Merge branch 'master' of git://repo.or.cz/qemu
[qemu/hppa.git] / target-sparc / op_helper.c
blob9f83e002d87963a60b0c7285a61c94107e059e86
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
8 //#define DEBUG_PCALL
9 //#define DEBUG_MMU
10 //#define DEBUG_MXCC
11 //#define DEBUG_UNALIGNED
12 //#define DEBUG_UNASSIGNED
13 //#define DEBUG_ASI
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, args...) \
17 do { printf("MMU: " fmt , ##args); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, args...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, args...) \
24 do { printf("MXCC: " fmt , ##args); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, args...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, args...) \
31 do { printf("ASI: " fmt , ##args); } while (0)
32 #else
33 #define DPRINTF_ASI(fmt, args...) do {} while (0)
34 #endif
36 void raise_exception(int tt)
38 env->exception_index = tt;
39 cpu_loop_exit();
42 void helper_trap(target_ulong nb_trap)
44 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
45 cpu_loop_exit();
48 void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
50 if (do_trap) {
51 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
52 cpu_loop_exit();
56 void helper_check_align(target_ulong addr, uint32_t align)
58 if (addr & align)
59 raise_exception(TT_UNALIGNED);
62 #define F_HELPER(name, p) void helper_f##name##p(void)
64 #define F_BINOP(name) \
65 F_HELPER(name, s) \
66 { \
67 FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \
68 } \
69 F_HELPER(name, d) \
70 { \
71 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
72 } \
73 F_HELPER(name, q) \
74 { \
75 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
78 F_BINOP(add);
79 F_BINOP(sub);
80 F_BINOP(mul);
81 F_BINOP(div);
82 #undef F_BINOP
84 void helper_fsmuld(void)
86 DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
87 float32_to_float64(FT1, &env->fp_status),
88 &env->fp_status);
91 void helper_fdmulq(void)
93 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
94 float64_to_float128(DT1, &env->fp_status),
95 &env->fp_status);
98 F_HELPER(neg, s)
100 FT0 = float32_chs(FT1);
103 #ifdef TARGET_SPARC64
104 F_HELPER(neg, d)
106 DT0 = float64_chs(DT1);
109 F_HELPER(neg, q)
111 QT0 = float128_chs(QT1);
113 #endif
115 /* Integer to float conversion. */
116 F_HELPER(ito, s)
118 FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
121 F_HELPER(ito, d)
123 DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
126 F_HELPER(ito, q)
128 QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
131 #ifdef TARGET_SPARC64
132 F_HELPER(xto, s)
134 FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
137 F_HELPER(xto, d)
139 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
142 F_HELPER(xto, q)
144 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
146 #endif
147 #undef F_HELPER
149 /* floating point conversion */
150 void helper_fdtos(void)
152 FT0 = float64_to_float32(DT1, &env->fp_status);
155 void helper_fstod(void)
157 DT0 = float32_to_float64(FT1, &env->fp_status);
160 void helper_fqtos(void)
162 FT0 = float128_to_float32(QT1, &env->fp_status);
165 void helper_fstoq(void)
167 QT0 = float32_to_float128(FT1, &env->fp_status);
170 void helper_fqtod(void)
172 DT0 = float128_to_float64(QT1, &env->fp_status);
175 void helper_fdtoq(void)
177 QT0 = float64_to_float128(DT1, &env->fp_status);
180 /* Float to integer conversion. */
181 void helper_fstoi(void)
183 *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
186 void helper_fdtoi(void)
188 *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
191 void helper_fqtoi(void)
193 *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
196 #ifdef TARGET_SPARC64
197 void helper_fstox(void)
199 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
202 void helper_fdtox(void)
204 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
207 void helper_fqtox(void)
209 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
212 void helper_faligndata(void)
214 uint64_t tmp;
