Merge branch 'master' of ssh://repo.or.cz/srv/git/qemu
[qemu/hppa.git] / hw / m48t59.c
blob0cfdab39f2107829addbad75bba6b5f566cf5b5a
1 /*
2 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
4 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "nvram.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
28 #include "sysemu.h"
30 //#define DEBUG_NVRAM
32 #if defined(DEBUG_NVRAM)
33 #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
34 #else
35 #define NVRAM_PRINTF(fmt, args...) do { } while (0)
36 #endif
39 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
40 * alarm and a watchdog timer and related control registers. In the
41 * PPC platform there is also a nvram lock function.
43 struct m48t59_t {
44 /* Model parameters */
45 int type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
46 /* Hardware parameters */
47 qemu_irq IRQ;
48 int mem_index;
49 uint32_t io_base;
50 uint16_t size;
51 /* RTC management */
52 time_t time_offset;
53 time_t stop_time;
54 /* Alarm & watchdog */
55 struct tm alarm;
56 struct QEMUTimer *alrm_timer;
57 struct QEMUTimer *wd_timer;
58 /* NVRAM storage */
59 uint8_t lock;
60 uint16_t addr;
61 uint8_t *buffer;
64 /* Fake timer functions */
65 /* Generic helpers for BCD */
66 static inline uint8_t toBCD (uint8_t value)
68 return (((value / 10) % 10) << 4) | (value % 10);
71 static inline uint8_t fromBCD (uint8_t BCD)
73 return ((BCD >> 4) * 10) + (BCD & 0x0F);
76 /* Alarm management */
77 static void alarm_cb (void *opaque)
79 struct tm tm;
80 uint64_t next_time;
81 m48t59_t *NVRAM = opaque;
83 qemu_set_irq(NVRAM->IRQ, 1);
84 if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
85 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
86 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
87 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
88 /* Repeat once a month */
89 qemu_get_timedate(&tm, NVRAM->time_offset);
90 tm.tm_mon++;
91 if (tm.tm_mon == 13) {
92 tm.tm_mon = 1;
93 tm.tm_year++;
95 next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
96 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
97 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
98 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
99 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
100 /* Repeat once a day */
101 next_time = 24 * 60 * 60;
102 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
103 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
104 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
105 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
106 /* Repeat once an hour */
107 next_time = 60 * 60;
108 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
109 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
110 (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
111 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
112 /* Repeat once a minute */
113 next_time = 60;
114 } else {
115 /* Repeat once a second */
116 next_time = 1;
118 qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
119 next_time * 1000);
120 qemu_set_irq(NVRAM->IRQ, 0);
123 static void set_alarm (m48t59_t *NVRAM)
125 int diff;
126 if (NVRAM->alrm_timer != NULL) {
127 qemu_del_timer(NVRAM->alrm_timer);
128 diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
129 if (diff > 0)
130 qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
134 /* RTC management helpers */
135 static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
137 qemu_get_timedate(tm, NVRAM->time_offset);
140 static void set_time (m48t59_t *NVRAM, struct tm *tm)
142 NVRAM->time_offset = qemu_timedate_diff(tm);
143 set_alarm(NVRAM);
146 /* Watchdog management */
147 static void watchdog_cb (void *opaque)
149 m48t59_t *NVRAM = opaque;
