaller size into
3541 * nested_state->hdr.size than what our kernel support.
3542 * We preserve migration origin nested_state->hdr.size for
3543 * call to KVM_SET_NESTED_STATE but wish that our next call
3544 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3546 env
->nested_state
->size
= max_nested_state_len
;
3548 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_NESTED_STATE
, env
->nested_state
);
3553 if (env
->nested_state
->flags
& KVM_STATE_NESTED_GUEST_MODE
) {
3554 env
->hflags
|= HF_GUEST_MASK
;
3556 env
->hflags
&= ~HF_GUEST_MASK
;
3562 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
3564 X86CPU
*x86_cpu
= X86_CPU(cpu
);
3567 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
3569 if (level
>= KVM_PUT_RESET_STATE
) {
3570 ret
= kvm_put_nested_state(x86_cpu
);
3575 ret
= kvm_put_msr_feature_control(x86_cpu
);
3581 if (level
== KVM_PUT_FULL_STATE
) {
3582 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3583 * because TSC frequency mismatch shouldn't abort migration,
3584 * unless the user explicitly asked for a more strict TSC
3585 * setting (e.g. using an explicit "tsc-freq" option).
3587 kvm_arch_set_tsc_khz(cpu
);
3590 ret
= kvm_getput_regs(x86_cpu
, 1);
3594 ret
= kvm_put_xsave(x86_cpu
);
3598 ret
= kvm_put_xcrs(x86_cpu
);
3602 ret
= kvm_put_sregs(x86_cpu
);
3606 /* must be before kvm_put_msrs */
3607 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
3611 ret
= kvm_put_msrs(x86_cpu
, level
);
3615 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
3619 if (level
>= KVM_PUT_RESET_STATE
) {
3620 ret
= kvm_put_mp_state(x86_cpu
);
3626 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
3630 ret
= kvm_put_debugregs(x86_cpu
);
3635 ret
= kvm_guest_debug_workarounds(x86_cpu
);
3642 int kvm_arch_get_registers(CPUState
*cs
)
3644 X86CPU
*cpu
= X86_CPU(cs
);
3647 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
3649 ret
= kvm_get_vcpu_events(cpu
);
3654 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3655 * KVM_GET_REGS and KVM_GET_SREGS.
3657 ret
= kvm_get_mp_state(cpu
);
3661 ret
= kvm_getput_regs(cpu
, 0);
3665 ret
= kvm_get_xsave(cpu
);
3669 ret
= kvm_get_xcrs(cpu
);
3673 ret
= kvm_get_sregs(cpu
);
3677 ret
= kvm_get_msrs(cpu
);
3681 ret
= kvm_get_apic(cpu
);
3685 ret
= kvm_get_debugregs(cpu
);
3689 ret
= kvm_get_nested_state(cpu
);
3695 cpu_sync_bndcs_hflags(&cpu
->env
);
3699 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
3701 X86CPU
*x86_cpu
= X86_CPU(cpu
);
3702 CPUX86State
*env
= &x86_cpu
->env
;
3706 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
3707 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
3708 qemu_mutex_lock_iothread();
3709 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
3710 qemu_mutex_unlock_iothread();
3711 DPRINTF("injected NMI\n");
3712 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
3714 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
3718 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
3719 qemu_mutex_lock_iothread();
3720 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
3721 qemu_mutex_unlock_iothread();
3722 DPRINTF("injected SMI\n");
3723 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
3725 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
3731 if (!kvm_pic_in_kernel()) {
3732 qemu_mutex_lock_iothread();
3735 /* Force the VCPU out of its inner loop to process any INIT requests
3736 * or (for userspace APIC, but it is cheap to combine the checks here)
3737 * pending TPR access reports.
