4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
34 #include "qemu-char.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
49 GDB_SIGNAL_UNKNOWN
= 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table
[] = {
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
227 static int gdb_signal_table
[] = {
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig
)
241 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
242 if (gdb_signal_table
[i
] == sig
)
244 return GDB_SIGNAL_UNKNOWN
;
248 static int gdb_signal_to_target (int sig
)
250 if (sig
< ARRAY_SIZE (gdb_signal_table
))
251 return gdb_signal_table
[sig
];
258 typedef struct GDBRegisterState
{
264 struct GDBRegisterState
*next
;
274 typedef struct GDBState
{
275 CPUState
*c_cpu
; /* current CPU for step/continue ops */
276 CPUState
*g_cpu
; /* current CPU for other ops */
277 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
278 enum RSState state
; /* parsing state */
279 char line_buf
[MAX_PACKET_LENGTH
];
282 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
285 #ifdef CONFIG_USER_ONLY
289 CharDriverState
*chr
;
290 CharDriverState
*mon_chr
;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
299 static GDBState
*gdbserver_state
;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml
;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd
= -1;
310 static int get_char(GDBState
*s
)
316 ret
= recv(s
->fd
, &ch
, 1, 0);
318 if (errno
== ECONNRESET
)
320 if (errno
!= EINTR
&& errno
!= EAGAIN
)
322 } else if (ret
== 0) {
334 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
347 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
350 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState
*s
)
356 #ifdef CONFIG_USER_ONLY
357 s
->running_state
= 1;
363 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
365 #ifdef CONFIG_USER_ONLY
369 ret
= send(s
->fd
, buf
, len
, 0);
371 if (errno
!= EINTR
&& errno
!= EAGAIN
)
379 qemu_chr_write(s
->chr
, buf
, len
);
383 static inline int fromhex(int v
)
385 if (v
>= '0' && v
<= '9')
387 else if (v
>= 'A' && v
<= 'F')
389 else if (v
>= 'a' && v
<= 'f')
395 static inline int tohex(int v
)
403 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
408 for(i
= 0; i
< len
; i
++) {
410 *q
++ = tohex(c
>> 4);
411 *q
++ = tohex(c
& 0xf);
416 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
420 for(i
= 0; i
< len
; i
++) {
421 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
438 for(i
= 0; i
< len
; i
++) {
442 *(p
++) = tohex((csum
>> 4) & 0xf);
443 *(p
++) = tohex((csum
) & 0xf);
445 s
->last_packet_len
= p
- s
->last_packet
;
446 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
448 #ifdef CONFIG_USER_ONLY
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState
*s
, const char *buf
)
465 printf("reply='%s'\n", buf
);
468 return put_packet_binary(s
, buf
, strlen(buf
));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
500 #if defined(TARGET_I386)
503 static const int gpr_map
[16] = {
504 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
505 8, 9, 10, 11, 12, 13, 14, 15
508 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
511 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
513 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
515 if (n
< CPU_NB_REGS
) {
516 GET_REGL(env
->regs
[gpr_map
[n
]]);
517 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
518 /* FIXME: byteswap float values. */
519 #ifdef USE_X86LDOUBLE
520 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
522 memset(mem_buf
, 0, 10);
525 } else if (n
>= CPU_NB_REGS
+ 24) {
526 n
-= CPU_NB_REGS
+ 24;
527 if (n
< CPU_NB_REGS
) {
528 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
529 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
531 } else if (n
== CPU_NB_REGS
) {
532 GET_REG32(env
->mxcsr
);
537 case 0: GET_REGL(env
->eip
);
538 case 1: GET_REG32(env
->eflags
);
539 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
540 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
541 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
542 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
543 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
544 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
545 /* 8...15 x87 regs. */
546 case 16: GET_REG32(env
->fpuc
);
547 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
548 case 18: GET_REG32(0); /* ftag */
549 case 19: GET_REG32(0); /* fiseg */
550 case 20: GET_REG32(0); /* fioff */
551 case 21: GET_REG32(0); /* foseg */
552 case 22: GET_REG32(0); /* fooff */
553 case 23: GET_REG32(0); /* fop */
560 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
564 if (i
< CPU_NB_REGS
) {
565 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
566 return sizeof(target_ulong
);
567 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
568 i
-= CPU_NB_REGS
+ 8;
569 #ifdef USE_X86LDOUBLE
570 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
573 } else if (i
>= CPU_NB_REGS
+ 24) {
574 i
-= CPU_NB_REGS
+ 24;
575 if (i
< CPU_NB_REGS
) {
576 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
577 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
579 } else if (i
== CPU_NB_REGS
) {
580 env
->mxcsr
= ldl_p(mem_buf
);
586 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
587 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
588 #if defined(CONFIG_USER_ONLY)
