monitor/qmp: Update comment for commit 4eaca8de268
[qemu/armbru.git] / target / riscv / cpu_helper.c
blobe32b6126af05d0a67e36bed8cff457c7e871bb26
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "tcg-op.h"
25 #include "trace.h"
27 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 #ifdef CONFIG_USER_ONLY
30 return 0;
31 #else
32 return env->priv;
33 #endif
36 #ifndef CONFIG_USER_ONLY
37 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41 target_ulong pending = atomic_read(&env->mip) & env->mie;
42 target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43 target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44 target_ulong irqs = (pending & ~env->mideleg & -mie) |
45 (pending & env->mideleg & -sie);
47 if (irqs) {
48 return ctz64(irqs); /* since non-zero */
49 } else {
50 return EXCP_NONE; /* indicates no pending interrupt */
53 #endif
55 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
57 #if !defined(CONFIG_USER_ONLY)
58 if (interrupt_request & CPU_INTERRUPT_HARD) {
59 RISCVCPU *cpu = RISCV_CPU(cs);
60 CPURISCVState *env = &cpu->env;
61 int interruptno = riscv_cpu_local_irq_pending(env);
62 if (interruptno >= 0) {
63 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64 riscv_cpu_do_interrupt(cs);
65 return true;
68 #endif
69 return false;
72 #if !defined(CONFIG_USER_ONLY)
74 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
76 CPURISCVState *env = &cpu->env;
77 if (env->miclaim & interrupts) {
78 return -1;
79 } else {
80 env->miclaim |= interrupts;
81 return 0;
85 struct CpuAsyncInfo {
86 uint32_t new_mip;
89 static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
90 run_on_cpu_data data)
92 struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
94 if (info->new_mip) {
95 cpu_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
96 } else {
97 cpu_reset_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
100 g_free(info);
103 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
105 CPURISCVState *env = &cpu->env;
106 CPUState *cs = CPU(cpu);
107 struct CpuAsyncInfo *info;
108 uint32_t old, new, cmp = atomic_read(&env->mip);
110 do {
111 old = cmp;
112 new = (old & ~mask) | (value & mask);
113 cmp = atomic_cmpxchg(&env->mip, old, new);
114 } while (old != cmp);
116 info = g_new(struct CpuAsyncInfo, 1);
117 info->new_mip = new;
119 async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
120 RUN_ON_CPU_HOST_PTR(info));
122 return old;
125 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
127 if (newpriv > PRV_M) {
128 g_assert_not_reached();
130 if (newpriv == PRV_H) {
131 newpriv = PRV_U;
133 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
134 env->priv = newpriv;
137 * Clear the load reservation - otherwise a reservation placed in one
138 * context/process can be used by another, resulting in an SC succeeding
139 * incorrectly. Version 2.2 of the ISA specification explicitly requires
140 * this behaviour, while later revisions say that the kernel "should" use
141 * an SC instruction to force the yielding of a load reservation on a
142 * preemptive context switch. As a result, do both.
