Merge branch 'master' of ssh://repo.or.cz/srv/git/qemu
[qemu/hppa.git] / target-arm / helper.c
blob34641428df4bebd98f2f505da53ba1ca1d7ababc
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name);
31 static inline void set_feature(CPUARMState *env, int feature)
33 env->features |= 1u << feature;
36 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
38 env->cp15.c0_cpuid = id;
39 switch (id) {
40 case ARM_CPUID_ARM926:
41 set_feature(env, ARM_FEATURE_VFP);
42 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
43 env->cp15.c0_cachetype = 0x1dd20d2;
44 env->cp15.c1_sys = 0x00090078;
45 break;
46 case ARM_CPUID_ARM946:
47 set_feature(env, ARM_FEATURE_MPU);
48 env->cp15.c0_cachetype = 0x0f004006;
49 env->cp15.c1_sys = 0x00000078;
50 break;
51 case ARM_CPUID_ARM1026:
52 set_feature(env, ARM_FEATURE_VFP);
53 set_feature(env, ARM_FEATURE_AUXCR);
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
55 env->cp15.c0_cachetype = 0x1dd20d2;
56 env->cp15.c1_sys = 0x00090078;
57 break;
58 case ARM_CPUID_ARM1136_R2:
59 case ARM_CPUID_ARM1136:
60 set_feature(env, ARM_FEATURE_V6);
61 set_feature(env, ARM_FEATURE_VFP);
62 set_feature(env, ARM_FEATURE_AUXCR);
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
64 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
65 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
66 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
67 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
68 env->cp15.c0_cachetype = 0x1dd20d2;
69 break;
70 case ARM_CPUID_ARM11MPCORE:
71 set_feature(env, ARM_FEATURE_V6);
72 set_feature(env, ARM_FEATURE_V6K);
73 set_feature(env, ARM_FEATURE_VFP);
74 set_feature(env, ARM_FEATURE_AUXCR);
75 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
76 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
77 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
78 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
79 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
80 env->cp15.c0_cachetype = 0x1dd20d2;
81 break;
82 case ARM_CPUID_CORTEXA8:
83 set_feature(env, ARM_FEATURE_V6);
84 set_feature(env, ARM_FEATURE_V6K);
85 set_feature(env, ARM_FEATURE_V7);
86 set_feature(env, ARM_FEATURE_AUXCR);
87 set_feature(env, ARM_FEATURE_THUMB2);
88 set_feature(env, ARM_FEATURE_VFP);
89 set_feature(env, ARM_FEATURE_VFP3);
90 set_feature(env, ARM_FEATURE_NEON);
91 set_feature(env, ARM_FEATURE_THUMB2EE);
92 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
93 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
94 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
95 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
96 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
97 env->cp15.c0_cachetype = 0x82048004;
98 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
99 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
100 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
101 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
102 break;
103 case ARM_CPUID_CORTEXM3:
104 set_feature(env, ARM_FEATURE_V6);
105 set_feature(env, ARM_FEATURE_THUMB2);
106 set_feature(env, ARM_FEATURE_V7);
107 set_feature(env, ARM_FEATURE_M);
108 set_feature(env, ARM_FEATURE_DIV);
109 break;
110 case ARM_CPUID_ANY: /* For userspace emulation. */
111 set_feature(env, ARM_FEATURE_V6);
112 set_feature(env, ARM_FEATURE_V6K);
113 set_feature(env, ARM_FEATURE_V7);
114 set_feature(env, ARM_FEATURE_THUMB2);
115 set_feature(env, ARM_FEATURE_VFP);
116 set_feature(env, ARM_FEATURE_VFP3);
117 set_feature(env, ARM_FEATURE_NEON);
118 set_feature(env, ARM_FEATURE_THUMB2EE);
119 set_feature(env, ARM_FEATURE_DIV);
120 break;
121 case ARM_CPUID_TI915T:
122 case ARM_CPUID_TI925T:
123 set_feature(env, ARM_FEATURE_OMAPCP);
124 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
125 env->cp15.c0_cachetype = 0x5109149;
126 env->cp15.c1_sys = 0x00000070;
127 env->cp15.c15_i_max = 0x000;
128 env->cp15.c15_i_min = 0xff0;
129 break;
130 case ARM_CPUID_PXA250:
131 case ARM_CPUID_PXA255:
132 case ARM_CPUID_PXA260:
133 case ARM_CPUID_PXA261:
134 case ARM_CPUID_PXA262:
135 set_feature(env, ARM_FEATURE_XSCALE);
136 /* JTAG_ID is ((id << 28) | 0x09265013) */
137 env->cp15.c0_cachetype = 0xd172172;
138 env->cp15.c1_sys = 0x00000078;
139 break;
140 case ARM_CPUID_PXA270_A0:
141 case ARM_CPUID_PXA270_A1:
142 case ARM_CPUID_PXA270_B0:
143 case ARM_CPUID_PXA270_B1:
144 case ARM_CPUID_PXA270_C0:
145 case ARM_CPUID_PXA270_C5:
146 set_feature(env, ARM_FEATURE_XSCALE);
147 /* JTAG_ID is ((id << 28) | 0x09265013) */
148 set_feature(env, ARM_FEATURE_IWMMXT);
149 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
150 env->cp15.c0_cachetype = 0xd172172;
151 env->cp15.c1_sys = 0x00000078;
152 break;
153 default:
154 cpu_abort(env, "Bad CPU ID: %x\n", id);
155 break;
159 void cpu_reset(CPUARMState *env)
161 uint32_t id;
163 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
164 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
165 log_cpu_state(env, 0);
168 id = env->cp15.c0_cpuid;
169 memset(env, 0, offsetof(CPUARMState, breakpoints));
170 if (id)
171 cpu_reset_model_id(env, id);
172 #if defined (CONFIG_USER_ONLY)
173 env->uncached_cpsr = ARM_CPU_MODE_USR;
174 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
175 #else
176 /* SVC mode with interrupts disabled. */
177 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
178 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
179 clear at reset. */
180 if (IS_M(env))
181 env->uncached_cpsr &= ~CPSR_I;
182 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
183 env->cp15.c2_base_mask = 0xffffc000u;
184 #endif
185 env->regs[15] = 0;
186 tlb_flush(env, 1);
189 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
191 int nregs;
193 /* VFP data registers are always little-endian. */
194 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
195 if (reg < nregs) {
196 stfq_le_p(buf, env->vfp.regs[reg]);
197 return 8;
199 if (arm_feature(env, ARM_FEATURE_NEON)) {
200 /* Aliases for Q regs. */
201 nregs += 16;
202 if (reg < nregs) {
203 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
204 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
205 return 16;
208 switch (reg - nregs) {
209 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
210 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
211 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
213 return 0;
216 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
218 int nregs;
220 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
221 if (reg < nregs) {
222 env->vfp.regs[reg] = ldfq_le_p(buf);
223 return 8;
225 if (arm_feature(env, ARM_FEATURE_NEON)) {
226 nregs += 16;
227 if (reg < nregs) {
228 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
229 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
230 return 16;
233 switch (reg - nregs) {
234 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
235 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
236 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
238 return 0;
241 CPUARMState *cpu_arm_init(const char *cpu_model)
243 CPUARMState *env;
244 uint32_t id;
245 static int inited = 0;
247 id = cpu_arm_find_by_name(cpu_model);
248 if (id == 0)
249 return NULL;
250 env = qemu_mallocz(sizeof(CPUARMState));
251 cpu_exec_init(env);
252 if (!inited) {
253 inited = 1;
254 arm_translate_init();
257 env->cpu_model_str = cpu_model;
258 env->cp15.c0_cpuid = id;
259 cpu_reset(env);
260 if (arm_feature(env, ARM_FEATURE_NEON)) {
261 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