589 #define LOAD_SEG(index, sreg)\
590 tmp = ldl_p(mem_buf);\
591 if (tmp != env->segs[sreg].selector)\
592 cpu_x86_load_seg(env, sreg, tmp);
594 /* FIXME: Honor segment registers. Needs to avoid raising an exception
595 when the selector is invalid. */
596 #define LOAD_SEG(index, sreg) do {} while(0)
598 case 2: LOAD_SEG(10, R_CS
); return 4;
599 case 3: LOAD_SEG(11, R_SS
); return 4;
600 case 4: LOAD_SEG(12, R_DS
); return 4;
601 case 5: LOAD_SEG(13, R_ES
); return 4;
602 case 6: LOAD_SEG(14, R_FS
); return 4;
603 case 7: LOAD_SEG(15, R_GS
); return 4;
604 /* 8...15 x87 regs. */
605 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
607 tmp
= ldl_p(mem_buf
);
608 env
->fpstt
= (tmp
>> 11) & 7;
609 env
->fpus
= tmp
& ~0x3800;
611 case 18: /* ftag */ return 4;
612 case 19: /* fiseg */ return 4;
613 case 20: /* fioff */ return 4;
614 case 21: /* foseg */ return 4;
615 case 22: /* fooff */ return 4;
616 case 23: /* fop */ return 4;
620 /* Unrecognised register. */
624 #elif defined (TARGET_PPC)
626 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
627 expects whatever the target description contains. Due to a
628 historical mishap the FP registers appear in between core integer
629 regs and PC, MSR, CR, and so forth. We hack round this by giving the
630 FP regs zero size when talking to a newer gdb. */
631 #define NUM_CORE_REGS 71
632 #if defined (TARGET_PPC64)
633 #define GDB_CORE_XML "power64-core.xml"
635 #define GDB_CORE_XML "power-core.xml"
638 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
642 GET_REGL(env
->gpr
[n
]);
647 stfq_p(mem_buf
, env
->fpr
[n
-32]);
651 case 64: GET_REGL(env
->nip
);
652 case 65: GET_REGL(env
->msr
);
657 for (i
= 0; i
< 8; i
++)
658 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
661 case 67: GET_REGL(env
->lr
);
662 case 68: GET_REGL(env
->ctr
);
663 case 69: GET_REGL(env
->xer
);
668 GET_REG32(0); /* fpscr */
675 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
679 env
->gpr
[n
] = ldtul_p(mem_buf
);
680 return sizeof(target_ulong
);
685 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
690 env
->nip
= ldtul_p(mem_buf
);
691 return sizeof(target_ulong
);
693 ppc_store_msr(env
, ldtul_p(mem_buf
));
694 return sizeof(target_ulong
);
697 uint32_t cr
= ldl_p(mem_buf
);
699 for (i
= 0; i
< 8; i
++)
700 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
704 env
->lr
= ldtul_p(mem_buf
);
705 return sizeof(target_ulong
);
707 env
->ctr
= ldtul_p(mem_buf
);
708 return sizeof(target_ulong
);
710 env
->xer
= ldtul_p(mem_buf
);
711 return sizeof(target_ulong
);
722 #elif defined (TARGET_SPARC)
724 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
725 #define NUM_CORE_REGS 86
727 #define NUM_CORE_REGS 72
731 #define GET_REGA(val) GET_REG32(val)
733 #define GET_REGA(val) GET_REGL(val)
736 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
740 GET_REGA(env
->gregs
[n
]);
743 /* register window */
744 GET_REGA(env
->regwptr
[n
- 8]);
746 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
749 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
751 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
753 case 64: GET_REGA(env
->y
);
754 case 65: GET_REGA(GET_PSR(env
));
755 case 66: GET_REGA(env
->wim
);
756 case 67: GET_REGA(env
->tbr
);
757 case 68: GET_REGA(env
->pc
);
758 case 69: GET_REGA(env
->npc
);
759 case 70: GET_REGA(env
->fsr
);
760 case 71: GET_REGA(0); /* csr */
761 default: GET_REGA(0);
766 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
769 /* f32-f62 (double width, even numbers only) */
772 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
773 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
777 case 80: GET_REGL(env
->pc
);
778 case 81: GET_REGL(env
->npc
);
779 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
780 ((env
->asi
& 0xff) << 24) |
781 ((env
->pstate
& 0xfff) << 8) |
783 case 83: GET_REGL(env
->fsr
);
784 case 84: GET_REGL(env
->fprs
);
785 case 85: GET_REGL(env
->y
);
791 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
793 #if defined(TARGET_ABI32)
796 tmp
= ldl_p(mem_buf
);
800 tmp
= ldtul_p(mem_buf
);
807 /* register window */
808 env
->regwptr
[n
- 8] = tmp
;
810 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
813 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
815 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
817 case 64: env
->y
= tmp
; break;
818 case 65: PUT_PSR(env
, tmp
); break;
819 case 66: env
->wim
= tmp
; break;
820 case 67: env
->tbr
= tmp
; break;
821 case 68: env
->pc
= tmp
; break;
822 case 69: env
->npc
= tmp
; break;
823 case 70: env
->fsr
= tmp
; break;
831 env
->fpr
[n
] = ldfl_p(mem_buf
);
834 /* f32-f62 (double width, even numbers only) */
835 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
836 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
839 case 80: env
->pc
= tmp
; break;
840 case 81: env
->npc
= tmp
; break;
842 PUT_CCR(env
, tmp
>> 32);
843 env
->asi
= (tmp
>> 24) & 0xff;
844 env
->pstate
= (tmp
>> 8) & 0xfff;
845 PUT_CWP64(env
, tmp
& 0xff);
847 case 83: env
->fsr
= tmp
; break;
848 case 84: env
->fprs
= tmp
; break;
849 case 85: env
->y
= tmp
; break;
856 #elif defined (TARGET_ARM)
858 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
859 whatever the target description contains. Due to a historical mishap
860 the FPA registers appear in between core integer regs and the CPSR.