3739 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
3740 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
3741 !(env
->hflags
& HF_SMM_MASK
)) {
3742 cpu
->exit_request
= 1;
3744 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
3745 cpu
->exit_request
= 1;
3749 if (!kvm_pic_in_kernel()) {
3750 /* Try to inject an interrupt if the guest can accept it */
3751 if (run
->ready_for_interrupt_injection
&&
3752 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
3753 (env
->eflags
& IF_MASK
)) {
3756 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
3757 irq
= cpu_get_pic_interrupt(env
);
3759 struct kvm_interrupt intr
;
3762 DPRINTF("injected interrupt %d\n", irq
);
3763 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
3766 "KVM: injection failed, interrupt lost (%s)\n",
3772 /* If we have an interrupt but the guest is not ready to receive an
3773 * interrupt, request an interrupt window exit. This will
3774 * cause a return to userspace as soon as the guest is ready to
3775 * receive interrupts. */
3776 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
3777 run
->request_interrupt_window
= 1;
3779 run
->request_interrupt_window
= 0;
3782 DPRINTF("setting tpr\n");
3783 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
3785 qemu_mutex_unlock_iothread();
3789 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
3791 X86CPU
*x86_cpu
= X86_CPU(cpu
);
3792 CPUX86State
*env
= &x86_cpu
->env
;
3794 if (run
->flags
& KVM_RUN_X86_SMM
) {
3795 env
->hflags
|= HF_SMM_MASK
;
3797 env
->hflags
&= ~HF_SMM_MASK
;
3800 env
->eflags
|= IF_MASK
;
3802 env
->eflags
&= ~IF_MASK
;
3805 /* We need to protect the apic state against concurrent accesses from
3806 * different threads in case the userspace irqchip is used. */
3807 if (!kvm_irqchip_in_kernel()) {
3808 qemu_mutex_lock_iothread();
3810 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
3811 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
3812 if (!kvm_irqchip_in_kernel()) {
3813 qemu_mutex_unlock_iothread();
3815 return cpu_get_mem_attrs(env
);
3818 int kvm_arch_process_async_events(CPUState
*cs
)
3820 X86CPU
*cpu
= X86_CPU(cs
);
3821 CPUX86State
*env
= &cpu
->env
;
3823 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
3824 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3825 assert(env
->mcg_cap
);
3827 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
3829 kvm_cpu_synchronize_state(cs
);
3831 if (env
->exception_nr
== EXCP08_DBLE
) {
3832 /* this means triple fault */
3833 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
3834 cs
->exit_request
= 1;
3837 kvm_queue_exception(env
, EXCP12_MCHK
, 0, 0);
3838 env
->has_error_code
= 0;
3841 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
3842 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
3846 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
3847 !(env
->hflags
& HF_SMM_MASK
)) {
3848 kvm_cpu_synchronize_state(cs
);
3852 if (kvm_irqchip_in_kernel()) {
3856 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
3857 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
3858 apic_poll_irq(cpu
->apic_state
);
3860 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
3861 (env
->eflags
& IF_MASK
)) ||
3862 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
3865 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
3866 kvm_cpu_synchronize_state(cs
);
3869 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
3870 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
3871 kvm_cpu_synchronize_state(cs
);
3872 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
3873 env
->tpr_access_type
);
3879 static int kvm_handle_halt(X86CPU
*cpu
)
3881 CPUState
*cs
= CPU(cpu
);
3882 CPUX86State
*env
= &cpu
->env
;
3884 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
3885 (env
->eflags
& IF_MASK
)) &&
3886 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
3894 static int kvm_handle_tpr_access(X86CPU
*cpu
)
3896 CPUState
*cs
= CPU(cpu
);
3897 struct kvm_run
*run
= cs
->kvm_run
;
3899 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
3900 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
3905 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3907 static const uint8_t int3
= 0xcc;
3909 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
3910 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
3916 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
3920 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
3921 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
3933 static int nb_hw_breakpoint
;
3935 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
3939 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3940 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
3941 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
3948 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
3949 target_ulong len
, int type
)
3952 case GDB_BREAKPOINT_HW
:
3955 case GDB_WATCHPOINT_WRITE
:
3956 case GDB_WATCHPOINT_ACCESS
:
3963 if (addr
& (len
- 1)) {
3975 if (nb_hw_breakpoint
== 4) {
3978 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3981 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3982 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3983 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3989 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3990 target_ulong len
, int type
)
3994 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3999 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
4004 void kvm_arch_remove_all_hw_breakpoints(void)
4006 nb_hw_breakpoint
= 0;
4009 static CPUWatchpoint hw_watchpoint
;
4011 static int kvm_handle_debug(X86CPU
*cpu
,
4012 struct kvm_debug_exit_arch
*arch_info
)
4014 CPUState
*cs
= CPU(cpu
);
4015 CPUX86State
*env
= &cpu
->env
;
4019 if (arch_info
->exception
== EXCP01_DB
) {
4020 if (arch_info
->dr6
& DR6_BS
) {
4021 if (cs
->singlestep_enabled
) {
4025 for (n
= 0; n
< 4; n
++) {
4026 if (arch_info
->dr6
& (1 << n
)) {
4027 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
4033 cs
->watchpoint_hit
= &hw_watchpoint
;
4034 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
4035 hw_watchpoint
.flags
= BP_MEM_WRITE
;
4039 cs
->watchpoint_hit
= &hw_watchpoint
;
4040 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
4041 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
4047 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
4051 cpu_synchronize_state(cs
);
4052 assert(env
->exception_nr
== -1);
4055 kvm_queue_exception(env
, arch_info
->exception
,
4056 arch_info
->exception
== EXCP01_DB
,
4058 env
->has_error_code
= 0;
4064 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
4066 const uint8_t type_code
[] = {
4067 [GDB_BREAKPOINT_HW
] = 0x0,
4068 [GDB_WATCHPOINT_WRITE
] = 0x1,
4069 [GDB_WATCHPOINT_ACCESS
] = 0x3
4071 const uint8_t len_code
[] = {
4072 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4076 if (kvm_sw_breakpoints_active(cpu
)) {
4077 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
4079 if (nb_hw_breakpoint
> 0) {
4080 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
4081 dbg
->arch
.debugreg
[7] = 0x0600;
4082 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
4083 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
4084 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
4085 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
4086 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
4091 static bool host_supports_vmx(void)
4093 uint32_t ecx
, unused
;
4095 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
4096 return ecx
& CPUID_EXT_VMX
;
4099 #define VMX_INVALID_GUEST_STATE 0x80000021
4101 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
4103 X86CPU
*cpu
= X86_CPU(cs
);
4107 switch (run
->exit_reason
) {
4109 DPRINTF("handle_hlt\n");
4110 qemu_mutex_lock_iothread();
4111 ret
= kvm_handle_halt(cpu
);
4112 qemu_mutex_unlock_iothread();
4114 case KVM_EXIT_SET_TPR
:
4117 case KVM_EXIT_TPR_ACCESS
:
4118 qemu_mutex_lock_iothread();
4119 ret
= kvm_handle_tpr_access(cpu
);
4120 qemu_mutex_unlock_iothread();
4122 case KVM_EXIT_FAIL_ENTRY
:
4123 code
= run
->fail_entry
.hardware_entry_failure_reason
;
4124 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
4126 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
4128 "\nIf you're running a guest on an Intel machine without "
4129 "unrestricted mode\n"
4130 "support, the failure can be most likely due to the guest "
4131 "entering an invalid\n"
4132 "state for Intel VT. For example, the guest maybe running "
4133 "in big real mode\n"
4134 "which is not supported on less recent Intel processors."
4139 case KVM_EXIT_EXCEPTION
:
4140 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
4141 run
->ex
.exception
, run
->ex
.error_code
);
4144 case KVM_EXIT_DEBUG
:
4145 DPRINTF("kvm_exit_debug\n");
4146 qemu_mutex_lock_iothread();
4147 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
4148 qemu_mutex_unlock_iothread();
4150 case KVM_EXIT_HYPERV
:
4151 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
4153 case KVM_EXIT_IOAPIC_EOI
:
4154 ioapic_eoi_broadcast(run
->eoi
.vector
);
4158 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
4166 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
4168 X86CPU
*cpu
= X86_CPU(cs
);
4169 CPUX86State
*env
= &cpu
->env
;
4171 kvm_cpu_synchronize_state(cs
);
4172 return !(env
->cr
[0] & CR0_PE_MASK
) ||
4173 ((env
->segs
[R_CS
].selector
& 3) != 3);
4176 void kvm_arch_init_irq_routing(KVMState
*s
)
4178 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
4179 /* If kernel can't do irq routing, interrupt source
4180 * override 0->2 cannot be set up as required by HPET.
4181 * So we have to disable it.
4185 /* We know at this point that we're using the in-kernel
4186 * irqchip, so we can use irqfds, and on x86 we know
4187 * we can use msi via irqfd and GSI routing.
