4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #include "qemu/config-file.h"
34 #include "qemu/error-report.h"
35 #include "hw/i386/pc.h"
36 #include "hw/i386/apic.h"
37 #include "hw/i386/apic_internal.h"
38 #include "hw/i386/apic-msidef.h"
39 #include "hw/i386/intel_iommu.h"
40 #include "hw/i386/x86-iommu.h"
42 #include "exec/ioport.h"
43 #include "standard-headers/asm-x86/hyperv.h"
44 #include "hw/pci/pci.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "migration/blocker.h"
48 #include "exec/memattrs.h"
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define MSR_KVM_WALL_CLOCK 0x11
62 #define MSR_KVM_SYSTEM_TIME 0x12
64 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
65 * 255 kvm_msr_entry structs */
66 #define MSR_BUF_SIZE 4096
68 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
69 KVM_CAP_INFO(SET_TSS_ADDR
),
70 KVM_CAP_INFO(EXT_CPUID
),
71 KVM_CAP_INFO(MP_STATE
),
75 static bool has_msr_star
;
76 static bool has_msr_hsave_pa
;
77 static bool has_msr_tsc_aux
;
78 static bool has_msr_tsc_adjust
;
79 static bool has_msr_tsc_deadline
;
80 static bool has_msr_feature_control
;
81 static bool has_msr_misc_enable
;
82 static bool has_msr_smbase
;
83 static bool has_msr_bndcfgs
;
84 static int lm_capable_kernel
;
85 static bool has_msr_hv_hypercall
;
86 static bool has_msr_hv_crash
;
87 static bool has_msr_hv_reset
;
88 static bool has_msr_hv_vpindex
;
89 static bool has_msr_hv_runtime
;
90 static bool has_msr_hv_synic
;
91 static bool has_msr_hv_stimer
;
92 static bool has_msr_xss
;
94 static bool has_msr_architectural_pmu
;
95 static uint32_t num_architectural_pmu_counters
;
99 static int has_pit_state2
;
101 static bool has_msr_mcg_ext_ctl
;
103 static struct kvm_cpuid2
*cpuid_cache
;
105 int kvm_has_pit_state2(void)
107 return has_pit_state2
;
110 bool kvm_has_smm(void)
112 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
115 bool kvm_has_adjust_clock_stable(void)
117 int ret
= kvm_check_extension(kvm_state
, KVM_CAP_ADJUST_CLOCK
);
119 return (ret
== KVM_CLOCK_TSC_STABLE
);
122 bool kvm_allows_irq0_override(void)
124 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
127 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
129 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
131 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
134 #define MEMORIZE(fn, _result) \
136 static bool _memorized; \
145 static bool has_x2apic_api
;
147 bool kvm_has_x2apic_api(void)
149 return has_x2apic_api
;
152 bool kvm_enable_x2apic(void)
155 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
156 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
160 static int kvm_get_tsc(CPUState
*cs
)
162 X86CPU
*cpu
= X86_CPU(cs
);
163 CPUX86State
*env
= &cpu
->env
;
165 struct kvm_msrs info
;
166 struct kvm_msr_entry entries
[1];
170 if (env
->tsc_valid
) {
174 msr_data
.info
.nmsrs
= 1;
175 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
176 env
->tsc_valid
= !runstate_is_running();
178 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
184 env
->tsc
= msr_data
.entries
[0].data
;
188 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, run_on_cpu_data arg
)
193 void kvm_synchronize_all_tsc(void)
199 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, RUN_ON_CPU_NULL
);
204 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
206 struct kvm_cpuid2
*cpuid
;
209 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
210 cpuid
= g_malloc0(size
);
212 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
213 if (r
== 0 && cpuid
->nent
>= max
) {
221 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
229 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
232 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
234 struct kvm_cpuid2
*cpuid
;
237 if (cpuid_cache
!= NULL
) {
240 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
247 static const struct kvm_para_features
{
250 } para_features
[] = {
251 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
252 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
253 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
254 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
257 static int get_para_features(KVMState
*s
)
261 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
262 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
263 features
|= (1 << para_features
[i
].feature
);
270 static bool host_tsx_blacklisted(void)
272 int family
, model
, stepping
;\
273 char vendor
[CPUID_VENDOR_SZ
+ 1];
275 host_vendor_fms(vendor
, &family
, &model
, &stepping
);
277 /* Check if we are running on a Haswell host known to have broken TSX */
278 return !strcmp(vendor
, CPUID_VENDOR_INTEL
) &&
280 ((model
== 63 && stepping
< 4) ||
281 model
== 60 || model
== 69 || model
== 70);
284 /* Returns the value for a specific register on the cpuid entry
286 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
306 /* Find matching entry for function/index on kvm_cpuid2 struct
308 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
313 for (i
= 0; i
< cpuid
->nent
; ++i
) {
314 if (cpuid
->entries
[i
].function
== function
&&
315 cpuid
->entries
[i
].index
== index
) {
316 return &cpuid
->entries
[i
];
323 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
324 uint32_t index
, int reg
)
326 struct kvm_cpuid2
*cpuid
;
328 uint32_t cpuid_1_edx
;
331 cpuid
= get_supported_cpuid(s
);
333 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
336 ret
= cpuid_entry_get_reg(entry
, reg
);
339 /* Fixups for the data returned by KVM, below */
341 if (function
== 1 && reg
== R_EDX
) {
342 /* KVM before 2.6.30 misreports the following features */
343 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
344 } else if (function
== 1 && reg
== R_ECX
) {
345 /* We can set the hypervisor flag, even if KVM does not return it on
346 * GET_SUPPORTED_CPUID
348 ret
|= CPUID_EXT_HYPERVISOR
;
349 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
350 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
351 * and the irqchip is in the kernel.
353 if (kvm_irqchip_in_kernel() &&
354 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
355 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
358 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
359 * without the in-kernel irqchip
361 if (!kvm_irqchip_in_kernel()) {
362 ret
&= ~CPUID_EXT_X2APIC
;
364 } else if (function
== 6 && reg
== R_EAX
) {
365 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
366 } else if (function
== 7 && index
== 0 && reg
== R_EBX
) {
367 if (host_tsx_blacklisted()) {
368 ret
&= ~(CPUID_7_0_EBX_RTM
| CPUID_7_0_EBX_HLE
);
370 } else if (function
== 0x80000001 && reg
== R_EDX
) {
371 /* On Intel, kvm returns cpuid according to the Intel spec,
372 * so add missing bits according to the AMD spec:
374 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
375 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
376 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
377 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
378 * be enabled without the in-kernel irqchip
380 if (!kvm_irqchip_in_kernel()) {
381 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
385 /* fallback for older kernels */
386 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
387 ret
= get_para_features(s
);
393 typedef struct HWPoisonPage
{
395 QLIST_ENTRY(HWPoisonPage
) list
;
398 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
399 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
401 static void kvm_unpoison_all(void *param
)
403 HWPoisonPage
*page
, *next_page
;
405 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
406 QLIST_REMOVE(page
, list
);
407 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
412 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
416 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
417 if (page
->ram_addr
== ram_addr
) {
421 page
= g_new(HWPoisonPage
, 1);
422 page
->ram_addr
= ram_addr
;
423 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
426 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
431 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
434 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
439 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
441 CPUState
*cs
= CPU(cpu
);
442 CPUX86State
*env
= &cpu
->env
;
443 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
444 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
445 uint64_t mcg_status
= MCG_STATUS_MCIP
;
448 if (code
== BUS_MCEERR_AR
) {
449 status
|= MCI_STATUS_AR
| 0x134;
450 mcg_status
|= MCG_STATUS_EIPV
;
453 mcg_status
|= MCG_STATUS_RIPV
;
456 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
457 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
458 * guest kernel back into env->mcg_ext_ctl.
460 cpu_synchronize_state(cs
);
461 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
462 mcg_status
|= MCG_STATUS_LMCE
;
466 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
467 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
470 static void hardware_memory_error(void)
472 fprintf(stderr
, "Hardware memory error!\n");
476 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
478 X86CPU
*cpu
= X86_CPU(c
);
479 CPUX86State
*env
= &cpu
->env
;
483 /* If we get an action required MCE, it has been injected by KVM
484 * while the VM was running. An action optional MCE instead should
485 * be coming from the main thread, which qemu_init_sigbus identifies
486 * as the "early kill" thread.