216 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
217 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
218 *((uint64_t *)&DT0) = tmp;
221 void helper_movl_FT0_0(void)
223 *((uint32_t *)&FT0) = 0;
226 void helper_movl_DT0_0(void)
228 *((uint64_t *)&DT0) = 0;
231 void helper_movl_FT0_1(void)
233 *((uint32_t *)&FT0) = 0xffffffff;
236 void helper_movl_DT0_1(void)
238 *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
241 void helper_fnot(void)
243 *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
246 void helper_fnots(void)
248 *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
251 void helper_fnor(void)
253 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
256 void helper_fnors(void)
258 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
261 void helper_for(void)
263 *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
266 void helper_fors(void)
268 *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
271 void helper_fxor(void)
273 *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
276 void helper_fxors(void)
278 *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
281 void helper_fand(void)
283 *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
286 void helper_fands(void)
288 *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
291 void helper_fornot(void)
293 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
296 void helper_fornots(void)
298 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
301 void helper_fandnot(void)
303 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
306 void helper_fandnots(void)
308 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
311 void helper_fnand(void)
313 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
316 void helper_fnands(void)
318 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
321 void helper_fxnor(void)
323 *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
326 void helper_fxnors(void)
328 *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
331 #ifdef WORDS_BIGENDIAN
332 #define VIS_B64(n) b[7 - (n)]
333 #define VIS_W64(n) w[3 - (n)]
334 #define VIS_SW64(n) sw[3 - (n)]
335 #define VIS_L64(n) l[1 - (n)]
336 #define VIS_B32(n) b[3 - (n)]
337 #define VIS_W32(n) w[1 - (n)]
338 #else
339 #define VIS_B64(n) b[n]
340 #define VIS_W64(n) w[n]
341 #define VIS_SW64(n) sw[n]
342 #define VIS_L64(n) l[n]
343 #define VIS_B32(n) b[n]
344 #define VIS_W32(n) w[n]
345 #endif
347 typedef union {
348 uint8_t b[8];
349 uint16_t w[4];
350 int16_t sw[4];
351 uint32_t l[2];
352 float64 d;
353 } vis64;
355 typedef union {
356 uint8_t b[4];
357 uint16_t w[2];
358 uint32_t l;
359 float32 f;
360 } vis32;
362 void helper_fpmerge(void)
364 vis64 s, d;
366 s.d = DT0;
367 d.d = DT1;
369 // Reverse calculation order to handle overlap
370 d.VIS_B64(7) = s.VIS_B64(3);
371 d.VIS_B64(6) = d.VIS_B64(3);
372 d.VIS_B64(5) = s.VIS_B64(2);
373 d.VIS_B64(4) = d.VIS_B64(2);
374 d.VIS_B64(3) = s.VIS_B64(1);
375 d.VIS_B64(2) = d.VIS_B64(1);
376 d.VIS_B64(1) = s.VIS_B64(0);
377 //d.VIS_B64(0) = d.VIS_B64(0);
379 DT0 = d.d;
382 void helper_fmul8x16(void)
384 vis64 s, d;
385 uint32_t tmp;
387 s.d = DT0;
388 d.d = DT1;
390 #define PMUL(r) \
391 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
392 if ((tmp & 0xff) > 0x7f) \
393 tmp += 0x100; \
394 d.VIS_W64(r) = tmp >> 8;
396 PMUL(0);
397 PMUL(1);
398 PMUL(2);
399 PMUL(3);
400 #undef PMUL
402 DT0 = d.d;
405 void helper_fmul8x16al(void)
407 vis64 s, d;
408 uint32_t tmp;
410 s.d = DT0;
411 d.d = DT1;
413 #define PMUL(r) \
414 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
415 if ((tmp & 0xff) > 0x7f) \
416 tmp += 0x100; \
417 d.VIS_W64(r) = tmp >> 8;
419 PMUL(0);
420 PMUL(1);
421 PMUL(2);
422 PMUL(3);
423 #undef PMUL
425 DT0 = d.d;
428 void helper_fmul8x16au(void)
430 vis64 s, d;
431 uint32_t tmp;
433 s.d = DT0;
434 d.d = DT1;
436 #define PMUL(r) \
437 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
438 if ((tmp & 0xff) > 0x7f) \
439 tmp += 0x100; \
440 d.VIS_W64(r) = tmp >> 8;
442 PMUL(0);
443 PMUL(1);
444 PMUL(2);
445 PMUL(3);