262 51, "arm-neon.xml", 0);
263 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
264 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
265 35, "arm-vfp3.xml", 0);
266 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
267 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
268 19, "arm-vfp.xml", 0);
270 return env;
273 struct arm_cpu_t {
274 uint32_t id;
275 const char *name;
278 static const struct arm_cpu_t arm_cpu_names[] = {
279 { ARM_CPUID_ARM926, "arm926"},
280 { ARM_CPUID_ARM946, "arm946"},
281 { ARM_CPUID_ARM1026, "arm1026"},
282 { ARM_CPUID_ARM1136, "arm1136"},
283 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
284 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
285 { ARM_CPUID_CORTEXM3, "cortex-m3"},
286 { ARM_CPUID_CORTEXA8, "cortex-a8"},
287 { ARM_CPUID_TI925T, "ti925t" },
288 { ARM_CPUID_PXA250, "pxa250" },
289 { ARM_CPUID_PXA255, "pxa255" },
290 { ARM_CPUID_PXA260, "pxa260" },
291 { ARM_CPUID_PXA261, "pxa261" },
292 { ARM_CPUID_PXA262, "pxa262" },
293 { ARM_CPUID_PXA270, "pxa270" },
294 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
295 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
296 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
297 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
298 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
299 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
300 { ARM_CPUID_ANY, "any"},
301 { 0, NULL}
304 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
306 int i;
308 (*cpu_fprintf)(f, "Available CPUs:\n");
309 for (i = 0; arm_cpu_names[i].name; i++) {
310 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
314 /* return 0 if not found */
315 static uint32_t cpu_arm_find_by_name(const char *name)
317 int i;
318 uint32_t id;
320 id = 0;
321 for (i = 0; arm_cpu_names[i].name; i++) {
322 if (strcmp(name, arm_cpu_names[i].name) == 0) {
323 id = arm_cpu_names[i].id;
324 break;
327 return id;
330 void cpu_arm_close(CPUARMState *env)
332 free(env);
335 uint32_t cpsr_read(CPUARMState *env)
337 int ZF;
338 ZF = (env->ZF == 0);
339 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
340 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
341 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
342 | ((env->condexec_bits & 0xfc) << 8)
343 | (env->GE << 16);
346 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
348 if (mask & CPSR_NZCV) {
349 env->ZF = (~val) & CPSR_Z;
350 env->NF = val;
351 env->CF = (val >> 29) & 1;
352 env->VF = (val << 3) & 0x80000000;
354 if (mask & CPSR_Q)
355 env->QF = ((val & CPSR_Q) != 0);
356 if (mask & CPSR_T)
357 env->thumb = ((val & CPSR_T) != 0);
358 if (mask & CPSR_IT_0_1) {
359 env->condexec_bits &= ~3;
360 env->condexec_bits |= (val >> 25) & 3;
362 if (mask & CPSR_IT_2_7) {
363 env->condexec_bits &= 3;
364 env->condexec_bits |= (val >> 8) & 0xfc;
366 if (mask & CPSR_GE) {
367 env->GE = (val >> 16) & 0xf;
370 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
371 switch_mode(env, val & CPSR_M);
373 mask &= ~CACHED_CPSR_BITS;
374 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
377 /* Sign/zero extend */
378 uint32_t HELPER(sxtb16)(uint32_t x)
380 uint32_t res;
381 res = (uint16_t)(int8_t)x;
382 res |= (uint32_t)(int8_t)(x >> 16) << 16;
383 return res;
386 uint32_t HELPER(uxtb16)(uint32_t x)
388 uint32_t res;
389 res = (uint16_t)(uint8_t)x;
390 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
391 return res;
394 uint32_t HELPER(clz)(uint32_t x)
396 int count;
397 for (count = 32; x; count--)
398 x >>= 1;
399 return count;
402 int32_t HELPER(sdiv)(int32_t num, int32_t den)
404 if (den == 0)
405 return 0;
406 return num / den;
409 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
411 if (den == 0)
412 return 0;
413 return num / den;
416 uint32_t HELPER(rbit)(uint32_t x)
418 x = ((x & 0xff000000) >> 24)
419 | ((x & 0x00ff0000) >> 8)
420 | ((x & 0x0000ff00) << 8)
421 | ((x & 0x000000ff) << 24);
422 x = ((x & 0xf0f0f0f0) >> 4)
423 | ((x & 0x0f0f0f0f) << 4);
424 x = ((x & 0x88888888) >> 3)
425 | ((x & 0x44444444) >> 1)
426 | ((x & 0x22222222) << 1)
427 | ((x & 0x11111111) << 3);
428 return x;
431 uint32_t HELPER(abs)(uint32_t x)
433 return ((int32_t)x < 0) ? -x : x;
436 #if defined(CONFIG_USER_ONLY)
438 void do_interrupt (CPUState *env)
440 env->exception_index = -1;
443 /* Structure used to record exclusive memory locations. */
444 typedef struct mmon_state {
445 struct mmon_state *next;
446 CPUARMState *cpu_env;
447 uint32_t addr;
448 } mmon_state;
450 /* Chain of current locks. */
451 static mmon_state* mmon_head = NULL;
453 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
454 int mmu_idx, int is_softmmu)
456 if (rw == 2) {
457 env->exception_index = EXCP_PREFETCH_ABORT;
458 env->cp15.c6_insn = address;
459 } else {
460 env->exception_index = EXCP_DATA_ABORT;
461 env->cp15.c6_data = address;
463 return 1;
466 static void allocate_mmon_state(CPUState *env)
468 env->mmon_entry = malloc(sizeof (mmon_state));
469 memset (env->mmon_entry, 0, sizeof (mmon_state));
470 env->mmon_entry->cpu_env = env;
471 mmon_head = env->mmon_entry;
474 /* Flush any monitor locks for the specified address. */
475 static void flush_mmon(uint32_t addr)
477 mmon_state *mon;
479 for (mon = mmon_head; mon; mon = mon->next)
481 if (mon->addr != addr)
482 continue;
484 mon->addr = 0;
485 break;
489 /* Mark an address for exclusive access. */
490 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
492 if (!env->mmon_entry)
493 allocate_mmon_state(env);
494 /* Clear any previous locks. */
495 flush_mmon(addr);
496 env->mmon_entry->addr = addr;
499 /* Test if an exclusive address is still exclusive. Returns zero
500 if the address is still exclusive. */
501 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
503 int res;
505 if (!env->mmon_entry)
506 return 1;
507 if (env->mmon_entry->addr == addr)
508 res = 0;
509 else
510 res = 1;
511 flush_mmon(addr);
512 return res;
515 void HELPER(clrex)(CPUState *env)
517 if (!(env->mmon_entry && env->mmon_entry->addr))
518 return;
519 flush_mmon(env->mmon_entry->addr);
522 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
524 return addr;
527 /* These should probably raise undefined insn exceptions. */
528 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
530 int op1 = (insn >> 8) & 0xf;
531 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
532 return;
535 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
537 int op1 = (insn >> 8) & 0xf;
538 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
539 return 0;
542 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
544 cpu_abort(env, "cp15 insn %08x\n", insn);
547 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
549 cpu_abort(env, "cp15 insn %08x\n", insn);
550 return 0;
553 /* These should probably raise undefined insn exceptions. */
554 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
556 cpu_abort(env, "v7m_mrs %d\n", reg);
559 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
561 cpu_abort(env, "v7m_mrs %d\n", reg);
562 return 0;
565 void switch_mode(CPUState *env, int mode)
567 if (mode != ARM_CPU_MODE_USR)
568 cpu_abort(env, "Tried to switch out of user mode\n");
571 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
573 cpu_abort(env, "banked r13 write\n");
576 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
578 cpu_abort(env, "banked r13 read\n");
579 return 0;
582 #else
584 extern int semihosting_enabled;
586 /* Map CPU modes onto saved register banks. */
587 static inline int bank_number (int mode)
589 switch (mode) {