488 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
490 if ((env
->mcg_cap
& MCG_SER_P
) && addr
) {
491 ram_addr
= qemu_ram_addr_from_host(addr
);
492 if (ram_addr
!= RAM_ADDR_INVALID
&&
493 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
494 kvm_hwpoison_page_add(ram_addr
);
495 kvm_mce_inject(cpu
, paddr
, code
);
499 fprintf(stderr
, "Hardware memory error for memory used by "
500 "QEMU itself instead of guest system!\n");
503 if (code
== BUS_MCEERR_AR
) {
504 hardware_memory_error();
507 /* Hope we are lucky for AO MCE */
510 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
512 CPUX86State
*env
= &cpu
->env
;
514 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
515 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
516 struct kvm_x86_mce mce
;
518 env
->exception_injected
= -1;
521 * There must be at least one bank in use if an MCE is pending.
522 * Find it and use its values for the event injection.
524 for (bank
= 0; bank
< bank_num
; bank
++) {
525 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
529 assert(bank
< bank_num
);
532 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
533 mce
.mcg_status
= env
->mcg_status
;
534 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
535 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
537 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
542 static void cpu_update_state(void *opaque
, int running
, RunState state
)
544 CPUX86State
*env
= opaque
;
547 env
->tsc_valid
= false;
551 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
553 X86CPU
*cpu
= X86_CPU(cs
);
557 #ifndef KVM_CPUID_SIGNATURE_NEXT
558 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
561 static bool hyperv_hypercall_available(X86CPU
*cpu
)
563 return cpu
->hyperv_vapic
||
564 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
567 static bool hyperv_enabled(X86CPU
*cpu
)
569 CPUState
*cs
= CPU(cpu
);
570 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
571 (hyperv_hypercall_available(cpu
) ||
573 cpu
->hyperv_relaxed_timing
||
576 cpu
->hyperv_vpindex
||
577 cpu
->hyperv_runtime
||
582 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
584 X86CPU
*cpu
= X86_CPU(cs
);
585 CPUX86State
*env
= &cpu
->env
;
592 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
593 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
596 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
597 * TSC frequency doesn't match the one we want.
599 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
600 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
602 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
603 warn_report("TSC frequency mismatch between "
604 "VM (%" PRId64
" kHz) and host (%d kHz), "
605 "and TSC scaling unavailable",
606 env
->tsc_khz
, cur_freq
);
614 static int hyperv_handle_properties(CPUState
*cs
)
616 X86CPU
*cpu
= X86_CPU(cs
);
617 CPUX86State
*env
= &cpu
->env
;
619 if (cpu
->hyperv_time
&&
620 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) <= 0) {
621 cpu
->hyperv_time
= false;
624 if (cpu
->hyperv_relaxed_timing
) {
625 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
627 if (cpu
->hyperv_vapic
) {
628 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
629 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
631 if (cpu
->hyperv_time
) {
632 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_HYPERCALL_AVAILABLE
;
633 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
634 env
->features
[FEAT_HYPERV_EAX
] |= 0x200;
636 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
637 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
639 env
->features
[FEAT_HYPERV_EDX
] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
640 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
641 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_RESET_AVAILABLE
;
643 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
644 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_INDEX_AVAILABLE
;
646 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
647 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
649 if (cpu
->hyperv_synic
) {
652 if (!has_msr_hv_synic
||
653 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
654 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
658 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNIC_AVAILABLE
;
659 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
660 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
661 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
664 if (cpu
->hyperv_stimer
) {
665 if (!has_msr_hv_stimer
) {
666 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
669 env
->features
[FEAT_HYPERV_EAX
] |= HV_X64_MSR_SYNTIMER_AVAILABLE
;
674 static Error
*invtsc_mig_blocker
;
676 #define KVM_MAX_CPUID_ENTRIES 100
678 int kvm_arch_init_vcpu(CPUState
*cs
)
681 struct kvm_cpuid2 cpuid
;
682 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
683 } QEMU_PACKED cpuid_data
;
684 X86CPU
*cpu
= X86_CPU(cs
);
685 CPUX86State
*env
= &cpu
->env
;
686 uint32_t limit
, i
, j
, cpuid_i
;
688 struct kvm_cpuid_entry2
*c
;
689 uint32_t signature
[3];
690 int kvm_base
= KVM_CPUID_SIGNATURE
;
692 Error
*local_err
= NULL
;
694 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
698 /* Paravirtualization CPUIDs */
699 if (hyperv_enabled(cpu
)) {
700 c
= &cpuid_data
.entries
[cpuid_i
++];
701 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
702 if (!cpu
->hyperv_vendor_id
) {
703 memcpy(signature
, "Microsoft Hv", 12);
705 size_t len
= strlen(cpu
->hyperv_vendor_id
);
708 error_report("hv-vendor-id truncated to 12 characters");
711 memset(signature
, 0, 12);
712 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
714 c
->eax
= HYPERV_CPUID_MIN
;
715 c
->ebx
= signature
[0];
716 c
->ecx
= signature
[1];
717 c
->edx
= signature
[2];
719 c
= &cpuid_data
.entries
[cpuid_i
++];
720 c
->function
= HYPERV_CPUID_INTERFACE
;
721 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
722 c
->eax
= signature
[0];
727 c
= &cpuid_data
.entries
[cpuid_i
++];
728 c
->function
= HYPERV_CPUID_VERSION
;
732 c
= &cpuid_data
.entries
[cpuid_i
++];
733 c
->function
= HYPERV_CPUID_FEATURES
;
734 r
= hyperv_handle_properties(cs
);
738 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
739 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
740 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
742 c
= &cpuid_data
.entries
[cpuid_i
++];
743 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
744 if (cpu
->hyperv_relaxed_timing
) {
745 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
747 if (cpu
->hyperv_vapic
) {
748 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
750 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
752 c
= &cpuid_data
.entries
[cpuid_i
++];
753 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
757 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
758 has_msr_hv_hypercall
= true;
761 if (cpu
->expose_kvm
) {
762 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
763 c
= &cpuid_data
.entries
[cpuid_i
++];
764 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
765 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
766 c
->ebx
= signature
[0];
767 c
->ecx
= signature
[1];
768 c
->edx
= signature
[2];
770 c
= &cpuid_data
.entries
[cpuid_i
++];
771 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
772 c
->eax
= env
->features
[FEAT_KVM
];
775 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
777 for (i
= 0; i
<= limit
; i
++) {
778 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
779 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
782 c
= &cpuid_data
.entries
[cpuid_i
++];
786 /* Keep reading function 2 till all the input is received */
790 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
791 KVM_CPUID_FLAG_STATE_READ_NEXT
;
792 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
793 times
= c
->eax
& 0xff;
795 for (j
= 1; j
< times
; ++j
) {
796 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
797 fprintf(stderr
, "cpuid_data is full, no space for "
798 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
801 c
= &cpuid_data
.entries
[cpuid_i
++];
803 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
804 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
812 if (i
== 0xd && j
== 64) {
816 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
818 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
820 if (i
== 4 && c
->eax
== 0) {
823 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
826 if (i
== 0xd && c
->eax
== 0) {
829 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
830 fprintf(stderr
, "cpuid_data is full, no space for "
831 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
834 c
= &cpuid_data
.entries
[cpuid_i
++];
840 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
848 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
849 if ((ver
& 0xff) > 0) {
850 has_msr_architectural_pmu
= true;
851 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
853 /* Shouldn't be more than 32, since that's the number of bits
854 * available in EBX to tell us _which_ counters are available.