144 env->load_res = -1;
147 /* get_physical_address - get the physical address for this virtual address
149 * Do a page table walk to obtain the physical address corresponding to a
150 * virtual address. Returns 0 if the translation was successful
152 * Adapted from Spike's mmu_t::translate and mmu_t::walk
155 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
156 int *prot, target_ulong addr,
157 int access_type, int mmu_idx)
159 /* NOTE: the env->pc value visible here will not be
160 * correct, but the value visible to the exception handler
161 * (riscv_cpu_do_interrupt) is correct */
163 int mode = mmu_idx;
165 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
166 if (get_field(env->mstatus, MSTATUS_MPRV)) {
167 mode = get_field(env->mstatus, MSTATUS_MPP);
171 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
172 *physical = addr;
173 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
174 return TRANSLATE_SUCCESS;
177 *prot = 0;
179 target_ulong base;
180 int levels, ptidxbits, ptesize, vm, sum;
181 int mxr = get_field(env->mstatus, MSTATUS_MXR);
183 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
184 base = get_field(env->satp, SATP_PPN) << PGSHIFT;
185 sum = get_field(env->mstatus, MSTATUS_SUM);
186 vm = get_field(env->satp, SATP_MODE);
187 switch (vm) {
188 case VM_1_10_SV32:
189 levels = 2; ptidxbits = 10; ptesize = 4; break;
190 case VM_1_10_SV39:
191 levels = 3; ptidxbits = 9; ptesize = 8; break;
192 case VM_1_10_SV48:
193 levels = 4; ptidxbits = 9; ptesize = 8; break;
194 case VM_1_10_SV57:
195 levels = 5; ptidxbits = 9; ptesize = 8; break;
196 case VM_1_10_MBARE:
197 *physical = addr;
198 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
199 return TRANSLATE_SUCCESS;
200 default:
201 g_assert_not_reached();
203 } else {
204 base = env->sptbr << PGSHIFT;
205 sum = !get_field(env->mstatus, MSTATUS_PUM);
206 vm = get_field(env->mstatus, MSTATUS_VM);
207 switch (vm) {
208 case VM_1_09_SV32:
209 levels = 2; ptidxbits = 10; ptesize = 4; break;
210 case VM_1_09_SV39:
211 levels = 3; ptidxbits = 9; ptesize = 8; break;
212 case VM_1_09_SV48:
213 levels = 4; ptidxbits = 9; ptesize = 8; break;
214 case VM_1_09_MBARE:
215 *physical = addr;
216 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
217 return TRANSLATE_SUCCESS;
218 default:
219 g_assert_not_reached();
223 CPUState *cs = env_cpu(env);
224 int va_bits = PGSHIFT + levels * ptidxbits;
225 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
226 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
227 if (masked_msbs != 0 && masked_msbs != mask) {
228 return TRANSLATE_FAIL;
231 int ptshift = (levels - 1) * ptidxbits;
232 int i;
234 #if !TCG_OVERSIZED_GUEST
235 restart:
236 #endif
237 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
238 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
239 ((1 << ptidxbits) - 1);
241 /* check that physical address of PTE is legal */
242 target_ulong pte_addr = base + idx * ptesize;
244 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
245 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
246 1 << MMU_DATA_LOAD, PRV_S)) {
247 return TRANSLATE_PMP_FAIL;
249 #if defined(TARGET_RISCV32)
250 target_ulong pte = ldl_phys(cs->as, pte_addr);
251 #elif defined(TARGET_RISCV64)
252 target_ulong pte = ldq_phys(cs->as, pte_addr);
253 #endif
254 target_ulong ppn = pte >> PTE_PPN_SHIFT;
256 if (!(pte & PTE_V)) {
257 /* Invalid PTE */
258 return TRANSLATE_FAIL;
259 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
260 /* Inner PTE, continue walking */
261 base = ppn << PGSHIFT;
262 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
263 /* Reserved leaf PTE flags: PTE_W */
264 return TRANSLATE_FAIL;
265 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
266 /* Reserved leaf PTE flags: PTE_W + PTE_X */
267 return TRANSLATE_FAIL;
268 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
269 (!sum || access_type == MMU_INST_FETCH))) {
270 /* User PTE flags when not U mode and mstatus.SUM is not set,
271 or the access type is an instruction fetch */
272 return TRANSLATE_FAIL;
273 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
274 /* Supervisor PTE flags when not S mode */
275 return TRANSLATE_FAIL;
276 } else if (ppn & ((1ULL << ptshift) - 1)) {
277 /* Misaligned PPN */
278 return TRANSLATE_FAIL;
279 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
280 ((pte & PTE_X) && mxr))) {
281 /* Read access check failed */
282 return TRANSLATE_FAIL;
283 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
284 /* Write access check failed */
285 return TRANSLATE_FAIL;
286 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
287 /* Fetch access check failed */
288 return TRANSLATE_FAIL;
289 } else {
290 /* if necessary, set accessed and dirty bits. */
291 target_ulong updated_pte = pte | PTE_A |
292 (access_type == MMU_DATA_STORE ? PTE_D : 0);
294 /* Page table updates need to be atomic with MTTCG enabled */
295 if (updated_pte != pte) {
297 * - if accessed or dirty bits need updating, and the PTE is
298 * in RAM, then we do so atomically with a compare and swap.
299 * - if the PTE is in IO space or ROM, then it can't be updated
300 * and we return TRANSLATE_FAIL.