590 case ARM_CPU_MODE_USR:
591 case ARM_CPU_MODE_SYS:
592 return 0;
593 case ARM_CPU_MODE_SVC:
594 return 1;
595 case ARM_CPU_MODE_ABT:
596 return 2;
597 case ARM_CPU_MODE_UND:
598 return 3;
599 case ARM_CPU_MODE_IRQ:
600 return 4;
601 case ARM_CPU_MODE_FIQ:
602 return 5;
604 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
605 return -1;
608 void switch_mode(CPUState *env, int mode)
610 int old_mode;
611 int i;
613 old_mode = env->uncached_cpsr & CPSR_M;
614 if (mode == old_mode)
615 return;
617 if (old_mode == ARM_CPU_MODE_FIQ) {
618 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
619 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
620 } else if (mode == ARM_CPU_MODE_FIQ) {
621 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
622 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
625 i = bank_number(old_mode);
626 env->banked_r13[i] = env->regs[13];
627 env->banked_r14[i] = env->regs[14];
628 env->banked_spsr[i] = env->spsr;
630 i = bank_number(mode);
631 env->regs[13] = env->banked_r13[i];
632 env->regs[14] = env->banked_r14[i];
633 env->spsr = env->banked_spsr[i];
636 static void v7m_push(CPUARMState *env, uint32_t val)
638 env->regs[13] -= 4;
639 stl_phys(env->regs[13], val);
642 static uint32_t v7m_pop(CPUARMState *env)
644 uint32_t val;
645 val = ldl_phys(env->regs[13]);
646 env->regs[13] += 4;
647 return val;
650 /* Switch to V7M main or process stack pointer. */
651 static void switch_v7m_sp(CPUARMState *env, int process)
653 uint32_t tmp;
654 if (env->v7m.current_sp != process) {
655 tmp = env->v7m.other_sp;
656 env->v7m.other_sp = env->regs[13];
657 env->regs[13] = tmp;
658 env->v7m.current_sp = process;
662 static void do_v7m_exception_exit(CPUARMState *env)
664 uint32_t type;
665 uint32_t xpsr;
667 type = env->regs[15];
668 if (env->v7m.exception != 0)
669 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
671 /* Switch to the target stack. */
672 switch_v7m_sp(env, (type & 4) != 0);
673 /* Pop registers. */
674 env->regs[0] = v7m_pop(env);
675 env->regs[1] = v7m_pop(env);
676 env->regs[2] = v7m_pop(env);
677 env->regs[3] = v7m_pop(env);
678 env->regs[12] = v7m_pop(env);
679 env->regs[14] = v7m_pop(env);
680 env->regs[15] = v7m_pop(env);
681 xpsr = v7m_pop(env);
682 xpsr_write(env, xpsr, 0xfffffdff);
683 /* Undo stack alignment. */
684 if (xpsr & 0x200)
685 env->regs[13] |= 4;
686 /* ??? The exception return type specifies Thread/Handler mode. However
687 this is also implied by the xPSR value. Not sure what to do
688 if there is a mismatch. */
689 /* ??? Likewise for mismatches between the CONTROL register and the stack
690 pointer. */
693 static void do_interrupt_v7m(CPUARMState *env)
695 uint32_t xpsr = xpsr_read(env);
696 uint32_t lr;
697 uint32_t addr;
699 lr = 0xfffffff1;
700 if (env->v7m.current_sp)
701 lr |= 4;
702 if (env->v7m.exception == 0)
703 lr |= 8;
705 /* For exceptions we just mark as pending on the NVIC, and let that
706 handle it. */
707 /* TODO: Need to escalate if the current priority is higher than the
708 one we're raising. */
709 switch (env->exception_index) {
710 case EXCP_UDEF:
711 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
712 return;
713 case EXCP_SWI:
714 env->regs[15] += 2;
715 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
716 return;
717 case EXCP_PREFETCH_ABORT:
718 case EXCP_DATA_ABORT:
719 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
720 return;
721 case EXCP_BKPT:
722 if (semihosting_enabled) {
723 int nr;
724 nr = lduw_code(env->regs[15]) & 0xff;
725 if (nr == 0xab) {
726 env->regs[15] += 2;
727 env->regs[0] = do_arm_semihosting(env);
728 return;
731 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
732 return;
733 case EXCP_IRQ:
734 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
735 break;
736 case EXCP_EXCEPTION_EXIT:
737 do_v7m_exception_exit(env);
738 return;
739 default:
740 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
741 return; /* Never happens. Keep compiler happy. */
744 /* Align stack pointer. */
745 /* ??? Should only do this if Configuration Control Register
746 STACKALIGN bit is set. */
747 if (env->regs[13] & 4) {
748 env->regs[13] -= 4;
749 xpsr |= 0x200;
751 /* Switch to the handler mode. */
752 v7m_push(env, xpsr);
753 v7m_push(env, env->regs[15]);
754 v7m_push(env, env->regs[14]);
755 v7m_push(env, env->regs[12]);
756 v7m_push(env, env->regs[3]);
757 v7m_push(env, env->regs[2]);
758 v7m_push(env, env->regs[1]);
759 v7m_push(env, env->regs[0]);
760 switch_v7m_sp(env, 0);
761 env->uncached_cpsr &= ~CPSR_IT;
762 env->regs[14] = lr;
763 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
764 env->regs[15] = addr & 0xfffffffe;
765 env->thumb = addr & 1;
768 /* Handle a CPU exception. */
769 void do_interrupt(CPUARMState *env)
771 uint32_t addr;
772 uint32_t mask;
773 int new_mode;
774 uint32_t offset;
776 if (IS_M(env)) {
777 do_interrupt_v7m(env);
778 return;
780 /* TODO: Vectored interrupt controller. */
781 switch (env->exception_index) {
782 case EXCP_UDEF:
783 new_mode = ARM_CPU_MODE_UND;
784 addr = 0x04;
785 mask = CPSR_I;
786 if (env->thumb)
787 offset = 2;
788 else
789 offset = 4;
790 break;
791 case EXCP_SWI:
792 if (semihosting_enabled) {
793 /* Check for semihosting interrupt. */
794 if (env->thumb) {
795 mask = lduw_code(env->regs[15] - 2) & 0xff;
796 } else {
797 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
799 /* Only intercept calls from privileged modes, to provide some
800 semblance of security. */
801 if (((mask == 0x123456 && !env->thumb)
802 || (mask == 0xab && env->thumb))
803 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
804 env->regs[0] = do_arm_semihosting(env);
805 return;
808 new_mode = ARM_CPU_MODE_SVC;
809 addr = 0x08;
810 mask = CPSR_I;
811 /* The PC already points to the next instruction. */
812 offset = 0;
813 break;
814 case EXCP_BKPT:
815 /* See if this is a semihosting syscall. */
816 if (env->thumb && semihosting_enabled) {
817 mask = lduw_code(env->regs[15]) & 0xff;
818 if (mask == 0xab
819 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
820 env->regs[15] += 2;
821 env->regs[0] = do_arm_semihosting(env);
822 return;
825 /* Fall through to prefetch abort. */
826 case EXCP_PREFETCH_ABORT:
827 new_mode = ARM_CPU_MODE_ABT;
828 addr = 0x0c;
829 mask = CPSR_A | CPSR_I;
830 offset = 4;
831 break;
832 case EXCP_DATA_ABORT:
833 new_mode = ARM_CPU_MODE_ABT;
834 addr = 0x10;
835 mask = CPSR_A | CPSR_I;
836 offset = 8;
837 break;
838 case EXCP_IRQ:
839 new_mode = ARM_CPU_MODE_IRQ;
840 addr = 0x18;
841 /* Disable IRQ and imprecise data aborts. */
842 mask = CPSR_A | CPSR_I;
843 offset = 4;
844 break;
845 case EXCP_FIQ:
846 new_mode = ARM_CPU_MODE_FIQ;
847 addr = 0x1c;
848 /* Disable FIQ, IRQ and imprecise data aborts. */
849 mask = CPSR_A | CPSR_I | CPSR_F;
850 offset = 4;
851 break;
852 default:
853 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
854 return; /* Never happens. Keep compiler happy. */
856 /* High vectors. */
857 if (env->cp15.c1_sys & (1 << 13)) {
858 addr += 0xffff0000;
860 switch_mode (env, new_mode);
861 env->spsr = cpsr_read(env);
862 /* Clear IT bits. */
863 env->condexec_bits = 0;
864 /* Switch to the new mode, and switch to Arm mode. */
865 /* ??? Thumb interrupt handlers not implemented. */
866 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
867 env->uncached_cpsr |= mask;
868 env->thumb = 0;
869 env->regs[14] = env->regs[15] + offset;
870 env->regs[15] = addr;
871 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
874 /* Check section/page access permissions.