857 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
858 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
863 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
865 for (i
= 0x80000000; i
<= limit
; i
++) {
866 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
867 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
870 c
= &cpuid_data
.entries
[cpuid_i
++];
874 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
877 /* Call Centaur's CPUID instructions they are supported. */
878 if (env
->cpuid_xlevel2
> 0) {
879 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
881 for (i
= 0xC0000000; i
<= limit
; i
++) {
882 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
883 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
886 c
= &cpuid_data
.entries
[cpuid_i
++];
890 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
894 cpuid_data
.cpuid
.nent
= cpuid_i
;
896 if (((env
->cpuid_version
>> 8)&0xF) >= 6
897 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
898 (CPUID_MCE
| CPUID_MCA
)
899 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
900 uint64_t mcg_cap
, unsupported_caps
;
904 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
906 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
910 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
911 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
912 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
916 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
917 if (unsupported_caps
) {
918 if (unsupported_caps
& MCG_LMCE_P
) {
919 error_report("kvm: LMCE not supported");
922 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64
,
926 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
927 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
929 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
934 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
936 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
938 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
939 !!(c
->ecx
& CPUID_EXT_SMX
);
942 if (env
->mcg_cap
& MCG_LMCE_P
) {
943 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
946 if (!env
->user_tsc_khz
) {
947 if ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
) &&
948 invtsc_mig_blocker
== NULL
) {
950 error_setg(&invtsc_mig_blocker
,
951 "State blocked by non-migratable CPU device"
953 r
= migrate_add_blocker(invtsc_mig_blocker
, &local_err
);
955 error_report_err(local_err
);
956 error_free(invtsc_mig_blocker
);
960 vmstate_x86_cpu
.unmigratable
= 1;
964 r
= kvm_arch_set_tsc_khz(cs
);
969 /* vcpu's TSC frequency is either specified by user, or following
970 * the value used by KVM if the former is not present. In the
971 * latter case, we query it from KVM and record in env->tsc_khz,
972 * so that vcpu's TSC frequency can be migrated later via this field.
975 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
976 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
983 if (cpu
->vmware_cpuid_freq
984 /* Guests depend on 0x40000000 to detect this feature, so only expose
985 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
987 && kvm_base
== KVM_CPUID_SIGNATURE
988 /* TSC clock must be stable and known for this feature. */
989 && ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
)
990 || env
->user_tsc_khz
!= 0)
991 && env
->tsc_khz
!= 0) {
993 c
= &cpuid_data
.entries
[cpuid_i
++];
994 c
->function
= KVM_CPUID_SIGNATURE
| 0x10;
995 c
->eax
= env
->tsc_khz
;
996 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
997 * APIC_BUS_CYCLE_NS */
1001 c
= cpuid_find_entry(&cpuid_data
.cpuid
, kvm_base
, 0);
1002 c
->eax
= MAX(c
->eax
, KVM_CPUID_SIGNATURE
| 0x10);
1005 cpuid_data
.cpuid
.nent
= cpuid_i
;
1007 cpuid_data
.cpuid
.padding
= 0;
1008 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
1014 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
1016 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
1018 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1019 has_msr_tsc_aux
= false;
1025 migrate_del_blocker(invtsc_mig_blocker
);
1029 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1031 CPUX86State
*env
= &cpu
->env
;
1033 env
->exception_injected
= -1;
1034 env
->interrupt_injected
= -1;
1036 if (kvm_irqchip_in_kernel()) {
1037 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1038 KVM_MP_STATE_UNINITIALIZED
;
1040 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1044 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1046 CPUX86State
*env
= &cpu
->env
;
1048 /* APs get directly into wait-for-SIPI state. */
1049 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1050 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1054 static int kvm_get_supported_msrs(KVMState
*s
)
1056 static int kvm_supported_msrs
;
1060 if (kvm_supported_msrs
== 0) {
1061 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1063 kvm_supported_msrs
= -1;
1065 /* Obtain MSR list from KVM. These are the MSRs that we must
1068 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1069 if (ret
< 0 && ret
!= -E2BIG
) {
1072 /* Old kernel modules had a bug and could write beyond the provided
1073 memory. Allocate at least a safe amount of 1K. */
1074 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1076 sizeof(msr_list
.indices
[0])));
1078 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1079 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1083 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1084 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
1085 has_msr_star
= true;
1088 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
1089 has_msr_hsave_pa
= true;
1092 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
1093 has_msr_tsc_aux
= true;
1096 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1097 has_msr_tsc_adjust
= true;
1100 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1101 has_msr_tsc_deadline
= true;
1104 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1105 has_msr_smbase
= true;
1108 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1109 has_msr_misc_enable
= true;
1112 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1113 has_msr_bndcfgs
= true;
1116 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1120 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1121 has_msr_hv_crash
= true;
1124 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1125 has_msr_hv_reset
= true;
1128 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1129 has_msr_hv_vpindex
= true;
1132 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1133 has_msr_hv_runtime
= true;
1136 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1137 has_msr_hv_synic
= true;
1140 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1141 has_msr_hv_stimer
= true;
1147 g_free(kvm_msr_list
);
1153 static Notifier smram_machine_done
;
1154 static KVMMemoryListener smram_listener
;
1155 static AddressSpace smram_address_space
;
1156 static MemoryRegion smram_as_root
;
1157 static MemoryRegion smram_as_mem
;
1159 static void register_smram_listener(Notifier
*n
, void *unused
)
1161 MemoryRegion
*smram
=
1162 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1164 /* Outer container... */
1165 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1166 memory_region_set_enabled(&smram_as_root
, true);
1168 /* ... with two regions inside: normal system memory with low
1171 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1172 get_system_memory(), 0, ~0ull);
1173 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1174 memory_region_set_enabled(&smram_as_mem
, true);
1177 /* ... SMRAM with higher priority */
1178 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1179 memory_region_set_enabled(smram
, true);
1182 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1183 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1184 &smram_address_space
, 1);
1187 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1189 uint64_t identity_base
= 0xfffbc000;
1190 uint64_t shadow_mem
;
1192 struct utsname utsname
;
1194 #ifdef KVM_CAP_XSAVE
1195 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1199 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1202 #ifdef KVM_CAP_PIT_STATE2
1203 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1206 ret
= kvm_get_supported_msrs(s
);
1212 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1215 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1216 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1217 * Since these must be part of guest physical memory, we need to allocate
1218 * them, both by setting their start addresses in the kernel and by
1219 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1221 * Older KVM versions may not support setting the identity map base. In
1222 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1225 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1226 /* Allows up to 16M BIOSes. */
1227 identity_base
= 0xfeffc000;
1229 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1235 /* Set TSS base one page after EPT identity map. */
1236 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1241 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1242 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1244 fprintf(stderr
, "e820_add_entry() table is full\n");
1247 qemu_register_reset(kvm_unpoison_all
, NULL
);
1249 shadow_mem
= machine_kvm_shadow_mem(ms
);
1250 if (shadow_mem
!= -1) {
1252 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1258 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
) &&
1259 object_dynamic_cast(OBJECT(ms
), TYPE_PC_MACHINE
) &&
1260 pc_machine_is_smm_enabled(PC_MACHINE(ms
))) {
1261 smram_machine_done
.notify
= register_smram_listener
;
1262 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1267 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1269 lhs
->selector
= rhs
->selector
;
1270 lhs
->base
= rhs
->base
;
1271 lhs
->limit
= rhs
->limit
;
1283 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1285 unsigned flags
= rhs
->flags
;
1286 lhs
->selector
= rhs
->selector
;
1287 lhs
->base
= rhs
->base
;
1288 lhs
->limit
= rhs
->limit
;
1289 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1290 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1291 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1292 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1293 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1294 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1295 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1296 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1297 lhs
->unusable
= !lhs
->present
;
1301 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1303 lhs
->selector
= rhs
->selector
;
1304 lhs
->base
= rhs
->base
;
1305 lhs
->limit
= rhs
->limit
;
1306 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1307 ((rhs
->present
&& !rhs
->unusable
) * DESC_P_MASK
) |
1308 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1309 (rhs
->db
<< DESC_B_SHIFT
) |
1310 (rhs
->s
* DESC_S_MASK
) |
1311 (rhs
->l
<< DESC_L_SHIFT
) |
1312 (rhs
->g
* DESC_G_MASK
) |
1313 (rhs
->avl
* DESC_AVL_MASK
);
1316 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1319 *kvm_reg
= *qemu_reg
;
1321 *qemu_reg
= *kvm_reg
;
1325 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1327 CPUX86State
*env
= &cpu
->env
;
1328 struct kvm_regs regs
;
1332 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1338 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1339 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1340 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1341 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1342 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1343 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1344 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1345 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1346 #ifdef TARGET_X86_64