151 NVRAM->buffer[0x1FF0] |= 0x80;
152 if (NVRAM->buffer[0x1FF7] & 0x80) {
153 NVRAM->buffer[0x1FF7] = 0x00;
154 NVRAM->buffer[0x1FFC] &= ~0x40;
155 /* May it be a hw CPU Reset instead ? */
156 qemu_system_reset_request();
157 } else {
158 qemu_set_irq(NVRAM->IRQ, 1);
159 qemu_set_irq(NVRAM->IRQ, 0);
163 static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
165 uint64_t interval; /* in 1/16 seconds */
167 NVRAM->buffer[0x1FF0] &= ~0x80;
168 if (NVRAM->wd_timer != NULL) {
169 qemu_del_timer(NVRAM->wd_timer);
170 if (value != 0) {
171 interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
172 qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
173 ((interval * 1000) >> 4));
178 /* Direct access to NVRAM */
179 void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
181 m48t59_t *NVRAM = opaque;
182 struct tm tm;
183 int tmp;
185 if (addr > 0x1FF8 && addr < 0x2000)
186 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
188 /* check for NVRAM access */
189 if ((NVRAM->type == 2 && addr < 0x7f8) ||
190 (NVRAM->type == 8 && addr < 0x1ff8) ||
191 (NVRAM->type == 59 && addr < 0x1ff0))
192 goto do_write;
194 /* TOD access */
195 switch (addr) {
196 case 0x1FF0:
197 /* flags register : read-only */
198 break;
199 case 0x1FF1:
200 /* unused */
201 break;
202 case 0x1FF2:
203 /* alarm seconds */
204 tmp = fromBCD(val & 0x7F);
205 if (tmp >= 0 && tmp <= 59) {
206 NVRAM->alarm.tm_sec = tmp;
207 NVRAM->buffer[0x1FF2] = val;
208 set_alarm(NVRAM);
210 break;
211 case 0x1FF3:
212 /* alarm minutes */
213 tmp = fromBCD(val & 0x7F);
214 if (tmp >= 0 && tmp <= 59) {
215 NVRAM->alarm.tm_min = tmp;
216 NVRAM->buffer[0x1FF3] = val;
217 set_alarm(NVRAM);
219 break;
220 case 0x1FF4:
221 /* alarm hours */
222 tmp = fromBCD(val & 0x3F);
223 if (tmp >= 0 && tmp <= 23) {
224 NVRAM->alarm.tm_hour = tmp;
225 NVRAM->buffer[0x1FF4] = val;
226 set_alarm(NVRAM);
228 break;
229 case 0x1FF5:
230 /* alarm date */
231 tmp = fromBCD(val & 0x1F);
232 if (tmp != 0) {
233 NVRAM->alarm.tm_mday = tmp;
234 NVRAM->buffer[0x1FF5] = val;
235 set_alarm(NVRAM);
237 break;
238 case 0x1FF6:
239 /* interrupts */
240 NVRAM->buffer[0x1FF6] = val;
241 break;
242 case 0x1FF7:
243 /* watchdog */
244 NVRAM->buffer[0x1FF7] = val;
245 set_up_watchdog(NVRAM, val);
246 break;
247 case 0x1FF8:
248 case 0x07F8:
249 /* control */
250 NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
251 break;
252 case 0x1FF9:
253 case 0x07F9:
254 /* seconds (BCD) */
255 tmp = fromBCD(val & 0x7F);
256 if (tmp >= 0 && tmp <= 59) {
257 get_time(NVRAM, &tm);
258 tm.tm_sec = tmp;
259 set_time(NVRAM, &tm);
261 if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
262 if (val & 0x80) {
263 NVRAM->stop_time = time(NULL);
264 } else {
265 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
266 NVRAM->stop_time = 0;
269 NVRAM->buffer[addr] = val & 0x80;
270 break;
271 case 0x1FFA:
272 case 0x07FA:
273 /* minutes (BCD) */
274 tmp = fromBCD(val & 0x7F);
275 if (tmp >= 0 && tmp <= 59) {
276 get_time(NVRAM, &tm);
277 tm.tm_min = tmp;
278 set_time(NVRAM, &tm);
280 break;
281 case 0x1FFB:
282 case 0x07FB:
283 /* hours (BCD) */
284 tmp = fromBCD(val & 0x3F);
285 if (tmp >= 0 && tmp <= 23) {
286 get_time(NVRAM, &tm);
287 tm.tm_hour = tmp;
288 set_time(NVRAM, &tm);
290 break;
291 case 0x1FFC:
292 case 0x07FC:
293 /* day of the week / century */
294 tmp = fromBCD(val & 0x07);
295 get_time(NVRAM, &tm);
296 tm.tm_wday = tmp;
297 set_time(NVRAM, &tm);
298 NVRAM->buffer[addr] = val & 0x40;
299 break;
300 case 0x1FFD:
301 case 0x07FD:
302 /* date */
303 tmp = fromBCD(val & 0x1F);
304 if (tmp != 0) {
305 get_time(NVRAM, &tm);
306 tm.tm_mday = tmp;
307 set_time(NVRAM, &tm);
309 break;
310 case 0x1FFE:
311 case 0x07FE:
312 /* month */