861 We hack round this by giving the FPA regs zero size when talking to a
863 #define NUM_CORE_REGS 26
864 #define GDB_CORE_XML "arm-core.xml"
866 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
869 /* Core integer register. */
870 GET_REG32(env
->regs
[n
]);
876 memset(mem_buf
, 0, 12);
881 /* FPA status register. */
887 GET_REG32(cpsr_read(env
));
889 /* Unknown register. */
893 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
897 tmp
= ldl_p(mem_buf
);
899 /* Mask out low bit of PC to workaround gdb bugs. This will probably
900 cause problems if we ever implement the Jazelle DBX extensions. */
905 /* Core integer register. */
909 if (n
< 24) { /* 16-23 */
910 /* FPA registers (ignored). */
917 /* FPA status register (ignored). */
923 cpsr_write (env
, tmp
, 0xffffffff);
926 /* Unknown register. */
930 #elif defined (TARGET_M68K)
932 #define NUM_CORE_REGS 18
934 #define GDB_CORE_XML "cf-core.xml"
936 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
940 GET_REG32(env
->dregs
[n
]);
943 GET_REG32(env
->aregs
[n
- 8]);
946 case 16: GET_REG32(env
->sr
);
947 case 17: GET_REG32(env
->pc
);
950 /* FP registers not included here because they vary between
951 ColdFire and m68k. Use XML bits for these. */
955 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
959 tmp
= ldl_p(mem_buf
);
966 env
->aregs
[n
- 8] = tmp
;
969 case 16: env
->sr
= tmp
; break;
970 case 17: env
->pc
= tmp
; break;
976 #elif defined (TARGET_MIPS)
978 #define NUM_CORE_REGS 73
980 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
983 GET_REGL(env
->active_tc
.gpr
[n
]);
985 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
986 if (n
>= 38 && n
< 70) {
987 if (env
->CP0_Status
& (1 << CP0St_FR
))
988 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
990 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
993 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
994 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
998 case 32: GET_REGL((int32_t)env
->CP0_Status
);
999 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1000 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1001 case 35: GET_REGL(env
->CP0_BadVAddr
);
1002 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1003 case 37: GET_REGL(env
->active_tc
.PC
);
1004 case 72: GET_REGL(0); /* fp */
1005 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1007 if (n
>= 73 && n
<= 88) {
1008 /* 16 embedded regs. */
1015 /* convert MIPS rounding mode in FCR31 to IEEE library */
1016 static unsigned int ieee_rm
[] =
1018 float_round_nearest_even
,
1019 float_round_to_zero
,
1023 #define RESTORE_ROUNDING_MODE \
1024 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1026 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1030 tmp
= ldtul_p(mem_buf
);
1033 env
->active_tc
.gpr
[n
] = tmp
;
1034 return sizeof(target_ulong
);
1036 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1037 && n
>= 38 && n
< 73) {
1039 if (env
->CP0_Status
& (1 << CP0St_FR
))
1040 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1042 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1046 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1047 /* set rounding mode */
1048 RESTORE_ROUNDING_MODE
;
1049 #ifndef CONFIG_SOFTFLOAT
1050 /* no floating point exception for native float */
1051 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1054 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1056 return sizeof(target_ulong
);
1059 case 32: env
->CP0_Status
= tmp
; break;
1060 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1061 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1062 case 35: env
->CP0_BadVAddr
= tmp
; break;
1063 case 36: env
->CP0_Cause
= tmp
; break;
1064 case 37: env
->active_tc
.PC
= tmp
; break;
1065 case 72: /* fp, ignored */ break;
1069 /* Other registers are readonly. Ignore writes. */
1073 return sizeof(target_ulong
);
1075 #elif defined (TARGET_SH4)
1077 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1078 /* FIXME: We should use XML for this. */
1080 #define NUM_CORE_REGS 59
1082 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1085 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1086 GET_REGL(env
->gregs
[n
+ 16]);
1088 GET_REGL(env
->gregs
[n
]);
1090 } else if (n
< 16) {
1091 GET_REGL(env
->gregs
[n
- 8]);
1092 } else if (n
>= 25 && n
< 41) {
1093 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1094 } else if (n
>= 43 && n
< 51) {
1095 GET_REGL(env
->gregs
[n
- 43]);
1096 } else if (n
>= 51 && n
< 59) {
1097 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1100 case 16: GET_REGL(env
->pc
);
1101 case 17: GET_REGL(env
->pr
);
1102 case 18: GET_REGL(env
->gbr
);
1103 case 19: GET_REGL(env
->vbr
);