4189 kvm_msi_via_irqfd_allowed
= true;
4190 kvm_gsi_routing_allowed
= true;
4192 if (kvm_irqchip_is_split()) {
4195 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4196 MSI routes for signaling interrupts to the local apics. */
4197 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
4198 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
4199 error_report("Could not enable split IRQ mode.");
4206 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
4209 if (machine_kernel_irqchip_split(ms
)) {
4210 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
4212 error_report("Could not enable split irqchip mode: %s",
4216 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4217 kvm_split_irqchip
= true;
4225 /* Classic KVM device assignment interface. Will remain x86 only. */
4226 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
4227 uint32_t flags
, uint32_t *dev_id
)
4229 struct kvm_assigned_pci_dev dev_data
= {
4230 .segnr
= dev_addr
->domain
,
4231 .busnr
= dev_addr
->bus
,
4232 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
4237 dev_data
.assigned_dev_id
=
4238 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
4240 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
4245 *dev_id
= dev_data
.assigned_dev_id
;
4250 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
4252 struct kvm_assigned_pci_dev dev_data
= {
4253 .assigned_dev_id
= dev_id
,
4256 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
4259 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
4260 uint32_t irq_type
, uint32_t guest_irq
)
4262 struct kvm_assigned_irq assigned_irq
= {
4263 .assigned_dev_id
= dev_id
,
4264 .guest_irq
= guest_irq
,
4268 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
4269 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
4271 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
4275 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
4278 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
4279 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
4281 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
4284 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
4286 struct kvm_assigned_pci_dev dev_data
= {
4287 .assigned_dev_id
= dev_id
,
4288 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
4291 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
4294 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
4297 struct kvm_assigned_irq assigned_irq
= {
4298 .assigned_dev_id
= dev_id
,
4302 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
4305 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
4307 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
4308 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
4311 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
4313 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
4314 KVM_DEV_IRQ_GUEST_MSI
, virq
);
4317 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
4319 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
4320 KVM_DEV_IRQ_HOST_MSI
);
4323 bool kvm_device_msix_supported(KVMState
*s
)
4325 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4326 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4327 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
4330 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
4331 uint32_t nr_vectors
)
4333 struct kvm_assigned_msix_nr msix_nr
= {
4334 .assigned_dev_id
= dev_id
,
4335 .entry_nr
= nr_vectors
,
4338 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
4341 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
4344 struct kvm_assigned_msix_entry msix_entry
= {
4345 .assigned_dev_id
= dev_id
,
4350 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
4353 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
4355 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
4356 KVM_DEV_IRQ_GUEST_MSIX
, 0);
4359 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
4361 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
4362 KVM_DEV_IRQ_HOST_MSIX
);
4365 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
4366 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
4368 X86IOMMUState
*iommu
= x86_iommu_get_default();
4372 MSIMessage src
, dst
;
4373 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
4375 if (!class->int_remap
) {
4379 src
.address
= route
->u
.msi
.address_hi
;
4380 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
4381 src
.address
|= route
->u
.msi
.address_lo
;
4382 src
.data
= route
->u
.msi
.data
;
4384 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
4385 pci_requester_id(dev
) : \
4386 X86_IOMMU_SID_INVALID
);
4388 trace_kvm_x86_fixup_msi_error(route
->gsi
);
4392 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
4393 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
4394 route
->u
.msi
.data
= dst
.data
;
4400 typedef struct MSIRouteEntry MSIRouteEntry
;
4402 struct MSIRouteEntry
{
4403 PCIDevice
*dev
; /* Device pointer */
4404 int vector
; /* MSI/MSIX vector index */
4405 int virq
; /* Virtual IRQ index */
4406 QLIST_ENTRY(MSIRouteEntry
) list
;
4409 /* List of used GSI routes */
4410 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
4411 QLIST_HEAD_INITIALIZER(msi_route_list
);
4413 static void kvm_update_msi_routes_all(void *private, bool global
,
4414 uint32_t index
, uint32_t mask
)
4416 int cnt
= 0, vector
;
4417 MSIRouteEntry
*entry
;
4421 /* TODO: explicit route update */
4422 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
4424 vector
= entry
->vector
;
4426 if (msix_enabled(dev
) && !msix_is_masked(dev
, vector
)) {
4427 msg
= msix_get_message(dev
, vector
);
4428 } else if (msi_enabled(dev
) && !msi_is_masked(dev
, vector
)) {
4429 msg
= msi_get_message(dev
, vector
);
4432 * Either MSI/MSIX is disabled for the device, or the
4433 * specific message was masked out. Skip this one.
4437 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
, msg
, dev
);
4439 kvm_irqchip_commit_routes(kvm_state
);
4440 trace_kvm_x86_update_msi_routes(cnt
);
4443 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
4444 int vector
, PCIDevice
*dev
)
4446 static bool notify_list_inited
= false;
4447 MSIRouteEntry
*entry
;
4450 /* These are (possibly) IOAPIC routes only used for split
4451 * kernel irqchip mode, while what we are housekeeping are
4452 * PCI devices only. */
4456 entry
= g_new0(MSIRouteEntry
, 1);
4458 entry
->vector
= vector
;
4459 entry
->virq
= route
->gsi
;
4460 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
4462 trace_kvm_x86_add_msi_route(route
->gsi
);
4464 if (!notify_list_inited
) {
4465 /* For the first time we do add route, add ourselves into
4466 * IOMMU's IEC notify list if needed. */
4467 X86IOMMUState
*iommu
= x86_iommu_get_default();
4469 x86_iommu_iec_register_notifier(iommu
,
4470 kvm_update_msi_routes_all
,
4473 notify_list_inited
= true;
4478 int kvm_arch_release_virq_post(int virq
)
4480 MSIRouteEntry
*entry
, *next
;
4481 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
4482 if (entry
->virq
== virq
) {
4483 trace_kvm_x86_remove_msi_route(virq
);
4484 QLIST_REMOVE(entry
, list
);
4492 int kvm_arch_msi_data_to_gsi(uint32_t data
)