446 #undef PMUL
448 DT0 = d.d;
451 void helper_fmul8sux16(void)
453 vis64 s, d;
454 uint32_t tmp;
456 s.d = DT0;
457 d.d = DT1;
459 #define PMUL(r) \
460 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
461 if ((tmp & 0xff) > 0x7f) \
462 tmp += 0x100; \
463 d.VIS_W64(r) = tmp >> 8;
465 PMUL(0);
466 PMUL(1);
467 PMUL(2);
468 PMUL(3);
469 #undef PMUL
471 DT0 = d.d;
474 void helper_fmul8ulx16(void)
476 vis64 s, d;
477 uint32_t tmp;
479 s.d = DT0;
480 d.d = DT1;
482 #define PMUL(r) \
483 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
484 if ((tmp & 0xff) > 0x7f) \
485 tmp += 0x100; \
486 d.VIS_W64(r) = tmp >> 8;
488 PMUL(0);
489 PMUL(1);
490 PMUL(2);
491 PMUL(3);
492 #undef PMUL
494 DT0 = d.d;
497 void helper_fmuld8sux16(void)
499 vis64 s, d;
500 uint32_t tmp;
502 s.d = DT0;
503 d.d = DT1;
505 #define PMUL(r) \
506 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
507 if ((tmp & 0xff) > 0x7f) \
508 tmp += 0x100; \
509 d.VIS_L64(r) = tmp;
511 // Reverse calculation order to handle overlap
512 PMUL(1);
513 PMUL(0);
514 #undef PMUL
516 DT0 = d.d;
519 void helper_fmuld8ulx16(void)
521 vis64 s, d;
522 uint32_t tmp;
524 s.d = DT0;
525 d.d = DT1;
527 #define PMUL(r) \
528 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
529 if ((tmp & 0xff) > 0x7f) \
530 tmp += 0x100; \
531 d.VIS_L64(r) = tmp;
533 // Reverse calculation order to handle overlap
534 PMUL(1);
535 PMUL(0);
536 #undef PMUL
538 DT0 = d.d;
541 void helper_fexpand(void)
543 vis32 s;
544 vis64 d;
546 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
547 d.d = DT1;
548 d.VIS_L64(0) = s.VIS_W32(0) << 4;
549 d.VIS_L64(1) = s.VIS_W32(1) << 4;
550 d.VIS_L64(2) = s.VIS_W32(2) << 4;
551 d.VIS_L64(3) = s.VIS_W32(3) << 4;
553 DT0 = d.d;
556 #define VIS_HELPER(name, F) \
557 void name##16(void) \
559 vis64 s, d; \
561 s.d = DT0; \
562 d.d = DT1; \
564 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
565 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
566 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
567 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
569 DT0 = d.d; \
572 void name##16s(void) \
574 vis32 s, d; \
576 s.f = FT0; \
577 d.f = FT1; \
579 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
580 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
582 FT0 = d.f; \
585 void name##32(void) \
587 vis64 s, d; \
589 s.d = DT0; \
590 d.d = DT1; \
592 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
593 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
595 DT0 = d.d; \
598 void name##32s(void) \
600 vis32 s, d; \
602 s.f = FT0; \
603 d.f = FT1; \
605 d.l = F(d.l, s.l); \
607 FT0 = d.f; \
610 #define FADD(a, b) ((a) + (b))
611 #define FSUB(a, b) ((a) - (b))
612 VIS_HELPER(helper_fpadd, FADD)
613 VIS_HELPER(helper_fpsub, FSUB)
615 #define VIS_CMPHELPER(name, F) \
616 void name##16(void) \
618 vis64 s, d; \
620 s.d = DT0; \
621 d.d = DT1; \
623 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
624 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
625 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
626 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
628 DT0 = d.d; \
631 void name##32(void) \
633 vis64 s, d; \
635 s.d = DT0; \
636 d.d = DT1; \
638 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
639 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
641 DT0 = d.d; \
644 #define FCMPGT(a, b) ((a) > (b))
645 #define FCMPEQ(a, b) ((a) == (b))
646 #define FCMPLE(a, b) ((a) <= (b))
647 #define FCMPNE(a, b) ((a) != (b))
649 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
650 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
651 VIS_CMPHELPER(helper_fcmple, FCMPLE)
652 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
653 #endif
655 void helper_check_ieee_exceptions(void)
657 target_ulong status;
659 status = get_float_exception_flags(&env->fp_status);
660 if (status) {
661 /* Copy IEEE 754 flags into FSR */
662 if (status & float_flag_invalid)
663 env->fsr |= FSR_NVC;
664 if (status & float_flag_overflow)