1104 case 20: GET_REGL(env
->mach
);
1105 case 21: GET_REGL(env
->macl
);
1106 case 22: GET_REGL(env
->sr
);
1107 case 23: GET_REGL(env
->fpul
);
1108 case 24: GET_REGL(env
->fpscr
);
1109 case 41: GET_REGL(env
->ssr
);
1110 case 42: GET_REGL(env
->spc
);
1116 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1120 tmp
= ldl_p(mem_buf
);
1123 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1124 env
->gregs
[n
+ 16] = tmp
;
1126 env
->gregs
[n
] = tmp
;
1129 } else if (n
< 16) {
1130 env
->gregs
[n
- 8] = tmp
;
1132 } else if (n
>= 25 && n
< 41) {
1133 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1134 } else if (n
>= 43 && n
< 51) {
1135 env
->gregs
[n
- 43] = tmp
;
1137 } else if (n
>= 51 && n
< 59) {
1138 env
->gregs
[n
- (51 - 16)] = tmp
;
1142 case 16: env
->pc
= tmp
;
1143 case 17: env
->pr
= tmp
;
1144 case 18: env
->gbr
= tmp
;
1145 case 19: env
->vbr
= tmp
;
1146 case 20: env
->mach
= tmp
;
1147 case 21: env
->macl
= tmp
;
1148 case 22: env
->sr
= tmp
;
1149 case 23: env
->fpul
= tmp
;
1150 case 24: env
->fpscr
= tmp
;
1151 case 41: env
->ssr
= tmp
;
1152 case 42: env
->spc
= tmp
;
1158 #elif defined (TARGET_CRIS)
1160 #define NUM_CORE_REGS 49
1162 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1166 srs
= env
->pregs
[PR_SRS
];
1168 GET_REG32(env
->regs
[n
]);
1171 if (n
>= 21 && n
< 32) {
1172 GET_REG32(env
->pregs
[n
- 16]);
1174 if (n
>= 33 && n
< 49) {
1175 GET_REG32(env
->sregs
[srs
][n
- 33]);
1178 case 16: GET_REG8(env
->pregs
[0]);
1179 case 17: GET_REG8(env
->pregs
[1]);
1180 case 18: GET_REG32(env
->pregs
[2]);
1181 case 19: GET_REG8(srs
);
1182 case 20: GET_REG16(env
->pregs
[4]);
1183 case 32: GET_REG32(env
->pc
);
1189 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1196 tmp
= ldl_p(mem_buf
);
1202 if (n
>= 21 && n
< 32) {
1203 env
->pregs
[n
- 16] = tmp
;
1206 /* FIXME: Should support function regs be writable? */
1210 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1213 case 32: env
->pc
= tmp
; break;
1218 #elif defined (TARGET_ALPHA)
1220 #define NUM_CORE_REGS 65
1222 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1225 GET_REGL(env
->ir
[n
]);
1233 val
=*((uint64_t *)&env
->fir
[n
-32]);
1237 GET_REGL(env
->fpcr
);
1249 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1252 tmp
= ldtul_p(mem_buf
);
1258 if (n
> 31 && n
< 63) {
1259 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1268 #elif defined (TARGET_HPPA)
1270 #ifdef TARGET_HPPA64
1271 #define NUM_CORE_REGS 96
1273 #define NUM_CORE_REGS 128
1276 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1280 } else if (n
< 32) {
1281 /* gr0 is hardwired to zero */
1283 GET_REGL(env
->gr
[n
]);
1284 } else if (n
== 32) {
1285 GET_REGL(0); /* FIXME: sar */
1286 } else if (n
== 33) {
1287 GET_REGL(env
->iaoq
[0]);
1288 } else if (n
== 34) {
1289 GET_REG32(env
->iasq
[0]);
1290 } else if (n
== 35) {
1291 GET_REGL(env
->iaoq
[1]);
1292 } else if (n
== 36) {
1293 GET_REG32(env
->iasq
[1]);
1295 /* FIXME: floating point */
1302 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1306 tmp
= ldtul_p(mem_buf
);
1310 } else if (n
< 32) {
1311 /* gr0 is hardwired to zero */
1314 } else if (n
== 32) {
1316 } else if (n
== 33) {
1318 } else if (n
== 34) {
1319 env
->iasq
[0] = ldl_p(mem_buf
);
1321 } else if (n
== 35) {
1323 } else if (n
== 36) {
1324 env
->iasq
[1] = ldl_p(mem_buf
);
1327 /* FIXME: floating point */
1330 return sizeof(target_ulong
);
1335 #define NUM_CORE_REGS 0
1337 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1342 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1349 static int num_g_regs
= NUM_CORE_REGS
;
1352 /* Encode data using the encoding for 'x' packets. */
1353 static int memtox(char *buf
, const char *mem
, int len
)
1361 case '#': case '$': case '*': case '}':
1373 static const char *get_feature_xml(const char *p
, const char **newp
)
1375 extern const char *const xml_builtin
[][2];
1379 static char target_xml
[1024];
1382 while (p
[len
] && p
[len
] != ':')
1387 if (strncmp(p
, "target.xml", len
) == 0) {
1388 /* Generate the XML description for this CPU. */
1389 if (!target_xml
[0]) {
1390 GDBRegisterState
*r
;
1392 snprintf(target_xml
, sizeof(target_xml
),
1393 "<?xml version=\"1.0\"?>"
1394 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1396 "<xi:include href=\"%s\"/>",
1399 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1400 strcat(target_xml
, "<xi:include href=\"");
1401 strcat(target_xml
, r
->xml
);
1402 strcat(target_xml
, "\"/>");
1404 strcat(target_xml
, "</target>");
1408 for (i
= 0; ; i
++) {
1409 name
= xml_builtin
[i
][0];
1410 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1413 return name
? xml_builtin
[i
][1] : NULL
;