875 Returns the page protection flags, or zero if the access is not
876 permitted. */
877 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
878 int is_user)
880 int prot_ro;
882 if (domain == 3)
883 return PAGE_READ | PAGE_WRITE;
885 if (access_type == 1)
886 prot_ro = 0;
887 else
888 prot_ro = PAGE_READ;
890 switch (ap) {
891 case 0:
892 if (access_type == 1)
893 return 0;
894 switch ((env->cp15.c1_sys >> 8) & 3) {
895 case 1:
896 return is_user ? 0 : PAGE_READ;
897 case 2:
898 return PAGE_READ;
899 default:
900 return 0;
902 case 1:
903 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
904 case 2:
905 if (is_user)
906 return prot_ro;
907 else
908 return PAGE_READ | PAGE_WRITE;
909 case 3:
910 return PAGE_READ | PAGE_WRITE;
911 case 4: /* Reserved. */
912 return 0;
913 case 5:
914 return is_user ? 0 : prot_ro;
915 case 6:
916 return prot_ro;
917 case 7:
918 if (!arm_feature (env, ARM_FEATURE_V7))
919 return 0;
920 return prot_ro;
921 default:
922 abort();
926 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
928 uint32_t table;
930 if (address & env->cp15.c2_mask)
931 table = env->cp15.c2_base1 & 0xffffc000;
932 else
933 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
935 table |= (address >> 18) & 0x3ffc;
936 return table;
939 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
940 int is_user, uint32_t *phys_ptr, int *prot)
942 int code;
943 uint32_t table;
944 uint32_t desc;
945 int type;
946 int ap;
947 int domain;
948 uint32_t phys_addr;
950 /* Pagetable walk. */
951 /* Lookup l1 descriptor. */
952 table = get_level1_table_address(env, address);
953 desc = ldl_phys(table);
954 type = (desc & 3);
955 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
956 if (type == 0) {
957 /* Section translation fault. */
958 code = 5;
959 goto do_fault;
961 if (domain == 0 || domain == 2) {
962 if (type == 2)
963 code = 9; /* Section domain fault. */
964 else
965 code = 11; /* Page domain fault. */
966 goto do_fault;
968 if (type == 2) {
969 /* 1Mb section. */
970 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
971 ap = (desc >> 10) & 3;
972 code = 13;
973 } else {
974 /* Lookup l2 entry. */
975 if (type == 1) {
976 /* Coarse pagetable. */
977 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
978 } else {
979 /* Fine pagetable. */
980 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
982 desc = ldl_phys(table);
983 switch (desc & 3) {
984 case 0: /* Page translation fault. */
985 code = 7;
986 goto do_fault;
987 case 1: /* 64k page. */
988 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
989 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
990 break;
991 case 2: /* 4k page. */
992 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
993 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
994 break;
995 case 3: /* 1k page. */
996 if (type == 1) {
997 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
998 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
999 } else {
1000 /* Page translation fault. */
1001 code = 7;
1002 goto do_fault;
1004 } else {
1005 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1007 ap = (desc >> 4) & 3;
1008 break;
1009 default:
1010 /* Never happens, but compiler isn't smart enough to tell. */
1011 abort();
1013 code = 15;
1015 *prot = check_ap(env, ap, domain, access_type, is_user);
1016 if (!*prot) {
1017 /* Access permission fault. */
1018 goto do_fault;
1020 *phys_ptr = phys_addr;
1021 return 0;
1022 do_fault:
1023 return code | (domain << 4);
1026 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1027 int is_user, uint32_t *phys_ptr, int *prot)
1029 int code;
1030 uint32_t table;
1031 uint32_t desc;
1032 uint32_t xn;
1033 int type;
1034 int ap;
1035 int domain;
1036 uint32_t phys_addr;
1038 /* Pagetable walk. */
1039 /* Lookup l1 descriptor. */
1040 table = get_level1_table_address(env, address);
1041 desc = ldl_phys(table);
1042 type = (desc & 3);
1043 if (type == 0) {
1044 /* Section translation fault. */
1045 code = 5;
1046 domain = 0;
1047 goto do_fault;
1048 } else if (type == 2 && (desc & (1 << 18))) {
1049 /* Supersection. */
1050 domain = 0;
1051 } else {
1052 /* Section or page. */
1053 domain = (desc >> 4) & 0x1e;
1055 domain = (env->cp15.c3 >> domain) & 3;
1056 if (domain == 0 || domain == 2) {
1057 if (type == 2)
1058 code = 9; /* Section domain fault. */
1059 else
1060 code = 11; /* Page domain fault. */
1061 goto do_fault;
1063 if (type == 2) {
1064 if (desc & (1 << 18)) {
1065 /* Supersection. */
1066 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1067 } else {
1068 /* Section. */
1069 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1071 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1072 xn = desc & (1 << 4);
1073 code = 13;
1074 } else {
1075 /* Lookup l2 entry. */
1076 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1077 desc = ldl_phys(table);
1078 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1079 switch (desc & 3) {
1080 case 0: /* Page translation fault. */
1081 code = 7;
1082 goto do_fault;
1083 case 1: /* 64k page. */
1084 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1085 xn = desc & (1 << 15);
1086 break;
1087 case 2: case 3: /* 4k page. */
1088 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1089 xn = desc & 1;
1090 break;
1091 default:
1092 /* Never happens, but compiler isn't smart enough to tell. */
1093 abort();
1095 code = 15;
1097 if (xn && access_type == 2)
1098 goto do_fault;
1100 /* The simplified model uses AP[0] as an access control bit. */
1101 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1102 /* Access flag fault. */
1103 code = (code == 15) ? 6 : 3;
1104 goto do_fault;
1106 *prot = check_ap(env, ap, domain, access_type, is_user);
1107 if (!*prot) {
1108 /* Access permission fault. */
1109 goto do_fault;
1111 *phys_ptr = phys_addr;
1112 return 0;
1113 do_fault:
1114 return code | (domain << 4);
1117 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1118 int is_user, uint32_t *phys_ptr, int *prot)
1120 int n;
1121 uint32_t mask;
1122 uint32_t base;
1124 *phys_ptr = address;
1125 for (n = 7; n >= 0; n--) {
1126 base = env->cp15.c6_region[n];
1127 if ((base & 1) == 0)
1128 continue;
1129 mask = 1 << ((base >> 1) & 0x1f);
1130 /* Keep this shift separate from the above to avoid an
1131 (undefined) << 32. */
1132 mask = (mask << 1) - 1;
1133 if (((base ^ address) & ~mask) == 0)
1134 break;
1136 if (n < 0)
1137 return 2;
1139 if (access_type == 2) {
1140 mask = env->cp15.c5_insn;
1141 } else {
1142 mask = env->cp15.c5_data;
1144 mask = (mask >> (n * 4)) & 0xf;
1145 switch (mask) {
1146 case 0:
1147 return 1;
1148 case 1:
1149 if (is_user)
1150 return 1;
1151 *prot = PAGE_READ | PAGE_WRITE;
1152 break;
1153 case 2:
1154 *prot = PAGE_READ;
1155 if (!is_user)
1156 *prot |= PAGE_WRITE;
1157 break;
1158 case 3:
1159 *prot = PAGE_READ | PAGE_WRITE;
1160 break;
1161 case 5:
1162 if (is_user)
1163 return 1;
1164 *prot = PAGE_READ;
1165 break;
1166 case 6:
1167 *prot = PAGE_READ;
1168 break;
1169 default:
1170 /* Bad permission. */
1171 return 1;
1173 return 0;
1176 static inline int get_phys_addr(CPUState *env, uint32_t address,
1177 int access_type, int is_user,
1178 uint32_t *phys_ptr, int *prot)
1180 /* Fast Context Switch Extension. */
1181 if (address < 0x02000000)
1182 address += env->cp15.c13_fcse;
1184 if ((env->cp15.c1_sys & 1) == 0) {
1185 /* MMU/MPU disabled. */
1186 *phys_ptr = address;
1187 *prot = PAGE_READ | PAGE_WRITE;
1188 return 0;
1189 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1190 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1191 prot);
1192 } else if (env->cp15.c1_sys & (1 << 23)) {
1193 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1194 prot);
1195 } else {
1196 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1197 prot);
1201 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1202 int access_type, int mmu_idx, int is_softmmu)
1204 uint32_t phys_addr;
1205 int prot;
1206 int ret, is_user;
1208 is_user = mmu_idx == MMU_USER_IDX;
1209 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1210 if (ret == 0) {
1211 /* Map a single [sub]page. */
1212 phys_addr &= ~(uint32_t)0x3ff;
1213 address &= ~(uint32_t)0x3ff;
1214 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1215 is_softmmu);
1218 if (access_type == 2) {
1219 env->cp15.c5_insn = ret;
1220 env->cp15.c6_insn = address;
1221 env->exception_index = EXCP_PREFETCH_ABORT;
1222 } else {
1223 env->cp15.c5_data = ret;
1224 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1225 env->cp15.c5_data |= (1 << 11);
1226 env->cp15.c6_data = address;
1227 env->exception_index = EXCP_DATA_ABORT;
1229 return 1;
1232 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1234 uint32_t phys_addr;
1235 int prot;
1236 int ret;
1238 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1240 if (ret != 0)
1241 return -1;
1243 return phys_addr;
1246 /* Not really implemented. Need to figure out a sane way of doing this.