301 * - if the PTE changed by the time we went to update it, then
302 * it is no longer valid and we must re-walk the page table.
304 MemoryRegion *mr;
305 hwaddr l = sizeof(target_ulong), addr1;
306 mr = address_space_translate(cs->as, pte_addr,
307 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
308 if (memory_region_is_ram(mr)) {
309 target_ulong *pte_pa =
310 qemu_map_ram_ptr(mr->ram_block, addr1);
311 #if TCG_OVERSIZED_GUEST
312 /* MTTCG is not enabled on oversized TCG guests so
313 * page table updates do not need to be atomic */
314 *pte_pa = pte = updated_pte;
315 #else
316 target_ulong old_pte =
317 atomic_cmpxchg(pte_pa, pte, updated_pte);
318 if (old_pte != pte) {
319 goto restart;
320 } else {
321 pte = updated_pte;
323 #endif
324 } else {
325 /* misconfigured PTE in ROM (AD bits are not preset) or
326 * PTE is in IO space and can't be updated atomically */
327 return TRANSLATE_FAIL;
331 /* for superpage mappings, make a fake leaf PTE for the TLB's
332 benefit. */
333 target_ulong vpn = addr >> PGSHIFT;
334 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
336 /* set permissions on the TLB entry */
337 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
338 *prot |= PAGE_READ;
340 if ((pte & PTE_X)) {
341 *prot |= PAGE_EXEC;
343 /* add write permission on stores or if the page is already dirty,
344 so that we TLB miss on later writes to update the dirty bit */
345 if ((pte & PTE_W) &&
346 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
347 *prot |= PAGE_WRITE;
349 return TRANSLATE_SUCCESS;
352 return TRANSLATE_FAIL;
355 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
356 MMUAccessType access_type, bool pmp_violation)
358 CPUState *cs = env_cpu(env);
359 int page_fault_exceptions =
360 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
361 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
362 !pmp_violation;
363 switch (access_type) {
364 case MMU_INST_FETCH:
365 cs->exception_index = page_fault_exceptions ?
366 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
367 break;
368 case MMU_DATA_LOAD:
369 cs->exception_index = page_fault_exceptions ?
370 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
371 break;
372 case MMU_DATA_STORE:
373 cs->exception_index = page_fault_exceptions ?
374 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
375 break;
376 default:
377 g_assert_not_reached();
379 env->badaddr = address;
382 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
384 RISCVCPU *cpu = RISCV_CPU(cs);
385 hwaddr phys_addr;
386 int prot;
387 int mmu_idx = cpu_mmu_index(&cpu->env, false);
389 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
390 return -1;
392 return phys_addr;
395 void riscv_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
396 bool is_exec, int unused, unsigned size)
398 RISCVCPU *cpu = RISCV_CPU(cs);
399 CPURISCVState *env = &cpu->env;
401 if (is_write) {
402 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
403 } else {
404 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
407 env->badaddr = addr;
408 riscv_raise_exception(&cpu->env, cs->exception_index, GETPC());
411 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
412 MMUAccessType access_type, int mmu_idx,
413 uintptr_t retaddr)
415 RISCVCPU *cpu = RISCV_CPU(cs);
416 CPURISCVState *env = &cpu->env;
417 switch (access_type) {
418 case MMU_INST_FETCH:
419 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
420 break;
421 case MMU_DATA_LOAD:
422 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
423 break;
424 case MMU_DATA_STORE:
425 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
426 break;
427 default:
428 g_assert_not_reached();
430 env->badaddr = addr;
431 riscv_raise_exception(env, cs->exception_index, retaddr);
433 #endif
435 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
436 MMUAccessType access_type, int mmu_idx,
437 bool probe, uintptr_t retaddr)
439 #ifndef CONFIG_USER_ONLY
440 RISCVCPU *cpu = RISCV_CPU(cs);
441 CPURISCVState *env = &cpu->env;
442 hwaddr pa = 0;
443 int prot;
444 bool pmp_violation = false;
445 int ret = TRANSLATE_FAIL;
446 int mode = mmu_idx;
448 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
449 __func__, address, access_type, mmu_idx);
451 ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
453 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
454 if (get_field(env->mstatus, MSTATUS_MPRV)) {
455 mode = get_field(env->mstatus, MSTATUS_MPP);
459 qemu_log_mask(CPU_LOG_MMU,
460 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
461 " prot %d\n", __func__, address, ret, pa, prot);
463 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
464 (ret == TRANSLATE_SUCCESS) &&
465 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
466 ret = TRANSLATE_PMP_FAIL;
468 if (ret == TRANSLATE_PMP_FAIL) {
469 pmp_violation = true;
471 if (ret == TRANSLATE_SUCCESS) {
472 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
473 prot, mmu_idx, TARGET_PAGE_SIZE);
474 return true;
475 } else if (probe) {
476 return false;
477 } else {
478 raise_mmu_exception(env, address, access_type, pmp_violation);
479 riscv_raise_exception(env, cs->exception_index, retaddr);
481 #else
482 switch (access_type) {
483 case MMU_INST_FETCH:
484 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
485 break;
486 case MMU_DATA_LOAD:
487 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
488 break;
489 case MMU_DATA_STORE:
490 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
491 break;
493 cpu_loop_exit_restore(cs, retaddr);
494 #endif
498 * Handle Traps
500 * Adapted from Spike's processor_t::take_trap.