1417 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1419 GDBRegisterState
*r
;
1421 if (reg
< NUM_CORE_REGS
)
1422 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1424 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1425 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1426 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1432 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1434 GDBRegisterState
*r
;
1436 if (reg
< NUM_CORE_REGS
)
1437 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1439 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1440 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1441 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1447 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1448 specifies the first register number and these registers are included in
1449 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1450 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1453 void gdb_register_coprocessor(CPUState
* env
,
1454 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1455 int num_regs
, const char *xml
, int g_pos
)
1457 GDBRegisterState
*s
;
1458 GDBRegisterState
**p
;
1459 static int last_reg
= NUM_CORE_REGS
;
1461 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1462 s
->base_reg
= last_reg
;
1463 s
->num_regs
= num_regs
;
1464 s
->get_reg
= get_reg
;
1465 s
->set_reg
= set_reg
;
1469 /* Check for duplicates. */
1470 if (strcmp((*p
)->xml
, xml
) == 0)
1474 /* Add to end of list. */
1475 last_reg
+= num_regs
;
1478 if (g_pos
!= s
->base_reg
) {
1479 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1480 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1482 num_g_regs
= last_reg
;
1487 #ifndef CONFIG_USER_ONLY
1488 static const int xlat_gdb_type
[] = {
1489 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1490 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1491 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1495 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1501 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1504 case GDB_BREAKPOINT_SW
:
1505 case GDB_BREAKPOINT_HW
:
1506 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1507 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1512 #ifndef CONFIG_USER_ONLY
1513 case GDB_WATCHPOINT_WRITE
:
1514 case GDB_WATCHPOINT_READ
:
1515 case GDB_WATCHPOINT_ACCESS
:
1516 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1517 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1529 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1535 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1538 case GDB_BREAKPOINT_SW
:
1539 case GDB_BREAKPOINT_HW
:
1540 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1541 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1546 #ifndef CONFIG_USER_ONLY
1547 case GDB_WATCHPOINT_WRITE
:
1548 case GDB_WATCHPOINT_READ
:
1549 case GDB_WATCHPOINT_ACCESS
:
1550 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1551 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1562 static void gdb_breakpoint_remove_all(void)
1566 if (kvm_enabled()) {
1567 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1571 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1572 cpu_breakpoint_remove_all(env
, BP_GDB
);
1573 #ifndef CONFIG_USER_ONLY
1574 cpu_watchpoint_remove_all(env
, BP_GDB
);
1579 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1583 int ch
, reg_size
, type
, res
, thread
;
1584 char buf
[MAX_PACKET_LENGTH
];
1585 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1587 target_ulong addr
, len
;
1590 printf("command='%s'\n", line_buf
);
1596 /* TODO: Make this return the correct value for user-mode. */
1597 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1598 s
->c_cpu
->cpu_index
+1);
1600 /* Remove all the breakpoints when this query is issued,
1601 * because gdb is doing and initial connect and the state
1602 * should be cleaned up.
1604 gdb_breakpoint_remove_all();
1608 addr
= strtoull(p
, (char **)&p
, 16);
1609 #if defined(TARGET_I386)
1610 s
->c_cpu
->eip
= addr
;
1611 cpu_synchronize_state(s
->c_cpu
, 1);
1612 #elif defined (TARGET_PPC)
1613 s
->c_cpu
->nip
= addr
;
1614 #elif defined (TARGET_SPARC)
1615 s
->c_cpu
->pc
= addr
;
1616 s
->c_cpu
->npc
= addr
+ 4;
1617 #elif defined (TARGET_ARM)
1618 s
->c_cpu
->regs
[15] = addr
;
1619 #elif defined (TARGET_SH4)
1620 s
->c_cpu
->pc
= addr
;
1621 #elif defined (TARGET_MIPS)
1622 s
->c_cpu
->active_tc
.PC
= addr
;
1623 #elif defined (TARGET_CRIS)
1624 s
->c_cpu
->pc
= addr
;
1625 #elif defined (TARGET_ALPHA)
1626 s
->c_cpu
->pc
= addr
;
1627 #elif defined (TARGET_HPPA)
1628 s
->c_cpu
->iaoq
[0] = addr
;
1629 s
->c_cpu
->iaoq
[1] = addr
+ 4;