1347 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1348 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1349 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1350 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1351 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1352 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1353 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1354 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1357 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1358 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1361 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1367 static int kvm_put_fpu(X86CPU
*cpu
)
1369 CPUX86State
*env
= &cpu
->env
;
1373 memset(&fpu
, 0, sizeof fpu
);
1374 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1375 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1376 fpu
.fcw
= env
->fpuc
;
1377 fpu
.last_opcode
= env
->fpop
;
1378 fpu
.last_ip
= env
->fpip
;
1379 fpu
.last_dp
= env
->fpdp
;
1380 for (i
= 0; i
< 8; ++i
) {
1381 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1383 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1384 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1385 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1386 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1388 fpu
.mxcsr
= env
->mxcsr
;
1390 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1393 #define XSAVE_FCW_FSW 0
1394 #define XSAVE_FTW_FOP 1
1395 #define XSAVE_CWD_RIP 2
1396 #define XSAVE_CWD_RDP 4
1397 #define XSAVE_MXCSR 6
1398 #define XSAVE_ST_SPACE 8
1399 #define XSAVE_XMM_SPACE 40
1400 #define XSAVE_XSTATE_BV 128
1401 #define XSAVE_YMMH_SPACE 144
1402 #define XSAVE_BNDREGS 240
1403 #define XSAVE_BNDCSR 256
1404 #define XSAVE_OPMASK 272
1405 #define XSAVE_ZMM_Hi256 288
1406 #define XSAVE_Hi16_ZMM 416
1407 #define XSAVE_PKRU 672
1409 #define XSAVE_BYTE_OFFSET(word_offset) \
1410 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1412 #define ASSERT_OFFSET(word_offset, field) \
1413 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1414 offsetof(X86XSaveArea, field))
1416 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1417 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1418 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1419 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1420 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1421 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1422 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1423 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1424 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1425 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1426 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1427 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1428 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1429 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1430 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1432 static int kvm_put_xsave(X86CPU
*cpu
)
1434 CPUX86State
*env
= &cpu
->env
;
1435 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1438 return kvm_put_fpu(cpu
);
1440 x86_cpu_xsave_all_areas(cpu
, xsave
);
1442 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1445 static int kvm_put_xcrs(X86CPU
*cpu
)
1447 CPUX86State
*env
= &cpu
->env
;
1448 struct kvm_xcrs xcrs
= {};
1456 xcrs
.xcrs
[0].xcr
= 0;
1457 xcrs
.xcrs
[0].value
= env
->xcr0
;
1458 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1461 static int kvm_put_sregs(X86CPU
*cpu
)
1463 CPUX86State
*env
= &cpu
->env
;
1464 struct kvm_sregs sregs
;
1466 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1467 if (env
->interrupt_injected
>= 0) {
1468 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1469 (uint64_t)1 << (env
->interrupt_injected
% 64);
1472 if ((env
->eflags
& VM_MASK
)) {
1473 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1474 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1475 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1476 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1477 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1478 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1480 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1481 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1482 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1483 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1484 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1485 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1488 set_seg(&sregs
.tr
, &env
->tr
);
1489 set_seg(&sregs
.ldt
, &env
->ldt
);
1491 sregs
.idt
.limit
= env
->idt
.limit
;
1492 sregs
.idt
.base
= env
->idt
.base
;
1493 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1494 sregs
.gdt
.limit
= env
->gdt
.limit
;
1495 sregs
.gdt
.base
= env
->gdt
.base
;
1496 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1498 sregs
.cr0
= env
->cr
[0];
1499 sregs
.cr2
= env
->cr
[2];
1500 sregs
.cr3
= env
->cr
[3];
1501 sregs
.cr4
= env
->cr
[4];
1503 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1504 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1506 sregs
.efer
= env
->efer
;
1508 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1511 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1513 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1516 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1518 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1519 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1520 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1522 assert((void *)(entry
+ 1) <= limit
);
1524 entry
->index
= index
;
1525 entry
->reserved
= 0;
1526 entry
->data
= value
;
1530 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
1532 kvm_msr_buf_reset(cpu
);
1533 kvm_msr_entry_add(cpu
, index
, value
);
1535 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1538 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
1542 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
1546 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1548 CPUX86State
*env
= &cpu
->env
;
1551 if (!has_msr_tsc_deadline
) {
1555 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1565 * Provide a separate write service for the feature control MSR in order to
1566 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1567 * before writing any other state because forcibly leaving nested mode
1568 * invalidates the VCPU state.
1570 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1574 if (!has_msr_feature_control
) {
1578 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
1579 cpu
->env
.msr_ia32_feature_control
);
1588 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1590 CPUX86State
*env
= &cpu
->env
;
1594 kvm_msr_buf_reset(cpu
);
1596 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1597 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1598 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1599 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1601 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1603 if (has_msr_hsave_pa
) {
1604 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1606 if (has_msr_tsc_aux
) {
1607 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1609 if (has_msr_tsc_adjust
) {
1610 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1612 if (has_msr_misc_enable
) {
1613 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1614 env
->msr_ia32_misc_enable
);
1616 if (has_msr_smbase
) {
1617 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1619 if (has_msr_bndcfgs
) {
1620 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1623 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1625 #ifdef TARGET_X86_64
1626 if (lm_capable_kernel
) {
1627 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1628 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1629 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1630 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1634 * The following MSRs have side effects on the guest or are too heavy
1635 * for normal writeback. Limit them to reset or full state updates.
1637 if (level
>= KVM_PUT_RESET_STATE
) {
1638 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1639 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1640 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1641 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
1642 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1644 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
1645 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1647 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
1648 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1650 if (has_msr_architectural_pmu
) {
1651 /* Stop the counter. */
1652 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1653 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1655 /* Set the counter values. */
1656 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1657 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1658 env
->msr_fixed_counters
[i
]);
1660 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1661 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1662 env
->msr_gp_counters
[i
]);
1663 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1664 env
->msr_gp_evtsel
[i
]);
1666 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1667 env
->msr_global_status
);
1668 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1669 env
->msr_global_ovf_ctrl
);
1671 /* Now start the PMU. */
1672 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1673 env
->msr_fixed_ctr_ctrl
);
1674 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1675 env
->msr_global_ctrl
);
1677 if (has_msr_hv_hypercall
) {
1678 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1679 env
->msr_hv_guest_os_id
);
1680 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1681 env
->msr_hv_hypercall
);
1683 if (cpu
->hyperv_vapic
) {
1684 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1687 if (cpu
->hyperv_time
) {
1688 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1690 if (has_msr_hv_crash
) {
1693 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1694 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1695 env
->msr_hv_crash_params
[j
]);
1697 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1698 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1700 if (has_msr_hv_runtime
) {
1701 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1703 if (cpu
->hyperv_synic
) {
1706 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1707 env
->msr_hv_synic_control
);
1708 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1709 env
->msr_hv_synic_version
);
1710 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1711 env
->msr_hv_synic_evt_page
);
1712 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1713 env
->msr_hv_synic_msg_page
);
1715 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1716 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1717 env
->msr_hv_synic_sint
[j
]);
1720 if (has_msr_hv_stimer
) {
1723 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1724 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1725 env
->msr_hv_stimer_config
[j
]);
1728 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1729 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1730 env
->msr_hv_stimer_count
[j
]);
1733 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
1734 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