1247 Maybe add generic watchpoint support and use that. */
1249 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1251 env->mmon_addr = addr;
1254 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1256 return (env->mmon_addr != addr);
1259 void HELPER(clrex)(CPUState *env)
1261 env->mmon_addr = -1;
1264 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1266 int cp_num = (insn >> 8) & 0xf;
1267 int cp_info = (insn >> 5) & 7;
1268 int src = (insn >> 16) & 0xf;
1269 int operand = insn & 0xf;
1271 if (env->cp[cp_num].cp_write)
1272 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1273 cp_info, src, operand, val);
1276 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1278 int cp_num = (insn >> 8) & 0xf;
1279 int cp_info = (insn >> 5) & 7;
1280 int dest = (insn >> 16) & 0xf;
1281 int operand = insn & 0xf;
1283 if (env->cp[cp_num].cp_read)
1284 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1285 cp_info, dest, operand);
1286 return 0;
1289 /* Return basic MPU access permission bits. */
1290 static uint32_t simple_mpu_ap_bits(uint32_t val)
1292 uint32_t ret;
1293 uint32_t mask;
1294 int i;
1295 ret = 0;
1296 mask = 3;
1297 for (i = 0; i < 16; i += 2) {
1298 ret |= (val >> i) & mask;
1299 mask <<= 2;
1301 return ret;
1304 /* Pad basic MPU access permission bits to extended format. */
1305 static uint32_t extended_mpu_ap_bits(uint32_t val)
1307 uint32_t ret;
1308 uint32_t mask;
1309 int i;
1310 ret = 0;
1311 mask = 3;
1312 for (i = 0; i < 16; i += 2) {
1313 ret |= (val & mask) << i;
1314 mask <<= 2;
1316 return ret;
1319 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1321 int op1;
1322 int op2;
1323 int crm;
1325 op1 = (insn >> 21) & 7;
1326 op2 = (insn >> 5) & 7;
1327 crm = insn & 0xf;
1328 switch ((insn >> 16) & 0xf) {
1329 case 0:
1330 /* ID codes. */
1331 if (arm_feature(env, ARM_FEATURE_XSCALE))
1332 break;
1333 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1334 break;
1335 if (arm_feature(env, ARM_FEATURE_V7)
1336 && op1 == 2 && crm == 0 && op2 == 0) {
1337 env->cp15.c0_cssel = val & 0xf;
1338 break;
1340 goto bad_reg;
1341 case 1: /* System configuration. */
1342 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1343 op2 = 0;
1344 switch (op2) {
1345 case 0:
1346 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1347 env->cp15.c1_sys = val;
1348 /* ??? Lots of these bits are not implemented. */
1349 /* This may enable/disable the MMU, so do a TLB flush. */
1350 tlb_flush(env, 1);
1351 break;
1352 case 1: /* Auxiliary cotrol register. */
1353 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1354 env->cp15.c1_xscaleauxcr = val;
1355 break;
1357 /* Not implemented. */
1358 break;
1359 case 2:
1360 if (arm_feature(env, ARM_FEATURE_XSCALE))
1361 goto bad_reg;
1362 if (env->cp15.c1_coproc != val) {
1363 env->cp15.c1_coproc = val;
1364 /* ??? Is this safe when called from within a TB? */
1365 tb_flush(env);
1367 break;
1368 default:
1369 goto bad_reg;
1371 break;
1372 case 2: /* MMU Page table control / MPU cache control. */
1373 if (arm_feature(env, ARM_FEATURE_MPU)) {
1374 switch (op2) {
1375 case 0:
1376 env->cp15.c2_data = val;
1377 break;
1378 case 1:
1379 env->cp15.c2_insn = val;
1380 break;
1381 default:
1382 goto bad_reg;
1384 } else {
1385 switch (op2) {
1386 case 0:
1387 env->cp15.c2_base0 = val;
1388 break;
1389 case 1:
1390 env->cp15.c2_base1 = val;
1391 break;
1392 case 2:
1393 val &= 7;
1394 env->cp15.c2_control = val;
1395 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1396 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1397 break;
1398 default:
1399 goto bad_reg;
1402 break;
1403 case 3: /* MMU Domain access control / MPU write buffer control. */
1404 env->cp15.c3 = val;
1405 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1406 break;
1407 case 4: /* Reserved. */
1408 goto bad_reg;
1409 case 5: /* MMU Fault status / MPU access permission. */
1410 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1411 op2 = 0;
1412 switch (op2) {
1413 case 0:
1414 if (arm_feature(env, ARM_FEATURE_MPU))
1415 val = extended_mpu_ap_bits(val);
1416 env->cp15.c5_data = val;
1417 break;
1418 case 1:
1419 if (arm_feature(env, ARM_FEATURE_MPU))
1420 val = extended_mpu_ap_bits(val);
1421 env->cp15.c5_insn = val;
1422 break;
1423 case 2:
1424 if (!arm_feature(env, ARM_FEATURE_MPU))
1425 goto bad_reg;
1426 env->cp15.c5_data = val;
1427 break;
1428 case 3:
1429 if (!arm_feature(env, ARM_FEATURE_MPU))
1430 goto bad_reg;
1431 env->cp15.c5_insn = val;
1432 break;
1433 default:
1434 goto bad_reg;
1436 break;
1437 case 6: /* MMU Fault address / MPU base/size. */
1438 if (arm_feature(env, ARM_FEATURE_MPU)) {
1439 if (crm >= 8)
1440 goto bad_reg;
1441 env->cp15.c6_region[crm] = val;
1442 } else {
1443 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1444 op2 = 0;
1445 switch (op2) {
1446 case 0:
1447 env->cp15.c6_data = val;
1448 break;
1449 case 1: /* ??? This is WFAR on armv6 */
1450 case 2:
1451 env->cp15.c6_insn = val;
1452 break;
1453 default:
1454 goto bad_reg;
1457 break;
1458 case 7: /* Cache control. */
1459 env->cp15.c15_i_max = 0x000;
1460 env->cp15.c15_i_min = 0xff0;
1461 /* No cache, so nothing to do. */
1462 /* ??? MPCore has VA to PA translation functions. */
1463 break;
1464 case 8: /* MMU TLB control. */
1465 switch (op2) {
1466 case 0: /* Invalidate all. */
1467 tlb_flush(env, 0);
1468 break;
1469 case 1: /* Invalidate single TLB entry. */
1470 #if 0
1471 /* ??? This is wrong for large pages and sections. */
1472 /* As an ugly hack to make linux work we always flush a 4K
1473 pages. */
1474 val &= 0xfffff000;
1475 tlb_flush_page(env, val);
1476 tlb_flush_page(env, val + 0x400);
1477 tlb_flush_page(env, val + 0x800);
1478 tlb_flush_page(env, val + 0xc00);
1479 #else
1480 tlb_flush(env, 1);
1481 #endif
1482 break;
1483 case 2: /* Invalidate on ASID. */
1484 tlb_flush(env, val == 0);
1485 break;
1486 case 3: /* Invalidate single entry on MVA. */
1487 /* ??? This is like case 1, but ignores ASID. */
1488 tlb_flush(env, 1);
1489 break;
1490 default:
1491 goto bad_reg;
1493 break;
1494 case 9:
1495 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1496 break;
1497 switch (crm) {
1498 case 0: /* Cache lockdown. */
1499 switch (op1) {
1500 case 0: /* L1 cache. */
1501 switch (op2) {
1502 case 0:
1503 env->cp15.c9_data = val;
1504 break;
1505 case 1:
1506 env->cp15.c9_insn = val;
1507 break;
1508 default:
1509 goto bad_reg;
1511 break;
1512 case 1: /* L2 cache. */
1513 /* Ignore writes to L2 lockdown/auxiliary registers. */
1514 break;
1515 default:
1516 goto bad_reg;
1518 break;
1519 case 1: /* TCM memory region registers. */
1520 /* Not implemented. */
1521 goto bad_reg;
1522 default:
1523 goto bad_reg;
1525 break;
1526 case 10: /* MMU TLB lockdown. */
1527 /* ??? TLB lockdown not implemented. */
1528 break;
1529 case 12: /* Reserved. */
1530 goto bad_reg;
1531 case 13: /* Process ID. */
1532 switch (op2) {
1533 case 0:
1534 /* Unlike real hardware the qemu TLB uses virtual addresses,
1535 not modified virtual addresses, so this causes a TLB flush.