1636 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1637 if (s
->signal
== -1)
1642 /* Kill the target */
1643 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1647 gdb_breakpoint_remove_all();
1649 put_packet(s
, "OK");
1653 addr
= strtoull(p
, (char **)&p
, 16);
1654 #if defined(TARGET_I386)
1655 s
->c_cpu
->eip
= addr
;
1656 cpu_synchronize_state(s
->c_cpu
, 1);
1657 #elif defined (TARGET_PPC)
1658 s
->c_cpu
->nip
= addr
;
1659 #elif defined (TARGET_SPARC)
1660 s
->c_cpu
->pc
= addr
;
1661 s
->c_cpu
->npc
= addr
+ 4;
1662 #elif defined (TARGET_ARM)
1663 s
->c_cpu
->regs
[15] = addr
;
1664 #elif defined (TARGET_SH4)
1665 s
->c_cpu
->pc
= addr
;
1666 #elif defined (TARGET_MIPS)
1667 s
->c_cpu
->active_tc
.PC
= addr
;
1668 #elif defined (TARGET_CRIS)
1669 s
->c_cpu
->pc
= addr
;
1670 #elif defined (TARGET_ALPHA)
1671 s
->c_cpu
->pc
= addr
;
1672 #elif defined (TARGET_HPPA)
1673 s
->c_cpu
->iaoq
[0] = addr
;
1674 s
->c_cpu
->iaoq
[1] = addr
+ 4;
1677 cpu_single_step(s
->c_cpu
, sstep_flags
);
1685 ret
= strtoull(p
, (char **)&p
, 16);
1688 err
= strtoull(p
, (char **)&p
, 16);
1695 if (gdb_current_syscall_cb
)
1696 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1698 put_packet(s
, "T02");
1705 cpu_synchronize_state(s
->g_cpu
, 0);
1707 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1708 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1711 memtohex(buf
, mem_buf
, len
);
1715 registers
= mem_buf
;
1716 len
= strlen(p
) / 2;
1717 hextomem((uint8_t *)registers
, p
, len
);
1718 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1719 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1721 registers
+= reg_size
;
1723 cpu_synchronize_state(s
->g_cpu
, 1);
1724 put_packet(s
, "OK");
1727 addr
= strtoull(p
, (char **)&p
, 16);
1730 len
= strtoull(p
, NULL
, 16);
1731 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1732 put_packet (s
, "E14");
1734 memtohex(buf
, mem_buf
, len
);
1739 addr
= strtoull(p
, (char **)&p
, 16);
1742 len
= strtoull(p
, (char **)&p
, 16);
1745 hextomem(mem_buf
, p
, len
);
1746 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1747 put_packet(s
, "E14");
1749 put_packet(s
, "OK");
1752 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1753 This works, but can be very slow. Anything new enough to
1754 understand XML also knows how to use this properly. */
1756 goto unknown_command
;
1757 addr
= strtoull(p
, (char **)&p
, 16);
1758 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1760 memtohex(buf
, mem_buf
, reg_size
);
1763 put_packet(s
, "E14");
1768 goto unknown_command
;
1769 addr
= strtoull(p
, (char **)&p
, 16);
1772 reg_size
= strlen(p
) / 2;
1773 hextomem(mem_buf
, p
, reg_size
);
1774 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1775 put_packet(s
, "OK");
1779 type
= strtoul(p
, (char **)&p
, 16);
1782 addr
= strtoull(p
, (char **)&p
, 16);
1785 len
= strtoull(p
, (char **)&p
, 16);
1787 res
= gdb_breakpoint_insert(addr
, len
, type
);
1789 res
= gdb_breakpoint_remove(addr
, len
, type
);
1791 put_packet(s
, "OK");
1792 else if (res
== -ENOSYS
)
1795 put_packet(s
, "E22");
1799 thread
= strtoull(p
, (char **)&p
, 16);
1800 if (thread
== -1 || thread
== 0) {
1801 put_packet(s
, "OK");
1804 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1805 if (env
->cpu_index
+ 1 == thread
)
1808 put_packet(s
, "E22");
1814 put_packet(s
, "OK");
1818 put_packet(s
, "OK");
1821 put_packet(s
, "E22");
1826 thread
= strtoull(p
, (char **)&p
, 16);
1827 #ifndef CONFIG_USER_ONLY
1828 if (thread
> 0 && thread
< smp_cpus
+ 1)
1832 put_packet(s
, "OK");
1834 put_packet(s
, "E22");
1838 /* parse any 'q' packets here */
1839 if (!strcmp(p
,"qemu.sstepbits")) {
1840 /* Query Breakpoint bit definitions */
1841 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1847 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1848 /* Display or change the sstep_flags */
1851 /* Display current setting */
1852 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1857 type
= strtoul(p
, (char **)&p
, 16);
1859 put_packet(s
, "OK");
1861 } else if (strcmp(p
,"C") == 0) {
1862 /* "Current thread" remains vague in the spec, so always return
1863 * the first CPU (gdb returns the first thread). */
1864 put_packet(s
, "QC1");
1866 } else if (strcmp(p
,"fThreadInfo") == 0) {
1867 s
->query_cpu
= first_cpu
;
1868 goto report_cpuinfo
;
1869 } else if (strcmp(p
,"sThreadInfo") == 0) {
1872 snprintf(buf
, sizeof(buf
), "m%x", s
->query_cpu
->cpu_index
+1);
1874 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1878 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1879 thread
= strtoull(p
+16, (char **)&p
, 16);
1880 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1881 if (env