1736 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1737 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1738 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1739 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1740 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1741 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1742 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1743 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1744 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1745 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1746 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1747 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1748 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1749 /* The CPU GPs if we write to a bit above the physical limit of
1750 * the host CPU (and KVM emulates that)
1752 uint64_t mask
= env
->mtrr_var
[i
].mask
;
1755 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1756 env
->mtrr_var
[i
].base
);
1757 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
1761 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1762 * kvm_put_msr_feature_control. */
1767 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1768 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1769 if (has_msr_mcg_ext_ctl
) {
1770 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1772 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1773 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1777 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1782 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
1783 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
1784 error_report("error: failed to set MSR 0x%" PRIx32
" to 0x%" PRIx64
,
1785 (uint32_t)e
->index
, (uint64_t)e
->data
);
1788 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1793 static int kvm_get_fpu(X86CPU
*cpu
)
1795 CPUX86State
*env
= &cpu
->env
;
1799 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1804 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1805 env
->fpus
= fpu
.fsw
;
1806 env
->fpuc
= fpu
.fcw
;
1807 env
->fpop
= fpu
.last_opcode
;
1808 env
->fpip
= fpu
.last_ip
;
1809 env
->fpdp
= fpu
.last_dp
;
1810 for (i
= 0; i
< 8; ++i
) {
1811 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1813 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1814 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1815 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1816 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1818 env
->mxcsr
= fpu
.mxcsr
;
1823 static int kvm_get_xsave(X86CPU
*cpu
)
1825 CPUX86State
*env
= &cpu
->env
;
1826 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1830 return kvm_get_fpu(cpu
);
1833 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1837 x86_cpu_xrstor_all_areas(cpu
, xsave
);
1842 static int kvm_get_xcrs(X86CPU
*cpu
)
1844 CPUX86State
*env
= &cpu
->env
;
1846 struct kvm_xcrs xcrs
;
1852 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1857 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1858 /* Only support xcr0 now */
1859 if (xcrs
.xcrs
[i
].xcr
== 0) {
1860 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1867 static int kvm_get_sregs(X86CPU
*cpu
)
1869 CPUX86State
*env
= &cpu
->env
;
1870 struct kvm_sregs sregs
;
1874 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1879 /* There can only be one pending IRQ set in the bitmap at a time, so try
1880 to find it and save its number instead (-1 for none). */
1881 env
->interrupt_injected
= -1;
1882 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1883 if (sregs
.interrupt_bitmap
[i
]) {
1884 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1885 env
->interrupt_injected
= i
* 64 + bit
;
1890 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1891 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1892 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1893 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1894 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1895 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1897 get_seg(&env
->tr
, &sregs
.tr
);
1898 get_seg(&env
->ldt
, &sregs
.ldt
);
1900 env
->idt
.limit
= sregs
.idt
.limit
;
1901 env
->idt
.base
= sregs
.idt
.base
;
1902 env
->gdt
.limit
= sregs
.gdt
.limit
;
1903 env
->gdt
.base
= sregs
.gdt
.base
;
1905 env
->cr
[0] = sregs
.cr0
;
1906 env
->cr
[2] = sregs
.cr2
;
1907 env
->cr
[3] = sregs
.cr3
;
1908 env
->cr
[4] = sregs
.cr4
;
1910 env
->efer
= sregs
.efer
;
1912 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1914 #define HFLAG_COPY_MASK \
1915 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1916 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1917 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1918 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1920 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1921 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1922 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1923 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1924 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1925 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1927 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1928 hflags
|= HF_OSFXSR_MASK
;
1931 if (env
->efer
& MSR_EFER_LMA
) {
1932 hflags
|= HF_LMA_MASK
;
1935 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1936 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1938 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1939 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1940 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1941 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1942 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1943 !(hflags
& HF_CS32_MASK
)) {
1944 hflags
|= HF_ADDSEG_MASK
;
1946 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1947 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1950 env
->hflags
= hflags
;
1955 static int kvm_get_msrs(X86CPU
*cpu
)
1957 CPUX86State
*env
= &cpu
->env
;
1958 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
1960 uint64_t mtrr_top_bits
;
1962 kvm_msr_buf_reset(cpu
);
1964 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
1965 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
1966 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
1967 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
1969 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
1971 if (has_msr_hsave_pa
) {
1972 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
1974 if (has_msr_tsc_aux
) {
1975 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
1977 if (has_msr_tsc_adjust
) {
1978 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
1980 if (has_msr_tsc_deadline
) {
1981 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
1983 if (has_msr_misc_enable
) {
1984 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
1986 if (has_msr_smbase
) {
1987 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
1989 if (has_msr_feature_control
) {
1990 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
1992 if (has_msr_bndcfgs
) {
1993 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
1996 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2000 if (!env
->tsc_valid
) {
2001 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2002 env
->tsc_valid
= !runstate_is_running();
2005 #ifdef TARGET_X86_64
2006 if (lm_capable_kernel
) {
2007 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2008 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2009 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2010 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2013 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2014 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2015 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2016 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2018 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2019 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2021 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2022 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2024 if (has_msr_architectural_pmu
) {
2025 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2026 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2027 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2028 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2029 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2030 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2032 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2033 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2034 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2039 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2040 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2041 if (has_msr_mcg_ext_ctl
) {
2042 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2044 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2045 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2049 if (has_msr_hv_hypercall
) {
2050 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2051 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2053 if (cpu
->hyperv_vapic
) {
2054 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2056 if (cpu
->hyperv_time
) {
2057 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2059 if (has_msr_hv_crash
) {
2062 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2063 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2066 if (has_msr_hv_runtime
) {
2067 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2069 if (cpu
->hyperv_synic
) {
2072 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2073 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2074 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2075 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2076 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2077 kvm_msr_entry_add(cpu
, msr
, 0);
2080 if (has_msr_hv_stimer
) {
2083 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2085 kvm_msr_entry_add(cpu
, msr
, 0);
2088 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2089 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2090 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2091 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2092 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2093 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2094 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2095 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2096 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2097 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2098 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2099 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2100 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2101 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2102 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2103 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2107 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2112 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2113 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2114 error_report("error: failed to get MSR 0x%" PRIx32
,
2115 (uint32_t)e
->index
);
2118 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2120 * MTRR masks: Each mask consists of 5 parts
2121 * a 10..0: must be zero
2123 * c n-1.12: actual mask bits
2124 * d 51..n: reserved must be zero
2125 * e 63.52: reserved must be zero
2127 * 'n' is the number of physical bits supported by the CPU and is
2128 * apparently always <= 52. We know our 'n' but don't know what
2129 * the destinations 'n' is; it might be smaller, in which case
2130 * it masks (c) on loading. It might be larger, in which case
2131 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2132 * we're migrating to.
2135 if (cpu
->fill_mtrr_mask
) {
2136 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2137 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2138 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2143 for (i