1537 if (env->cp15.c13_fcse != val)
1538 tlb_flush(env, 1);
1539 env->cp15.c13_fcse = val;
1540 break;
1541 case 1:
1542 /* This changes the ASID, so do a TLB flush. */
1543 if (env->cp15.c13_context != val
1544 && !arm_feature(env, ARM_FEATURE_MPU))
1545 tlb_flush(env, 0);
1546 env->cp15.c13_context = val;
1547 break;
1548 case 2:
1549 env->cp15.c13_tls1 = val;
1550 break;
1551 case 3:
1552 env->cp15.c13_tls2 = val;
1553 break;
1554 case 4:
1555 env->cp15.c13_tls3 = val;
1556 break;
1557 default:
1558 goto bad_reg;
1560 break;
1561 case 14: /* Reserved. */
1562 goto bad_reg;
1563 case 15: /* Implementation specific. */
1564 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1565 if (op2 == 0 && crm == 1) {
1566 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1567 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1568 tb_flush(env);
1569 env->cp15.c15_cpar = val & 0x3fff;
1571 break;
1573 goto bad_reg;
1575 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1576 switch (crm) {
1577 case 0:
1578 break;
1579 case 1: /* Set TI925T configuration. */
1580 env->cp15.c15_ticonfig = val & 0xe7;
1581 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1582 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1583 break;
1584 case 2: /* Set I_max. */
1585 env->cp15.c15_i_max = val;
1586 break;
1587 case 3: /* Set I_min. */
1588 env->cp15.c15_i_min = val;
1589 break;
1590 case 4: /* Set thread-ID. */
1591 env->cp15.c15_threadid = val & 0xffff;
1592 break;
1593 case 8: /* Wait-for-interrupt (deprecated). */
1594 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1595 break;
1596 default:
1597 goto bad_reg;
1600 break;
1602 return;
1603 bad_reg:
1604 /* ??? For debugging only. Should raise illegal instruction exception. */
1605 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1606 (insn >> 16) & 0xf, crm, op1, op2);
1609 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1611 int op1;
1612 int op2;
1613 int crm;
1615 op1 = (insn >> 21) & 7;
1616 op2 = (insn >> 5) & 7;
1617 crm = insn & 0xf;
1618 switch ((insn >> 16) & 0xf) {
1619 case 0: /* ID codes. */
1620 switch (op1) {
1621 case 0:
1622 switch (crm) {
1623 case 0:
1624 switch (op2) {
1625 case 0: /* Device ID. */
1626 return env->cp15.c0_cpuid;
1627 case 1: /* Cache Type. */
1628 return env->cp15.c0_cachetype;
1629 case 2: /* TCM status. */
1630 return 0;
1631 case 3: /* TLB type register. */
1632 return 0; /* No lockable TLB entries. */
1633 case 5: /* CPU ID */
1634 return env->cpu_index;
1635 default:
1636 goto bad_reg;
1638 case 1:
1639 if (!arm_feature(env, ARM_FEATURE_V6))
1640 goto bad_reg;
1641 return env->cp15.c0_c1[op2];
1642 case 2:
1643 if (!arm_feature(env, ARM_FEATURE_V6))
1644 goto bad_reg;
1645 return env->cp15.c0_c2[op2];
1646 case 3: case 4: case 5: case 6: case 7:
1647 return 0;
1648 default:
1649 goto bad_reg;
1651 case 1:
1652 /* These registers aren't documented on arm11 cores. However
1653 Linux looks at them anyway. */
1654 if (!arm_feature(env, ARM_FEATURE_V6))
1655 goto bad_reg;
1656 if (crm != 0)
1657 goto bad_reg;
1658 if (!arm_feature(env, ARM_FEATURE_V7))
1659 return 0;
1661 switch (op2) {
1662 case 0:
1663 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1664 case 1:
1665 return env->cp15.c0_clid;
1666 case 7:
1667 return 0;
1669 goto bad_reg;
1670 case 2:
1671 if (op2 != 0 || crm != 0)
1672 goto bad_reg;
1673 return env->cp15.c0_cssel;
1674 default:
1675 goto bad_reg;
1677 case 1: /* System configuration. */
1678 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1679 op2 = 0;
1680 switch (op2) {
1681 case 0: /* Control register. */
1682 return env->cp15.c1_sys;
1683 case 1: /* Auxiliary control register. */
1684 if (arm_feature(env, ARM_FEATURE_XSCALE))
1685 return env->cp15.c1_xscaleauxcr;
1686 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1687 goto bad_reg;
1688 switch (ARM_CPUID(env)) {
1689 case ARM_CPUID_ARM1026:
1690 return 1;
1691 case ARM_CPUID_ARM1136:
1692 case ARM_CPUID_ARM1136_R2:
1693 return 7;
1694 case ARM_CPUID_ARM11MPCORE:
1695 return 1;
1696 case ARM_CPUID_CORTEXA8:
1697 return 2;
1698 default:
1699 goto bad_reg;
1701 case 2: /* Coprocessor access register. */
1702 if (arm_feature(env, ARM_FEATURE_XSCALE))
1703 goto bad_reg;
1704 return env->cp15.c1_coproc;
1705 default:
1706 goto bad_reg;
1708 case 2: /* MMU Page table control / MPU cache control. */
1709 if (arm_feature(env, ARM_FEATURE_MPU)) {
1710 switch (op2) {
1711 case 0:
1712 return env->cp15.c2_data;
1713 break;
1714 case 1:
1715 return env->cp15.c2_insn;
1716 break;
1717 default:
1718 goto bad_reg;
1720 } else {
1721 switch (op2) {
1722 case 0:
1723 return env->cp15.c2_base0;
1724 case 1:
1725 return env->cp15.c2_base1;
1726 case 2:
1727 return env->cp15.c2_control;
1728 default:
1729 goto bad_reg;
1732 case 3: /* MMU Domain access control / MPU write buffer control. */
1733 return env->cp15.c3;
1734 case 4: /* Reserved. */
1735 goto bad_reg;
1736 case 5: /* MMU Fault status / MPU access permission. */
1737 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1738 op2 = 0;
1739 switch (op2) {
1740 case 0:
1741 if (arm_feature(env, ARM_FEATURE_MPU))
1742 return simple_mpu_ap_bits(env->cp15.c5_data);
1743 return env->cp15.c5_data;
1744 case 1:
1745 if (arm_feature(env, ARM_FEATURE_MPU))
1746 return simple_mpu_ap_bits(env->cp15.c5_data);
1747 return env->cp15.c5_insn;
1748 case 2:
1749 if (!arm_feature(env, ARM_FEATURE_MPU))
1750 goto bad_reg;
1751 return env->cp15.c5_data;
1752 case 3:
1753 if (!arm_feature(env, ARM_FEATURE_MPU))
1754 goto bad_reg;
1755 return env->cp15.c5_insn;
1756 default:
1757 goto bad_reg;
1759 case 6: /* MMU Fault address. */
1760 if (arm_feature(env, ARM_FEATURE_MPU)) {
1761 if (crm >= 8)
1762 goto bad_reg;
1763 return env->cp15.c6_region[crm];
1764 } else {
1765 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1766 op2 = 0;
1767 switch (op2) {
1768 case 0:
1769 return env->cp15.c6_data;
1770 case 1:
1771 if (arm_feature(env, ARM_FEATURE_V6)) {
1772 /* Watchpoint Fault Adrress. */
1773 return 0; /* Not implemented. */
1774 } else {
1775 /* Instruction Fault Adrress. */
1776 /* Arm9 doesn't have an IFAR, but implementing it anyway
1777 shouldn't do any harm. */
1778 return env->cp15.c6_insn;
1780 case 2:
1781 if (arm_feature(env, ARM_FEATURE_V6)) {
1782 /* Instruction Fault Adrress. */
1783 return env->cp15.c6_insn;
1784 } else {
1785 goto bad_reg;
1787 default:
1788 goto bad_reg;
1791 case 7: /* Cache control. */
1792 /* FIXME: Should only clear Z flag if destination is r15. */
1793 env->ZF = 0;
1794 return 0;
1795 case 8: /* MMU TLB control. */
1796 goto bad_reg;
1797 case 9: /* Cache lockdown. */
1798 switch (op1) {
1799 case 0: /* L1 cache. */
1800 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1801 return 0;
1802 switch (op2) {
1803 case 0:
1804 return env->cp15.c9_data;
1805 case 1:
1806 return env->cp15.c9_insn;
1807 default:
1808 goto bad_reg;
1810 case 1: /* L2 cache */
1811 if (crm != 0)
1812 goto bad_reg;
1813 /* L2 Lockdown and Auxiliary control. */
1814 return 0;
1815 default:
1816 goto bad_reg;
1818 case 10: /* MMU TLB lockdown. */
1819 /* ??? TLB lockdown not implemented. */
1820 return 0;
1821 case 11: /* TCM DMA control. */
1822 case 12: /* Reserved. */
1823 goto bad_reg;
1824 case 13: /* Process ID. */
1825 switch (op2) {
1826 case 0:
1827 return env->cp15.c13_fcse;
1828 case 1:
1829 return env->cp15.c13_context;
1830 case 2:
1831 return env->cp15.c13_tls1;
1832 case 3:
1833 return env->cp15.c13_tls2;
1834 case 4:
1835 return env->cp15.c13_tls3;
1836 default:
1837 goto bad_reg;
1839 case 14: /* Reserved. */
1840 goto bad_reg;
1841 case 15: /* Implementation specific. */
1842 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1843 if (op2 == 0 && crm == 1)
1844 return env->cp15.c15_cpar;
1846 goto bad_reg;
1848 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1849 switch (crm) {
1850 case 0:
1851 return 0;
1852 case 1: /* Read TI925T configuration. */
1853 return env->cp15.c15_ticonfig;
1854 case 2: /* Read I_max. */
1855 return env->cp15.c15_i_max;
1856 case 3: /* Read I_min. */
1857 return env->cp15.c15_i_min;
1858 case 4: /* Read thread-ID. */
1859 return env->cp15.c15_threadid;
1860 case 8: /* TI925T_status */
1861 return 0;
1863 /* TODO: Peripheral port remap register:
1864 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1865 * controller base address at $rn & ~0xfff and map size of
1866 * 0x200 << ($rn & 0xfff), when MMU is off. */
1867 goto bad_reg;
1869 return 0;
1871 bad_reg:
1872 /* ??? For debugging only. Should raise illegal instruction exception. */
1873 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1874 (insn >> 16) & 0xf, crm, op1, op2);
1875 return 0;
1878 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1880 env->banked_r13[bank_number(mode)] = val;
1883 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1885 return env->banked_r13[bank_number(mode)];
1888 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1890 switch (reg) {
1891 case 0: /* APSR */
1892 return xpsr_read(env) & 0xf8000000;
1893 case 1: /* IAPSR */
1894 return xpsr_read(env) & 0xf80001ff;