313 tmp = fromBCD(val & 0x1F);
314 if (tmp >= 1 && tmp <= 12) {
315 get_time(NVRAM, &tm);
316 tm.tm_mon = tmp - 1;
317 set_time(NVRAM, &tm);
319 break;
320 case 0x1FFF:
321 case 0x07FF:
322 /* year */
323 tmp = fromBCD(val);
324 if (tmp >= 0 && tmp <= 99) {
325 get_time(NVRAM, &tm);
326 if (NVRAM->type == 8)
327 tm.tm_year = fromBCD(val) + 68; // Base year is 1968
328 else
329 tm.tm_year = fromBCD(val);
330 set_time(NVRAM, &tm);
332 break;
333 default:
334 /* Check lock registers state */
335 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
336 break;
337 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
338 break;
339 do_write:
340 if (addr < NVRAM->size) {
341 NVRAM->buffer[addr] = val & 0xFF;
343 break;
347 uint32_t m48t59_read (void *opaque, uint32_t addr)
349 m48t59_t *NVRAM = opaque;
350 struct tm tm;
351 uint32_t retval = 0xFF;
353 /* check for NVRAM access */
354 if ((NVRAM->type == 2 && addr < 0x078f) ||
355 (NVRAM->type == 8 && addr < 0x1ff8) ||
356 (NVRAM->type == 59 && addr < 0x1ff0))
357 goto do_read;
359 /* TOD access */
360 switch (addr) {
361 case 0x1FF0:
362 /* flags register */
363 goto do_read;
364 case 0x1FF1:
365 /* unused */
366 retval = 0;
367 break;
368 case 0x1FF2:
369 /* alarm seconds */
370 goto do_read;
371 case 0x1FF3:
372 /* alarm minutes */
373 goto do_read;
374 case 0x1FF4:
375 /* alarm hours */
376 goto do_read;
377 case 0x1FF5:
378 /* alarm date */
379 goto do_read;
380 case 0x1FF6:
381 /* interrupts */
382 goto do_read;
383 case 0x1FF7:
384 /* A read resets the watchdog */
385 set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
386 goto do_read;
387 case 0x1FF8:
388 case 0x07F8:
389 /* control */
390 goto do_read;
391 case 0x1FF9:
392 case 0x07F9:
393 /* seconds (BCD) */
394 get_time(NVRAM, &tm);
395 retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
396 break;
397 case 0x1FFA:
398 case 0x07FA:
399 /* minutes (BCD) */
400 get_time(NVRAM, &tm);
401 retval = toBCD(tm.tm_min);
402 break;
403 case 0x1FFB:
404 case 0x07FB:
405 /* hours (BCD) */
406 get_time(NVRAM, &tm);
407 retval = toBCD(tm.tm_hour);
408 break;
409 case 0x1FFC:
410 case 0x07FC:
411 /* day of the week / century */
412 get_time(NVRAM, &tm);
413 retval = NVRAM->buffer[addr] | tm.tm_wday;
414 break;
415 case 0x1FFD:
416 case 0x07FD:
417 /* date */
418 get_time(NVRAM, &tm);
419 retval = toBCD(tm.tm_mday);
420 break;
421 case 0x1FFE:
422 case 0x07FE:
423 /* month */
424 get_time(NVRAM, &tm);
425 retval = toBCD(tm.tm_mon + 1);
426 break;
427 case 0x1FFF:
428 case 0x07FF:
429 /* year */
430 get_time(NVRAM, &tm);
431 if (NVRAM->type == 8)
432 retval = toBCD(tm.tm_year - 68); // Base year is 1968
433 else
434 retval = toBCD(tm.tm_year);
435 break;
436 default:
437 /* Check lock registers state */
438 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
439 break;
440 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
441 break;
442 do_read:
443 if (addr < NVRAM->size) {
444 retval = NVRAM->buffer[addr];
446 break;
448 if (addr > 0x1FF9 && addr < 0x2000)
449 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
451 return retval;
454 void m48t59_set_addr (void *opaque, uint32_t addr)
456 m48t59_t *NVRAM = opaque;
458 NVRAM->addr = addr;
461 void m48t59_toggle_lock (void *opaque, int lock)
463 m48t59_t *NVRAM = opaque;
465 NVRAM->lock ^= 1 << lock;
468 /* IO access to NVRAM */
469 static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
471 m48t59_t *NVRAM = opaque;
473 addr -= NVRAM->io_base;
474 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
475 switch (addr) {
476 case 0:
477 NVRAM->addr &= ~0x00FF;
478 NVRAM->addr |= val;
479 break;
480 case 1:
481 NVRAM->addr &= ~0xFF00;
482 NVRAM->addr |= val << 8;
483 break;
484 case 3:
485 m48t59_write(NVRAM, val, NVRAM->addr);
486 NVRAM->addr = 0x0000;
487 break;
488 default:
489 break;
493 static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
495 m48t59_t *NVRAM = opaque;
496 uint32_t retval;
498 addr -= NVRAM->io_base;
499 switch (addr) {
500 case 3:
501 retval = m48t59_read(NVRAM, NVRAM->addr);
502 break;
503 default:
504 retval = -1;
505 break;
507 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
509 return retval;
512 static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
514 m48t59_t *NVRAM = opaque;
516 m48t59_write(NVRAM, addr, value & 0xff);
519 static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
521 m48t59_t *NVRAM = opaque;
523 m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
524 m48t59_write(NVRAM, addr + 1, value & 0xff);
527 static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
529 m48t59_t *NVRAM = opaque;
531 m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
532 m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
533 m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
534 m48t59_write(NVRAM, addr + 3, value & 0xff);
537 static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
539 m48t59_t *NVRAM = opaque;
540 uint32_t retval;
542 retval = m48t59_read(NVRAM, addr);
543 return retval;
546 static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
548 m48t59_t *NVRAM = opaque;
549 uint32_t retval;
551 retval = m48t59_read(NVRAM, addr) << 8;
552 retval |= m48t59_read(NVRAM, addr + 1);
553 return retval;
556 static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
558 m48t59_t *NVRAM = opaque;
559 uint32_t retval;
561 retval = m48t59_read(NVRAM, addr) << 24;
562 retval |= m48t59_read(NVRAM, addr + 1) << 16;
563 retval |= m48t59_read(NVRAM, addr + 2) << 8;
564 retval |= m48t59_read(NVRAM, addr + 3);
565 return retval;
568 static CPUWriteMemoryFunc *nvram_write[] = {
569 &nvram_writeb,
570 &nvram_writew,
571 &nvram_writel,
574 static CPUReadMemoryFunc *nvram_read[] = {
575 &nvram_readb,
576 &nvram_readw,
577 &nvram_readl,
580 static void m48t59_save(QEMUFile *f, void *opaque)
582 m48t59_t *s = opaque;
584 qemu_put_8s(f, &s->lock);
585 qemu_put_be16s(f, &s->addr);
586 qemu_put_buffer(f, s->buffer, s->size);
589 static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
591 m48t59_t *s = opaque;
593 if (version_id != 1)
594 return -EINVAL;
596 qemu_get_8s(f, &s->lock);
597 qemu_get_be16s(f, &s->addr);
598 qemu_get_buffer(f, s->buffer, s->size);
600 return 0;
603 static void m48t59_reset(void *opaque)
605 m48t59_t *NVRAM = opaque;
607 NVRAM->addr = 0;
608 NVRAM->lock = 0;
609 if (NVRAM->alrm_timer != NULL)
610 qemu_del_timer(NVRAM->alrm_timer);
612 if (NVRAM->wd_timer != NULL)
613 qemu_del_timer(NVRAM->wd_timer);
616 /* Initialisation routine */
617 m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
618 uint32_t io_base, uint16_t size,
619 int type)
621 m48t59_t *s;
622 target_phys_addr_t save_base;
624 s = qemu_mallocz(sizeof(m48t59_t));
625 s->buffer = qemu_mallocz(size);
626 s->IRQ = IRQ;
627 s->size = size;
628 s->io_base = io_base;
629 s->type = type;
630 if (io_base != 0) {
631 register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
632 register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
634 if (mem_base != 0) {
635 s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
636 cpu_register_physical_memory(mem_base, size, s->mem_index);
638 if (type == 59) {
639 s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
640 s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
642 qemu_get_timedate(&s->alarm, 0);
644 qemu_register_reset(m48t59_reset, s);
645 save_base = mem_base ? mem_base : io_base;
646 register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
648 return s;