= 0; i
< ret
; i
++) {
2144 uint32_t index
= msrs
[i
].index
;
2146 case MSR_IA32_SYSENTER_CS
:
2147 env
->sysenter_cs
= msrs
[i
].data
;
2149 case MSR_IA32_SYSENTER_ESP
:
2150 env
->sysenter_esp
= msrs
[i
].data
;
2152 case MSR_IA32_SYSENTER_EIP
:
2153 env
->sysenter_eip
= msrs
[i
].data
;
2156 env
->pat
= msrs
[i
].data
;
2159 env
->star
= msrs
[i
].data
;
2161 #ifdef TARGET_X86_64
2163 env
->cstar
= msrs
[i
].data
;
2165 case MSR_KERNELGSBASE
:
2166 env
->kernelgsbase
= msrs
[i
].data
;
2169 env
->fmask
= msrs
[i
].data
;
2172 env
->lstar
= msrs
[i
].data
;
2176 env
->tsc
= msrs
[i
].data
;
2179 env
->tsc_aux
= msrs
[i
].data
;
2181 case MSR_TSC_ADJUST
:
2182 env
->tsc_adjust
= msrs
[i
].data
;
2184 case MSR_IA32_TSCDEADLINE
:
2185 env
->tsc_deadline
= msrs
[i
].data
;
2187 case MSR_VM_HSAVE_PA
:
2188 env
->vm_hsave
= msrs
[i
].data
;
2190 case MSR_KVM_SYSTEM_TIME
:
2191 env
->system_time_msr
= msrs
[i
].data
;
2193 case MSR_KVM_WALL_CLOCK
:
2194 env
->wall_clock_msr
= msrs
[i
].data
;
2196 case MSR_MCG_STATUS
:
2197 env
->mcg_status
= msrs
[i
].data
;
2200 env
->mcg_ctl
= msrs
[i
].data
;
2202 case MSR_MCG_EXT_CTL
:
2203 env
->mcg_ext_ctl
= msrs
[i
].data
;
2205 case MSR_IA32_MISC_ENABLE
:
2206 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2208 case MSR_IA32_SMBASE
:
2209 env
->smbase
= msrs
[i
].data
;
2211 case MSR_IA32_FEATURE_CONTROL
:
2212 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2214 case MSR_IA32_BNDCFGS
:
2215 env
->msr_bndcfgs
= msrs
[i
].data
;
2218 env
->xss
= msrs
[i
].data
;
2221 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2222 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2223 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2226 case MSR_KVM_ASYNC_PF_EN
:
2227 env
->async_pf_en_msr
= msrs
[i
].data
;
2229 case MSR_KVM_PV_EOI_EN
:
2230 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2232 case MSR_KVM_STEAL_TIME
:
2233 env
->steal_time_msr
= msrs
[i
].data
;
2235 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2236 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2238 case MSR_CORE_PERF_GLOBAL_CTRL
:
2239 env
->msr_global_ctrl
= msrs
[i
].data
;
2241 case MSR_CORE_PERF_GLOBAL_STATUS
:
2242 env
->msr_global_status
= msrs
[i
].data
;
2244 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2245 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2247 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2248 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2250 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2251 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2253 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2254 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2256 case HV_X64_MSR_HYPERCALL
:
2257 env
->msr_hv_hypercall
= msrs
[i
].data
;
2259 case HV_X64_MSR_GUEST_OS_ID
:
2260 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2262 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2263 env
->msr_hv_vapic
= msrs
[i
].data
;
2265 case HV_X64_MSR_REFERENCE_TSC
:
2266 env
->msr_hv_tsc
= msrs
[i
].data
;
2268 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2269 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2271 case HV_X64_MSR_VP_RUNTIME
:
2272 env
->msr_hv_runtime
= msrs
[i
].data
;
2274 case HV_X64_MSR_SCONTROL
:
2275 env
->msr_hv_synic_control
= msrs
[i
].data
;
2277 case HV_X64_MSR_SVERSION
:
2278 env
->msr_hv_synic_version
= msrs
[i
].data
;
2280 case HV_X64_MSR_SIEFP
:
2281 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2283 case HV_X64_MSR_SIMP
:
2284 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2286 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2287 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2289 case HV_X64_MSR_STIMER0_CONFIG
:
2290 case HV_X64_MSR_STIMER1_CONFIG
:
2291 case HV_X64_MSR_STIMER2_CONFIG
:
2292 case HV_X64_MSR_STIMER3_CONFIG
:
2293 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2296 case HV_X64_MSR_STIMER0_COUNT
:
2297 case HV_X64_MSR_STIMER1_COUNT
:
2298 case HV_X64_MSR_STIMER2_COUNT
:
2299 case HV_X64_MSR_STIMER3_COUNT
:
2300 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2303 case MSR_MTRRdefType
:
2304 env
->mtrr_deftype
= msrs
[i
].data
;
2306 case MSR_MTRRfix64K_00000
:
2307 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2309 case MSR_MTRRfix16K_80000
:
2310 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2312 case MSR_MTRRfix16K_A0000
:
2313 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2315 case MSR_MTRRfix4K_C0000
:
2316 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2318 case MSR_MTRRfix4K_C8000
:
2319 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2321 case MSR_MTRRfix4K_D0000
:
2322 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2324 case MSR_MTRRfix4K_D8000
:
2325 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2327 case MSR_MTRRfix4K_E0000
:
2328 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2330 case MSR_MTRRfix4K_E8000
:
2331 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2333 case MSR_MTRRfix4K_F0000
:
2334 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2336 case MSR_MTRRfix4K_F8000
:
2337 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2339 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2341 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2344 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2353 static int kvm_put_mp_state(X86CPU
*cpu
)
2355 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2357 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2360 static int kvm_get_mp_state(X86CPU
*cpu
)
2362 CPUState
*cs
= CPU(cpu
);
2363 CPUX86State
*env
= &cpu
->env
;
2364 struct kvm_mp_state mp_state
;
2367 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2371 env
->mp_state
= mp_state
.mp_state
;
2372 if (kvm_irqchip_in_kernel()) {
2373 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2378 static int kvm_get_apic(X86CPU
*cpu
)
2380 DeviceState
*apic
= cpu
->apic_state
;
2381 struct kvm_lapic_state kapic
;
2384 if (apic
&& kvm_irqchip_in_kernel()) {
2385 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2390 kvm_get_apic_state(apic
, &kapic
);
2395 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2397 CPUState
*cs
= CPU(cpu
);
2398 CPUX86State
*env
= &cpu
->env
;
2399 struct kvm_vcpu_events events
= {};
2401 if (!kvm_has_vcpu_events()) {
2405 events
.exception
.injected
= (env
->exception_injected
>= 0);
2406 events
.exception
.nr
= env
->exception_injected
;
2407 events
.exception
.has_error_code
= env
->has_error_code
;
2408 events
.exception
.error_code
= env
->error_code
;
2409 events
.exception
.pad
= 0;
2411 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2412 events
.interrupt
.nr
= env
->interrupt_injected
;
2413 events
.interrupt
.soft
= env
->soft_interrupt
;
2415 events
.nmi
.injected
= env
->nmi_injected
;
2416 events
.nmi
.pending
= env
->nmi_pending
;
2417 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2420 events
.sipi_vector
= env
->sipi_vector
;
2423 if (has_msr_smbase
) {
2424 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2425 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2426 if (kvm_irqchip_in_kernel()) {
2427 /* As soon as these are moved to the kernel, remove them
2428 * from cs->interrupt_request.
2430 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2431 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2432 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2434 /* Keep these in cs->interrupt_request. */
2435 events
.smi
.pending
= 0;
2436 events
.smi
.latched_init
= 0;
2438 /* Stop SMI delivery on old machine types to avoid a reboot
2439 * on an inward migration of an old VM.
2441 if (!cpu
->kvm_no_smi_migration
) {
2442 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2446 if (level
>= KVM_PUT_RESET_STATE
) {
2447 events
.flags
|= KVM_VCPUEVENT_VALID_NMI_PENDING
;
2448 if (env
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
2449 events
.flags
|= KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2453 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2456 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2458 CPUX86State
*env
= &cpu
->env
;
2459 struct kvm_vcpu_events events
;
2462 if (!kvm_has_vcpu_events()) {
2466 memset(&events
, 0, sizeof(events
));
2467 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2471 env
->exception_injected
=
2472 events
.exception
.injected
? events
.exception
.nr
: -1;
2473 env
->has_error_code
= events
.exception
.has_error_code
;
2474 env
->error_code
= events
.exception
.error_code
;
2476 env
->interrupt_injected
=
2477 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2478 env
->soft_interrupt
= events
.interrupt
.soft
;
2480 env
->nmi_injected
= events
.nmi
.injected
;
2481 env
->nmi_pending
= events
.nmi
.pending
;
2482 if (events
.nmi
.masked
) {
2483 env
->hflags2
|= HF2_NMI_MASK
;
2485 env
->hflags2
&= ~HF2_NMI_MASK
;
2488 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2489 if (events
.smi
.smm
) {
2490 env
->hflags
|= HF_SMM_MASK
;
2492 env
->hflags
&= ~HF_SMM_MASK
;
2494 if (events
.smi
.pending
) {
2495 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2497 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2499 if (events
.smi
.smm_inside_nmi
) {
2500 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2502 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2504 if (events
.smi
.latched_init
) {
2505 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2507 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2511 env
->sipi_vector
= events
.sipi_vector
;
2516 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2518 CPUState
*cs
= CPU(cpu
);
2519 CPUX86State
*env
= &cpu
->env
;
2521 unsigned long reinject_trap
= 0;
2523 if (!kvm_has_vcpu_events()) {
2524 if (env
->exception_injected
== 1) {
2525 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2526 } else if (env
->exception_injected
== 3) {
2527 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2529 env
->exception_injected
= -1;
2533 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2534 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2535 * by updating the debug state once again if single-stepping is on.
2536 * Another reason to call kvm_update_guest_debug here is a pending debug
2537 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2538 * reinject them via SET_GUEST_DEBUG.
2540 if (reinject_trap
||
2541 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2542 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2547 static int kvm_put_debugregs(X86CPU
*cpu
)
2549 CPUX86State
*env
= &cpu
->env
;
2550 struct kvm_debugregs dbgregs
;
2553 if (!kvm_has_debugregs()) {
2557 for (i
= 0; i
< 4; i
++) {
2558 dbgregs
.db
[i
] = env
->dr
[i
];
2560 dbgregs
.dr6
= env
->dr
[6];
2561 dbgregs
.dr7
= env
->dr
[7];
2564 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2567 static int kvm_get_debugregs(X86CPU
*cpu
)
2569 CPUX86State
*env
= &cpu
->env
;
2570 struct kvm_debugregs dbgregs
;
2573 if (!kvm_has_debugregs()) {
2577 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2581 for (i
= 0; i
< 4; i
++) {
2582 env
->dr
[i
] = dbgregs
.db
[i
];
2584 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2585 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2590 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2592 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2595 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2597 if (level
>= KVM_PUT_RESET_STATE
) {
2598 ret
= kvm_put_msr_feature_control(x86_cpu
);
2604 if (level
== KVM_PUT_FULL_STATE
) {
2605 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2606 * because TSC frequency mismatch shouldn't abort migration,
2607 * unless the user explicitly asked for a more strict TSC
2608 * setting (e.g. using an explicit "tsc-freq" option).