1895 case 2: /* EAPSR */
1896 return xpsr_read(env) & 0xff00fc00;
1897 case 3: /* xPSR */
1898 return xpsr_read(env) & 0xff00fdff;
1899 case 5: /* IPSR */
1900 return xpsr_read(env) & 0x000001ff;
1901 case 6: /* EPSR */
1902 return xpsr_read(env) & 0x0700fc00;
1903 case 7: /* IEPSR */
1904 return xpsr_read(env) & 0x0700edff;
1905 case 8: /* MSP */
1906 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1907 case 9: /* PSP */
1908 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1909 case 16: /* PRIMASK */
1910 return (env->uncached_cpsr & CPSR_I) != 0;
1911 case 17: /* FAULTMASK */
1912 return (env->uncached_cpsr & CPSR_F) != 0;
1913 case 18: /* BASEPRI */
1914 case 19: /* BASEPRI_MAX */
1915 return env->v7m.basepri;
1916 case 20: /* CONTROL */
1917 return env->v7m.control;
1918 default:
1919 /* ??? For debugging only. */
1920 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1921 return 0;
1925 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1927 switch (reg) {
1928 case 0: /* APSR */
1929 xpsr_write(env, val, 0xf8000000);
1930 break;
1931 case 1: /* IAPSR */
1932 xpsr_write(env, val, 0xf8000000);
1933 break;
1934 case 2: /* EAPSR */
1935 xpsr_write(env, val, 0xfe00fc00);
1936 break;
1937 case 3: /* xPSR */
1938 xpsr_write(env, val, 0xfe00fc00);
1939 break;
1940 case 5: /* IPSR */
1941 /* IPSR bits are readonly. */
1942 break;
1943 case 6: /* EPSR */
1944 xpsr_write(env, val, 0x0600fc00);
1945 break;
1946 case 7: /* IEPSR */
1947 xpsr_write(env, val, 0x0600fc00);
1948 break;
1949 case 8: /* MSP */
1950 if (env->v7m.current_sp)
1951 env->v7m.other_sp = val;
1952 else
1953 env->regs[13] = val;
1954 break;
1955 case 9: /* PSP */
1956 if (env->v7m.current_sp)
1957 env->regs[13] = val;
1958 else
1959 env->v7m.other_sp = val;
1960 break;
1961 case 16: /* PRIMASK */
1962 if (val & 1)
1963 env->uncached_cpsr |= CPSR_I;
1964 else
1965 env->uncached_cpsr &= ~CPSR_I;
1966 break;
1967 case 17: /* FAULTMASK */
1968 if (val & 1)
1969 env->uncached_cpsr |= CPSR_F;
1970 else
1971 env->uncached_cpsr &= ~CPSR_F;
1972 break;
1973 case 18: /* BASEPRI */
1974 env->v7m.basepri = val & 0xff;
1975 break;
1976 case 19: /* BASEPRI_MAX */
1977 val &= 0xff;
1978 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1979 env->v7m.basepri = val;
1980 break;
1981 case 20: /* CONTROL */
1982 env->v7m.control = val & 3;
1983 switch_v7m_sp(env, (val & 2) != 0);
1984 break;
1985 default:
1986 /* ??? For debugging only. */
1987 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1988 return;
1992 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1993 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1994 void *opaque)
1996 if (cpnum < 0 || cpnum > 14) {
1997 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1998 return;
2001 env->cp[cpnum].cp_read = cp_read;
2002 env->cp[cpnum].cp_write = cp_write;
2003 env->cp[cpnum].opaque = opaque;
2006 #endif
2008 /* Note that signed overflow is undefined in C. The following routines are
2009 careful to use unsigned types where modulo arithmetic is required.
2010 Failure to do so _will_ break on newer gcc. */
2012 /* Signed saturating arithmetic. */
2014 /* Perform 16-bit signed saturating addition. */
2015 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2017 uint16_t res;
2019 res = a + b;
2020 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2021 if (a & 0x8000)
2022 res = 0x8000;
2023 else
2024 res = 0x7fff;
2026 return res;
2029 /* Perform 8-bit signed saturating addition. */
2030 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2032 uint8_t res;
2034 res = a + b;
2035 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2036 if (a & 0x80)
2037 res = 0x80;
2038 else
2039 res = 0x7f;
2041 return res;
2044 /* Perform 16-bit signed saturating subtraction. */
2045 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2047 uint16_t res;
2049 res = a - b;
2050 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2051 if (a & 0x8000)
2052 res = 0x8000;
2053 else
2054 res = 0x7fff;
2056 return res;
2059 /* Perform 8-bit signed saturating subtraction. */
2060 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2062 uint8_t res;
2064 res = a - b;
2065 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2066 if (a & 0x80)
2067 res = 0x80;
2068 else
2069 res = 0x7f;
2071 return res;
2074 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2075 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2076 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2077 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2078 #define PFX q
2080 #include "op_addsub.h"
2082 /* Unsigned saturating arithmetic. */
2083 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2085 uint16_t res;
2086 res = a + b;
2087 if (res < a)
2088 res = 0xffff;
2089 return res;
2092 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2094 if (a < b)
2095 return a - b;
2096 else
2097 return 0;
2100 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2102 uint8_t res;
2103 res = a + b;
2104 if (res < a)
2105 res = 0xff;
2106 return res;
2109 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2111 if (a < b)
2112 return a - b;
2113 else
2114 return 0;
2117 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2118 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2119 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2120 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2121 #define PFX uq
2123 #include "op_addsub.h"
2125 /* Signed modulo arithmetic. */
2126 #define SARITH16(a, b, n, op) do { \
2127 int32_t sum; \
2128 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2129 RESULT(sum, n, 16); \
2130 if (sum >= 0) \
2131 ge |= 3 << (n * 2); \
2132 } while(0)
2134 #define SARITH8(a, b, n, op) do { \
2135 int32_t sum; \
2136 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2137 RESULT(sum, n, 8); \
2138 if (sum >= 0) \
2139 ge |= 1 << n; \
2140 } while(0)
2143 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2144 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2145 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2146 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2147 #define PFX s
2148 #define ARITH_GE
2150 #include "op_addsub.h"
2152 /* Unsigned modulo arithmetic. */
2153 #define ADD16(a, b, n) do { \
2154 uint32_t sum; \
2155 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2156 RESULT(sum, n, 16); \
2157 if ((sum >> 16) == 1) \
2158 ge |= 3 << (n * 2); \
2159 } while(0)
2161 #define ADD8(a, b, n) do { \
2162 uint32_t sum; \
2163 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2164 RESULT(sum, n, 8); \
2165 if ((sum >> 8) == 1) \
2166 ge |= 1 << n; \
2167 } while(0)
2169 #define SUB16(a, b, n) do { \
2170 uint32_t sum; \
2171 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2172 RESULT(sum, n, 16); \
2173 if ((sum >> 16) == 0) \
2174 ge |= 3 << (n * 2); \
2175 } while(0)
2177 #define SUB8(a, b, n) do { \
2178 uint32_t sum; \
2179 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2180 RESULT(sum, n, 8); \
2181 if ((sum >> 8) == 0) \
2182 ge |= 1 << n; \
2183 } while(0)
2185 #define PFX u
2186 #define ARITH_GE
2188 #include "op_addsub.h"
2190 /* Halved signed arithmetic. */
2191 #define ADD16(a, b, n) \
2192 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2193 #define SUB16(a, b, n) \
2194 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2195 #define ADD8(a, b, n) \
2196 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2197 #define SUB8(a, b, n) \
2198 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2199 #define PFX sh
2201 #include "op_addsub.h"
2203 /* Halved unsigned arithmetic. */
2204 #define ADD16(a, b, n) \
2205 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2206 #define SUB16(a, b, n) \
2207 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2208 #define ADD8(a, b, n) \
2209 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2210 #define SUB8(a, b, n) \
2211 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2212 #define PFX uh
2214 #include "op_addsub.h"
2216 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2218 if (a > b)
2219 return a - b;
2220 else
2221 return b - a;
2224 /* Unsigned sum of absolute byte differences. */
2225 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2227 uint32_t sum;
2228 sum = do_usad(a, b);
2229 sum += do_usad(a >> 8, b >> 8);
2230 sum += do_usad(a >> 16, b >>16);
2231 sum += do_usad(a >> 24, b >> 24);
2232 return sum;
2235 /* For ARMv6 SEL instruction. */
2236 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2238 uint32_t mask;
2240 mask = 0;
2241 if (flags & 1)
2242 mask |= 0xff;
2243 if (flags & 2)
2244 mask |= 0xff00;
2245 if (flags & 4)
2246 mask |= 0xff0000;
2247 if (flags & 8)
2248 mask |= 0xff000000;
2249 return (a & mask) | (b & ~mask);
2252 uint32_t HELPER(logicq_cc)(uint64_t val)
2254 return (val >> 32) | (val != 0);
2257 /* VFP support. We follow the convention used for VFP instrunctions:
2258 Single precition routines have a "s" suffix, double precision a
2259 "d" suffix. */
2261 /* Convert host exception flags to vfp form. */