->cpu_index
+ 1 == thread
) {
1882 cpu_synchronize_state(env
, 0);
1883 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1884 "CPU#%d [%s]", env
->cpu_index
,
1885 env
->halted
? "halted " : "running");
1886 memtohex(buf
, mem_buf
, len
);
1892 #ifdef CONFIG_USER_ONLY
1893 else if (strncmp(p
, "Offsets", 7) == 0) {
1894 TaskState
*ts
= s
->c_cpu
->opaque
;
1896 snprintf(buf
, sizeof(buf
),
1897 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1898 ";Bss=" TARGET_ABI_FMT_lx
,
1899 ts
->info
->code_offset
,
1900 ts
->info
->data_offset
,
1901 ts
->info
->data_offset
);
1905 #else /* !CONFIG_USER_ONLY */
1906 else if (strncmp(p
, "Rcmd,", 5) == 0) {
1907 int len
= strlen(p
+ 5);
1909 if ((len
% 2) != 0) {
1910 put_packet(s
, "E01");
1913 hextomem(mem_buf
, p
+ 5, len
);
1916 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
1917 put_packet(s
, "OK");
1920 #endif /* !CONFIG_USER_ONLY */
1921 if (strncmp(p
, "Supported", 9) == 0) {
1922 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1924 strcat(buf
, ";qXfer:features:read+");
1930 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1932 target_ulong total_len
;
1936 xml
= get_feature_xml(p
, &p
);
1938 snprintf(buf
, sizeof(buf
), "E00");
1945 addr
= strtoul(p
, (char **)&p
, 16);
1948 len
= strtoul(p
, (char **)&p
, 16);
1950 total_len
= strlen(xml
);
1951 if (addr
> total_len
) {
1952 snprintf(buf
, sizeof(buf
), "E00");
1956 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1957 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1958 if (len
< total_len
- addr
) {
1960 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1963 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1965 put_packet_binary(s
, buf
, len
+ 1);
1969 /* Unrecognised 'q' command. */
1970 goto unknown_command
;
1974 /* put empty packet */
1982 void gdb_set_stop_cpu(CPUState
*env
)
1984 gdbserver_state
->c_cpu
= env
;
1985 gdbserver_state
->g_cpu
= env
;
1988 #ifndef CONFIG_USER_ONLY
1989 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
1991 GDBState
*s
= gdbserver_state
;
1992 CPUState
*env
= s
->c_cpu
;
1997 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
1998 s
->state
== RS_SYSCALL
)
2001 /* disable single step if it was enable */
2002 cpu_single_step(env
, 0);
2004 if (reason
== EXCP_DEBUG
) {
2005 if (env
->watchpoint_hit
) {
2006 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2017 snprintf(buf
, sizeof(buf
),
2018 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2019 GDB_SIGNAL_TRAP
, env
->cpu_index
+1, type
,
2020 env
->watchpoint_hit
->vaddr
);
2022 env
->watchpoint_hit
= NULL
;
2026 ret
= GDB_SIGNAL_TRAP
;
2028 ret
= GDB_SIGNAL_INT
;
2030 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, env
->cpu_index
+1);
2035 /* Send a gdb syscall request.
2036 This accepts limited printf-style format specifiers, specifically:
2037 %x - target_ulong argument printed in hex.
2038 %lx - 64-bit argument printed in hex.
2039 %s - string pointer (target_ulong) and length (int) pair. */
2040 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2049 s
= gdbserver_state
;
2052 gdb_current_syscall_cb
= cb
;
2053 s
->state
= RS_SYSCALL
;
2054 #ifndef CONFIG_USER_ONLY
2055 vm_stop(EXCP_DEBUG
);
2066 addr
= va_arg(va
, target_ulong
);
2067 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2070 if (*(fmt
++) != 'x')
2072 i64
= va_arg(va
, uint64_t);
2073 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2076 addr
= va_arg(va
, target_ulong
);
2077 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2078 addr
, va_arg(va
, int));
2082 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2093 #ifdef CONFIG_USER_ONLY
2094 gdb_handlesig(s
->c_cpu
, 0);
2100 static void gdb_read_byte(GDBState
*s
, int ch
)
2105 #ifndef CONFIG_USER_ONLY
2106 if (s
->last_packet_len
) {
2107 /* Waiting for a response to the last packet. If we see the start
2108 of a new command then abandon the previous response. */
2111 printf("Got NACK, retransmitting\n");
2113 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2117 printf("Got ACK\n");
2119 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2121 if (ch
== '+' || ch
== '$')
2122 s
->last_packet_len
= 0;
2127 /* when the CPU is running, we cannot do anything except stop
2128 it when receiving a char */
2129 vm_stop(EXCP_INTERRUPT
);
2136 s
->line_buf_index
= 0;
2137 s
->state
= RS_GETLINE
;
2142 s
->state
= RS_CHKSUM1
;
2143 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2146 s
->line_buf
[s
->line_buf_index
++] = ch
;
2150 s
->line_buf
[s
->line_buf_index
] = '\0';
2151 s
->line_csum
= fromhex(ch
) << 4;
2152 s
->state
= RS_CHKSUM2
;
2155 s
->line_csum
|= fromhex(ch
);