2610 kvm_arch_set_tsc_khz(cpu
);
2613 ret
= kvm_getput_regs(x86_cpu
, 1);
2617 ret
= kvm_put_xsave(x86_cpu
);
2621 ret
= kvm_put_xcrs(x86_cpu
);
2625 ret
= kvm_put_sregs(x86_cpu
);
2629 /* must be before kvm_put_msrs */
2630 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2634 ret
= kvm_put_msrs(x86_cpu
, level
);
2638 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2642 if (level
>= KVM_PUT_RESET_STATE
) {
2643 ret
= kvm_put_mp_state(x86_cpu
);
2649 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2653 ret
= kvm_put_debugregs(x86_cpu
);
2658 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2665 int kvm_arch_get_registers(CPUState
*cs
)
2667 X86CPU
*cpu
= X86_CPU(cs
);
2670 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2672 ret
= kvm_get_vcpu_events(cpu
);
2677 * KVM_GET_MPSTATE can modify CS and RIP, call it before
2678 * KVM_GET_REGS and KVM_GET_SREGS.
2680 ret
= kvm_get_mp_state(cpu
);
2684 ret
= kvm_getput_regs(cpu
, 0);
2688 ret
= kvm_get_xsave(cpu
);
2692 ret
= kvm_get_xcrs(cpu
);
2696 ret
= kvm_get_sregs(cpu
);
2700 ret
= kvm_get_msrs(cpu
);
2704 ret
= kvm_get_apic(cpu
);
2708 ret
= kvm_get_debugregs(cpu
);
2714 cpu_sync_bndcs_hflags(&cpu
->env
);
2718 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2720 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2721 CPUX86State
*env
= &x86_cpu
->env
;
2725 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2726 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2727 qemu_mutex_lock_iothread();
2728 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2729 qemu_mutex_unlock_iothread();
2730 DPRINTF("injected NMI\n");
2731 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2733 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2737 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2738 qemu_mutex_lock_iothread();
2739 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2740 qemu_mutex_unlock_iothread();
2741 DPRINTF("injected SMI\n");
2742 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2744 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2750 if (!kvm_pic_in_kernel()) {
2751 qemu_mutex_lock_iothread();
2754 /* Force the VCPU out of its inner loop to process any INIT requests
2755 * or (for userspace APIC, but it is cheap to combine the checks here)
2756 * pending TPR access reports.
2758 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2759 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2760 !(env
->hflags
& HF_SMM_MASK
)) {
2761 cpu
->exit_request
= 1;
2763 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2764 cpu
->exit_request
= 1;
2768 if (!kvm_pic_in_kernel()) {
2769 /* Try to inject an interrupt if the guest can accept it */
2770 if (run
->ready_for_interrupt_injection
&&
2771 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2772 (env
->eflags
& IF_MASK
)) {
2775 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2776 irq
= cpu_get_pic_interrupt(env
);
2778 struct kvm_interrupt intr
;
2781 DPRINTF("injected interrupt %d\n", irq
);
2782 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2785 "KVM: injection failed, interrupt lost (%s)\n",
2791 /* If we have an interrupt but the guest is not ready to receive an
2792 * interrupt, request an interrupt window exit. This will
2793 * cause a return to userspace as soon as the guest is ready to
2794 * receive interrupts. */
2795 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2796 run
->request_interrupt_window
= 1;
2798 run
->request_interrupt_window
= 0;
2801 DPRINTF("setting tpr\n");
2802 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2804 qemu_mutex_unlock_iothread();
2808 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2810 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2811 CPUX86State
*env
= &x86_cpu
->env
;
2813 if (run
->flags
& KVM_RUN_X86_SMM
) {
2814 env
->hflags
|= HF_SMM_MASK
;
2816 env
->hflags
&= ~HF_SMM_MASK
;
2819 env
->eflags
|= IF_MASK
;
2821 env
->eflags
&= ~IF_MASK
;
2824 /* We need to protect the apic state against concurrent accesses from
2825 * different threads in case the userspace irqchip is used. */
2826 if (!kvm_irqchip_in_kernel()) {
2827 qemu_mutex_lock_iothread();
2829 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2830 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2831 if (!kvm_irqchip_in_kernel()) {
2832 qemu_mutex_unlock_iothread();
2834 return cpu_get_mem_attrs(env
);
2837 int kvm_arch_process_async_events(CPUState
*cs
)
2839 X86CPU
*cpu
= X86_CPU(cs
);
2840 CPUX86State
*env
= &cpu
->env
;
2842 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2843 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2844 assert(env
->mcg_cap
);
2846 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2848 kvm_cpu_synchronize_state(cs
);
2850 if (env
->exception_injected
== EXCP08_DBLE
) {
2851 /* this means triple fault */
2852 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2853 cs
->exit_request
= 1;
2856 env
->exception_injected
= EXCP12_MCHK
;
2857 env
->has_error_code
= 0;
2860 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2861 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2865 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2866 !(env
->hflags
& HF_SMM_MASK
)) {
2867 kvm_cpu_synchronize_state(cs
);
2871 if (kvm_irqchip_in_kernel()) {
2875 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2876 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2877 apic_poll_irq(cpu
->apic_state
);
2879 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2880 (env
->eflags
& IF_MASK
)) ||
2881 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2884 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2885 kvm_cpu_synchronize_state(cs
);
2888 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2889 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2890 kvm_cpu_synchronize_state(cs
);
2891 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2892 env
->tpr_access_type
);
2898 static int kvm_handle_halt(X86CPU
*cpu
)
2900 CPUState
*cs
= CPU(cpu
);
2901 CPUX86State
*env
= &cpu
->env
;
2903 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2904 (env
->eflags
& IF_MASK
)) &&
2905 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2913 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2915 CPUState
*cs
= CPU(cpu
);
2916 struct kvm_run
*run
= cs
->kvm_run
;
2918 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2919 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2924 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2926 static const uint8_t int3
= 0xcc;
2928 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2929 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2935 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2939 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2940 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2952 static int nb_hw_breakpoint
;
2954 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2958 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2959 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2960 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2967 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2968 target_ulong len
, int type
)
2971 case GDB_BREAKPOINT_HW
:
2974 case GDB_WATCHPOINT_WRITE
:
2975 case GDB_WATCHPOINT_ACCESS
:
2982 if (addr
& (len
- 1)) {
2994 if (nb_hw_breakpoint
== 4) {
2997 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3000 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3001 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3002 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3008 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3009 target_ulong len
, int type
)
3013 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3018 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3023 void kvm_arch_remove_all_hw_breakpoints(void)
3025 nb_hw_breakpoint
= 0;
3028 static CPUWatchpoint hw_watchpoint
;
3030 static int kvm_handle_debug(X86CPU
*cpu
,
3031 struct kvm_debug_exit_arch
*arch_info
)
3033 CPUState
*cs
= CPU(cpu
);
3034 CPUX86State
*env
= &cpu
->env
;
3038 if (arch_info
->exception
== 1) {
3039 if (arch_info
->dr6
& (1 << 14)) {
3040 if (cs
->singlestep_enabled
) {
3044 for (n
= 0; n
< 4; n
++) {
3045 if (arch_info
->dr6
& (1 << n
)) {
3046 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3052 cs
->watchpoint_hit
= &hw_watchpoint
;
3053 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3054 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3058 cs
->watchpoint_hit
= &hw_watchpoint
;
3059 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3060 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3066 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3070 cpu_synchronize_state(cs
);
3071 assert(env
->exception_injected
== -1);
3074 env
->exception_injected
= arch_info
->exception
;
3075 env
->has_error_code
= 0;
3081 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3083 const uint8_t type_code
[] = {
3084 [GDB_BREAKPOINT_HW
] = 0x0,
3085 [GDB_WATCHPOINT_WRITE
] = 0x1,
3086 [GDB_WATCHPOINT_ACCESS
] = 0x3
3088 const uint8_t len_code
[] = {
3089 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3093 if (kvm_sw_breakpoints_active(cpu
)) {
3094 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3096 if (nb_hw_breakpoint
> 0) {
3097 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3098 dbg
->arch
.debugreg
[7] = 0x0600;
3099 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3100 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3101 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3102 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3103 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3108 static bool host_supports_vmx(void)
3110 uint32_t ecx
, unused
;
3112 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3113 return ecx
& CPUID_EXT_VMX
;
3116 #define VMX_INVALID_GUEST_STATE 0x80000021
3118 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3120 X86CPU
*cpu
= X86_CPU(cs
);
3124 switch (run
->exit_reason
) {
3126 DPRINTF("handle_hlt\n");
3127 qemu_mutex_lock_iothread();
3128 ret
= kvm_handle_halt(cpu
);
3129 qemu_mutex_unlock_iothread();
3131 case KVM_EXIT_SET_TPR
:
3134 case KVM_EXIT_TPR_ACCESS
:
3135 qemu_mutex_lock_iothread();
3136 ret
= kvm_handle_tpr_access(cpu
);
3137 qemu_mutex_unlock_iothread();
3139 case KVM_EXIT_FAIL_ENTRY
:
3140 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3141 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3143 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3145 "\nIf you're running a guest on an Intel machine without "
3146 "unrestricted mode\n"
3147 "support, the failure can be most likely due to the guest "
3148 "entering an invalid\n"
3149 "state for Intel VT. For example, the guest maybe running "
3150 "in big real mode\n"
3151 "which is not supported on less recent Intel processors."