2262 static inline int vfp_exceptbits_from_host(int host_bits)
2264 int target_bits = 0;
2266 if (host_bits & float_flag_invalid)
2267 target_bits |= 1;
2268 if (host_bits & float_flag_divbyzero)
2269 target_bits |= 2;
2270 if (host_bits & float_flag_overflow)
2271 target_bits |= 4;
2272 if (host_bits & float_flag_underflow)
2273 target_bits |= 8;
2274 if (host_bits & float_flag_inexact)
2275 target_bits |= 0x10;
2276 return target_bits;
2279 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2281 int i;
2282 uint32_t fpscr;
2284 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2285 | (env->vfp.vec_len << 16)
2286 | (env->vfp.vec_stride << 20);
2287 i = get_float_exception_flags(&env->vfp.fp_status);
2288 fpscr |= vfp_exceptbits_from_host(i);
2289 return fpscr;
2292 /* Convert vfp exception flags to target form. */
2293 static inline int vfp_exceptbits_to_host(int target_bits)
2295 int host_bits = 0;
2297 if (target_bits & 1)
2298 host_bits |= float_flag_invalid;
2299 if (target_bits & 2)
2300 host_bits |= float_flag_divbyzero;
2301 if (target_bits & 4)
2302 host_bits |= float_flag_overflow;
2303 if (target_bits & 8)
2304 host_bits |= float_flag_underflow;
2305 if (target_bits & 0x10)
2306 host_bits |= float_flag_inexact;
2307 return host_bits;
2310 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2312 int i;
2313 uint32_t changed;
2315 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2316 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2317 env->vfp.vec_len = (val >> 16) & 7;
2318 env->vfp.vec_stride = (val >> 20) & 3;
2320 changed ^= val;
2321 if (changed & (3 << 22)) {
2322 i = (val >> 22) & 3;
2323 switch (i) {
2324 case 0:
2325 i = float_round_nearest_even;
2326 break;
2327 case 1:
2328 i = float_round_up;
2329 break;
2330 case 2:
2331 i = float_round_down;
2332 break;
2333 case 3:
2334 i = float_round_to_zero;
2335 break;
2337 set_float_rounding_mode(i, &env->vfp.fp_status);
2339 if (changed & (1 << 24))
2340 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2341 if (changed & (1 << 25))
2342 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2344 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2345 set_float_exception_flags(i, &env->vfp.fp_status);
2348 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2350 #define VFP_BINOP(name) \
2351 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2353 return float32_ ## name (a, b, &env->vfp.fp_status); \
2355 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2357 return float64_ ## name (a, b, &env->vfp.fp_status); \
2359 VFP_BINOP(add)
2360 VFP_BINOP(sub)
2361 VFP_BINOP(mul)
2362 VFP_BINOP(div)
2363 #undef VFP_BINOP
2365 float32 VFP_HELPER(neg, s)(float32 a)
2367 return float32_chs(a);
2370 float64 VFP_HELPER(neg, d)(float64 a)
2372 return float64_chs(a);
2375 float32 VFP_HELPER(abs, s)(float32 a)
2377 return float32_abs(a);
2380 float64 VFP_HELPER(abs, d)(float64 a)
2382 return float64_abs(a);
2385 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2387 return float32_sqrt(a, &env->vfp.fp_status);
2390 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2392 return float64_sqrt(a, &env->vfp.fp_status);
2395 /* XXX: check quiet/signaling case */
2396 #define DO_VFP_cmp(p, type) \
2397 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2399 uint32_t flags; \
2400 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2401 case 0: flags = 0x6; break; \
2402 case -1: flags = 0x8; break; \
2403 case 1: flags = 0x2; break; \
2404 default: case 2: flags = 0x3; break; \
2406 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2407 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2409 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2411 uint32_t flags; \
2412 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2413 case 0: flags = 0x6; break; \
2414 case -1: flags = 0x8; break; \
2415 case 1: flags = 0x2; break; \
2416 default: case 2: flags = 0x3; break; \
2418 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2419 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2421 DO_VFP_cmp(s, float32)
2422 DO_VFP_cmp(d, float64)
2423 #undef DO_VFP_cmp
2425 /* Helper routines to perform bitwise copies between float and int. */
2426 static inline float32 vfp_itos(uint32_t i)
2428 union {
2429 uint32_t i;
2430 float32 s;
2431 } v;
2433 v.i = i;
2434 return v.s;
2437 static inline uint32_t vfp_stoi(float32 s)
2439 union {
2440 uint32_t i;
2441 float32 s;
2442 } v;
2444 v.s = s;
2445 return v.i;
2448 static inline float64 vfp_itod(uint64_t i)
2450 union {
2451 uint64_t i;
2452 float64 d;
2453 } v;
2455 v.i = i;
2456 return v.d;
2459 static inline uint64_t vfp_dtoi(float64 d)
2461 union {
2462 uint64_t i;
2463 float64 d;
2464 } v;
2466 v.d = d;
2467 return v.i;
2470 /* Integer to float conversion. */
2471 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2473 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2476 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2478 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2481 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2483 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2486 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2488 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2491 /* Float to integer conversion. */
2492 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2494 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2497 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2499 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2502 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2504 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2507 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2509 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2512 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2514 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2517 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2519 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2522 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2524 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2527 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2529 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2532 /* floating point conversion */
2533 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2535 return float32_to_float64(x, &env->vfp.fp_status);
2538 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2540 return float64_to_float32(x, &env->vfp.fp_status);
2543 /* VFP3 fixed point conversion. */
2544 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2545 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2547 ftype tmp; \
2548 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2549 &env->vfp.fp_status); \
2550 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2552 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2554 ftype tmp; \
2555 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2556 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2557 &env->vfp.fp_status)); \
2560 VFP_CONV_FIX(sh, d, float64, int16, )
2561 VFP_CONV_FIX(sl, d, float64, int32, )
2562 VFP_CONV_FIX(uh, d, float64, uint16, u)
2563 VFP_CONV_FIX(ul, d, float64, uint32, u)
2564 VFP_CONV_FIX(sh, s, float32, int16, )
2565 VFP_CONV_FIX(sl, s, float32, int32, )
2566 VFP_CONV_FIX(uh, s, float32, uint16, u)
2567 VFP_CONV_FIX(ul, s, float32, uint32, u)
2568 #undef VFP_CONV_FIX
2570 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2572 float_status *s = &env->vfp.fp_status;
2573 float32 two = int32_to_float32(2, s);
2574 return float32_sub(two, float32_mul(a, b, s), s);
2577 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2579 float_status *s = &env->vfp.fp_status;
2580 float32 three = int32_to_float32(3, s);
2581 return float32_sub(three, float32_mul(a, b, s), s);
2584 /* NEON helpers. */
2586 /* TODO: The architecture specifies the value that the estimate functions
2587 should return. We return the exact reciprocal/root instead. */
2588 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2590 float_status *s = &env->vfp.fp_status;
2591 float32 one = int32_to_float32(1, s);
2592 return float32_div(one, a, s);
2595 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2597 float_status *s = &env->vfp.fp_status;
2598 float32 one = int32_to_float32(1, s);
2599 return float32_div(one, float32_sqrt(a, s), s);
2602 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2604 float_status *s = &env->vfp.fp_status;
2605 float32 tmp;
2606 tmp = int32_to_float32(a, s);
2607 tmp = float32_scalbn(tmp, -32, s);
2608 tmp = helper_recpe_f32(tmp, env);
2609 tmp = float32_scalbn(tmp, 31, s);
2610 return float32_to_int32(tmp, s);
2613 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2615 float_status *s = &env->vfp.fp_status;
2616 float32 tmp;
2617 tmp = int32_to_float32(a, s);
2618 tmp = float32_scalbn(tmp, -32, s);
2619 tmp = helper_rsqrte_f32(tmp, env);
2620 tmp = float32_scalbn(tmp, 31, s);
2621 return float32_to_int32(tmp, s);
2624 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2626 val &= 1;
2627 if (env->teecr != val) {
2628 env->teecr = val;
2629 tb_flush(env);