2157 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2158 csum
+= s
->line_buf
[i
];
2160 if (s
->line_csum
!= (csum
& 0xff)) {
2162 put_buffer(s
, &reply
, 1);
2166 put_buffer(s
, &reply
, 1);
2167 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2176 #ifdef CONFIG_USER_ONLY
2182 s
= gdbserver_state
;
2184 if (gdbserver_fd
< 0 || s
->fd
< 0)
2191 gdb_handlesig (CPUState
*env
, int sig
)
2197 s
= gdbserver_state
;
2198 if (gdbserver_fd
< 0 || s
->fd
< 0)
2201 /* disable single step if it was enabled */
2202 cpu_single_step(env
, 0);
2207 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2210 /* put_packet() might have detected that the peer terminated the
2217 s
->running_state
= 0;
2218 while (s
->running_state
== 0) {
2219 n
= read (s
->fd
, buf
, 256);
2224 for (i
= 0; i
< n
; i
++)
2225 gdb_read_byte (s
, buf
[i
]);
2227 else if (n
== 0 || errno
!= EAGAIN
)
2229 /* XXX: Connection closed. Should probably wait for annother
2230 connection before continuing. */
2239 /* Tell the remote gdb that the process has exited. */
2240 void gdb_exit(CPUState
*env
, int code
)
2245 s
= gdbserver_state
;
2246 if (gdbserver_fd
< 0 || s
->fd
< 0)
2249 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2253 /* Tell the remote gdb that the process has exited due to SIG. */
2254 void gdb_signalled(CPUState
*env
, int sig
)
2259 s
= gdbserver_state
;
2260 if (gdbserver_fd
< 0 || s
->fd
< 0)
2263 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2267 static void gdb_accept(void)
2270 struct sockaddr_in sockaddr
;
2275 len
= sizeof(sockaddr
);
2276 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2277 if (fd
< 0 && errno
!= EINTR
) {
2280 } else if (fd
>= 0) {
2285 /* set short latency */
2287 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2289 s
= qemu_mallocz(sizeof(GDBState
));
2291 memset (s
, 0, sizeof (GDBState
));
2292 s
->c_cpu
= first_cpu
;
2293 s
->g_cpu
= first_cpu
;
2297 gdbserver_state
= s
;
2299 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2302 static int gdbserver_open(int port
)
2304 struct sockaddr_in sockaddr
;
2307 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2313 /* allow fast reuse */
2315 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2317 sockaddr
.sin_family
= AF_INET
;
2318 sockaddr
.sin_port
= htons(port
);
2319 sockaddr
.sin_addr
.s_addr
= 0;
2320 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2325 ret
= listen(fd
, 0);
2333 int gdbserver_start(int port
)
2335 gdbserver_fd
= gdbserver_open(port
);
2336 if (gdbserver_fd
< 0)
2338 /* accept connections */
2343 /* Disable gdb stub for child processes. */
2344 void gdbserver_fork(CPUState
*env
)
2346 GDBState
*s
= gdbserver_state
;
2347 if (gdbserver_fd
< 0 || s
->fd
< 0)
2351 cpu_breakpoint_remove_all(env
, BP_GDB
);
2352 cpu_watchpoint_remove_all(env
, BP_GDB
);
2355 static int gdb_chr_can_receive(void *opaque
)
2357 /* We can handle an arbitrarily large amount of data.
2358 Pick the maximum packet size, which is as good as anything. */
2359 return MAX_PACKET_LENGTH
;
2362 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2366 for (i
= 0; i
< size
; i
++) {
2367 gdb_read_byte(gdbserver_state
, buf
[i
]);
2371 static void gdb_chr_event(void *opaque
, int event
)
2374 case CHR_EVENT_RESET
:
2375 vm_stop(EXCP_INTERRUPT
);
2383 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2385 char buf
[MAX_PACKET_LENGTH
];
2388 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2389 len
= (MAX_PACKET_LENGTH
/2) - 1;
2390 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2394 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2396 const char *p
= (const char *)buf
;
2399 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2401 if (len
<= max_sz
) {
2402 gdb_monitor_output(gdbserver_state
, p
, len
);
2405 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2412 int gdbserver_start(const char *port
)
2415 char gdbstub_port_name
[128];
2418 CharDriverState
*chr
;
2420 if (!port
|| !*port
)
2423 port_num
= strtol(port
, &p
, 10);
2425 /* A numeric value is interpreted as a port number. */
2426 snprintf(gdbstub_port_name
, sizeof(gdbstub_port_name
),
2427 "tcp::%d,nowait,nodelay,server", port_num
);
2428 port
= gdbstub_port_name
;
2431 chr
= qemu_chr_open("gdb", port
, NULL
);
2435 s
= qemu_mallocz(sizeof(GDBState
));
2436 s
->c_cpu
= first_cpu
;
2437 s
->g_cpu
= first_cpu
;
2439 gdbserver_state
= s
;
2440 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2441 gdb_chr_event
, NULL
);
2442 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2444 /* Initialize a monitor terminal for gdb */
2445 s
->mon_chr
= qemu_mallocz(sizeof(*s
->mon_chr
));
2446 s
->mon_chr
->chr_write
= gdb_monitor_write
;
2447 monitor_init(s
->mon_chr
, 0);