3156 case KVM_EXIT_EXCEPTION
:
3157 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3158 run
->ex
.exception
, run
->ex
.error_code
);
3161 case KVM_EXIT_DEBUG
:
3162 DPRINTF("kvm_exit_debug\n");
3163 qemu_mutex_lock_iothread();
3164 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3165 qemu_mutex_unlock_iothread();
3167 case KVM_EXIT_HYPERV
:
3168 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3170 case KVM_EXIT_IOAPIC_EOI
:
3171 ioapic_eoi_broadcast(run
->eoi
.vector
);
3175 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3183 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3185 X86CPU
*cpu
= X86_CPU(cs
);
3186 CPUX86State
*env
= &cpu
->env
;
3188 kvm_cpu_synchronize_state(cs
);
3189 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3190 ((env
->segs
[R_CS
].selector
& 3) != 3);
3193 void kvm_arch_init_irq_routing(KVMState
*s
)
3195 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3196 /* If kernel can't do irq routing, interrupt source
3197 * override 0->2 cannot be set up as required by HPET.
3198 * So we have to disable it.
3202 /* We know at this point that we're using the in-kernel
3203 * irqchip, so we can use irqfds, and on x86 we know
3204 * we can use msi via irqfd and GSI routing.
3206 kvm_msi_via_irqfd_allowed
= true;
3207 kvm_gsi_routing_allowed
= true;
3209 if (kvm_irqchip_is_split()) {
3212 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3213 MSI routes for signaling interrupts to the local apics. */
3214 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3215 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3216 error_report("Could not enable split IRQ mode.");
3223 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3226 if (machine_kernel_irqchip_split(ms
)) {
3227 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3229 error_report("Could not enable split irqchip mode: %s",
3233 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3234 kvm_split_irqchip
= true;
3242 /* Classic KVM device assignment interface. Will remain x86 only. */
3243 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3244 uint32_t flags
, uint32_t *dev_id
)
3246 struct kvm_assigned_pci_dev dev_data
= {
3247 .segnr
= dev_addr
->domain
,
3248 .busnr
= dev_addr
->bus
,
3249 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3254 dev_data
.assigned_dev_id
=
3255 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3257 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3262 *dev_id
= dev_data
.assigned_dev_id
;
3267 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3269 struct kvm_assigned_pci_dev dev_data
= {
3270 .assigned_dev_id
= dev_id
,
3273 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3276 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3277 uint32_t irq_type
, uint32_t guest_irq
)
3279 struct kvm_assigned_irq assigned_irq
= {
3280 .assigned_dev_id
= dev_id
,
3281 .guest_irq
= guest_irq
,
3285 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3286 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3288 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3292 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3295 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3296 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3298 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3301 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3303 struct kvm_assigned_pci_dev dev_data
= {
3304 .assigned_dev_id
= dev_id
,
3305 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3308 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3311 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3314 struct kvm_assigned_irq assigned_irq
= {
3315 .assigned_dev_id
= dev_id
,
3319 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3322 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3324 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3325 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3328 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3330 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3331 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3334 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3336 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3337 KVM_DEV_IRQ_HOST_MSI
);
3340 bool kvm_device_msix_supported(KVMState
*s
)
3342 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3343 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3344 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3347 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3348 uint32_t nr_vectors
)
3350 struct kvm_assigned_msix_nr msix_nr
= {
3351 .assigned_dev_id
= dev_id
,
3352 .entry_nr
= nr_vectors
,
3355 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3358 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3361 struct kvm_assigned_msix_entry msix_entry
= {
3362 .assigned_dev_id
= dev_id
,
3367 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3370 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3372 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3373 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3376 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3378 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3379 KVM_DEV_IRQ_HOST_MSIX
);
3382 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3383 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3385 X86IOMMUState
*iommu
= x86_iommu_get_default();
3389 MSIMessage src
, dst
;
3390 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3392 src
.address
= route
->u
.msi
.address_hi
;
3393 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3394 src
.address
|= route
->u
.msi
.address_lo
;
3395 src
.data
= route
->u
.msi
.data
;
3397 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3398 pci_requester_id(dev
) : \
3399 X86_IOMMU_SID_INVALID
);
3401 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3405 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3406 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3407 route
->u
.msi
.data
= dst
.data
;
3413 typedef struct MSIRouteEntry MSIRouteEntry
;
3415 struct MSIRouteEntry
{
3416 PCIDevice
*dev
; /* Device pointer */
3417 int vector
; /* MSI/MSIX vector index */
3418 int virq
; /* Virtual IRQ index */
3419 QLIST_ENTRY(MSIRouteEntry
) list
;
3422 /* List of used GSI routes */
3423 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3424 QLIST_HEAD_INITIALIZER(msi_route_list
);
3426 static void kvm_update_msi_routes_all(void *private, bool global
,
3427 uint32_t index
, uint32_t mask
)
3430 MSIRouteEntry
*entry
;
3434 /* TODO: explicit route update */
3435 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3438 if (!msix_enabled(dev
) && !msi_enabled(dev
)) {
3441 msg
= pci_get_msi_message(dev
, entry
->vector
);
3442 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
, msg
, dev
);
3444 kvm_irqchip_commit_routes(kvm_state
);
3445 trace_kvm_x86_update_msi_routes(cnt
);
3448 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3449 int vector
, PCIDevice
*dev
)
3451 static bool notify_list_inited
= false;
3452 MSIRouteEntry
*entry
;
3455 /* These are (possibly) IOAPIC routes only used for split
3456 * kernel irqchip mode, while what we are housekeeping are
3457 * PCI devices only. */
3461 entry
= g_new0(MSIRouteEntry
, 1);
3463 entry
->vector
= vector
;
3464 entry
->virq
= route
->gsi
;
3465 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3467 trace_kvm_x86_add_msi_route(route
->gsi
);
3469 if (!notify_list_inited
) {
3470 /* For the first time we do add route, add ourselves into
3471 * IOMMU's IEC notify list if needed. */
3472 X86IOMMUState
*iommu
= x86_iommu_get_default();
3474 x86_iommu_iec_register_notifier(iommu
,
3475 kvm_update_msi_routes_all
,
3478 notify_list_inited
= true;
3483 int kvm_arch_release_virq_post(int virq
)
3485 MSIRouteEntry
*entry
, *next
;
3486 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3487 if (entry
->virq
== virq
) {
3488 trace_kvm_x86_remove_msi_route(virq
);
3489 QLIST_REMOVE(entry
, list
);
3496 int kvm_arch_msi_data_to_gsi(uint32_t data
)