503 void riscv_cpu_do_interrupt(CPUState *cs)
505 #if !defined(CONFIG_USER_ONLY)
507 RISCVCPU *cpu = RISCV_CPU(cs);
508 CPURISCVState *env = &cpu->env;
510 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
511 * so we mask off the MSB and separate into trap type and cause.
513 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
514 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
515 target_ulong deleg = async ? env->mideleg : env->medeleg;
516 target_ulong tval = 0;
518 static const int ecall_cause_map[] = {
519 [PRV_U] = RISCV_EXCP_U_ECALL,
520 [PRV_S] = RISCV_EXCP_S_ECALL,
521 [PRV_H] = RISCV_EXCP_H_ECALL,
522 [PRV_M] = RISCV_EXCP_M_ECALL
525 if (!async) {
526 /* set tval to badaddr for traps with address information */
527 switch (cause) {
528 case RISCV_EXCP_INST_ADDR_MIS:
529 case RISCV_EXCP_INST_ACCESS_FAULT:
530 case RISCV_EXCP_LOAD_ADDR_MIS:
531 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
532 case RISCV_EXCP_LOAD_ACCESS_FAULT:
533 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
534 case RISCV_EXCP_INST_PAGE_FAULT:
535 case RISCV_EXCP_LOAD_PAGE_FAULT:
536 case RISCV_EXCP_STORE_PAGE_FAULT:
537 tval = env->badaddr;
538 break;
539 default:
540 break;
542 /* ecall is dispatched as one cause so translate based on mode */
543 if (cause == RISCV_EXCP_U_ECALL) {
544 assert(env->priv <= 3);
545 cause = ecall_cause_map[env->priv];
549 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
550 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
552 if (env->priv <= PRV_S &&
553 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
554 /* handle the trap in S-mode */
555 target_ulong s = env->mstatus;
556 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
557 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
558 s = set_field(s, MSTATUS_SPP, env->priv);
559 s = set_field(s, MSTATUS_SIE, 0);
560 env->mstatus = s;
561 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
562 env->sepc = env->pc;
563 env->sbadaddr = tval;
564 env->pc = (env->stvec >> 2 << 2) +
565 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
566 riscv_cpu_set_mode(env, PRV_S);
567 } else {
568 /* handle the trap in M-mode */
569 target_ulong s = env->mstatus;
570 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
571 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
572 s = set_field(s, MSTATUS_MPP, env->priv);
573 s = set_field(s, MSTATUS_MIE, 0);
574 env->mstatus = s;
575 env->mcause = cause | ~(((target_ulong)-1) >> async);
576 env->mepc = env->pc;
577 env->mbadaddr = tval;
578 env->pc = (env->mtvec >> 2 << 2) +
579 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
580 riscv_cpu_set_mode(env, PRV_M);
583 /* NOTE: it is not necessary to yield load reservations here. It is only
584 * necessary for an SC from "another hart" to cause a load reservation
585 * to be yielded. Refer to the memory consistency model section of the
586 * RISC-V ISA Specification.
589 #endif
590 cs->exception_index = EXCP_NONE; /* mark handled to qemu */