665 env->fsr |= FSR_OFC;
666 if (status & float_flag_underflow)
667 env->fsr |= FSR_UFC;
668 if (status & float_flag_divbyzero)
669 env->fsr |= FSR_DZC;
670 if (status & float_flag_inexact)
671 env->fsr |= FSR_NXC;
673 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
674 /* Unmasked exception, generate a trap */
675 env->fsr |= FSR_FTT_IEEE_EXCP;
676 raise_exception(TT_FP_EXCP);
677 } else {
678 /* Accumulate exceptions */
679 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
684 void helper_clear_float_exceptions(void)
686 set_float_exception_flags(0, &env->fp_status);
689 void helper_fabss(void)
691 FT0 = float32_abs(FT1);
694 #ifdef TARGET_SPARC64
695 void helper_fabsd(void)
697 DT0 = float64_abs(DT1);
700 void helper_fabsq(void)
702 QT0 = float128_abs(QT1);
704 #endif
706 void helper_fsqrts(void)
708 FT0 = float32_sqrt(FT1, &env->fp_status);
711 void helper_fsqrtd(void)
713 DT0 = float64_sqrt(DT1, &env->fp_status);
716 void helper_fsqrtq(void)
718 QT0 = float128_sqrt(QT1, &env->fp_status);
721 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
722 void glue(helper_, name) (void) \
724 target_ulong new_fsr; \
726 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
727 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
728 case float_relation_unordered: \
729 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
730 if ((env->fsr & FSR_NVM) || TRAP) { \
731 env->fsr |= new_fsr; \
732 env->fsr |= FSR_NVC; \
733 env->fsr |= FSR_FTT_IEEE_EXCP; \
734 raise_exception(TT_FP_EXCP); \
735 } else { \
736 env->fsr |= FSR_NVA; \
738 break; \
739 case float_relation_less: \
740 new_fsr = FSR_FCC0 << FS; \
741 break; \
742 case float_relation_greater: \
743 new_fsr = FSR_FCC1 << FS; \
744 break; \
745 default: \
746 new_fsr = 0; \
747 break; \
749 env->fsr |= new_fsr; \
752 GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
753 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
755 GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
756 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
758 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
759 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
761 #ifdef TARGET_SPARC64
762 GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
763 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
764 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
766 GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
767 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
768 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
770 GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
771 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
772 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
774 GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
775 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
776 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
778 GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
779 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
780 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
782 GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
783 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
784 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
785 #endif
787 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && defined(DEBUG_MXCC)
788 static void dump_mxcc(CPUState *env)
790 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
791 env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
792 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
793 " %016llx %016llx %016llx %016llx\n",
794 env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
795 env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
797 #endif
799 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
800 && defined(DEBUG_ASI)
801 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
802 uint64_t r1)
804 switch (size)
806 case 1:
807 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
808 addr, asi, r1 & 0xff);
809 break;
810 case 2:
811 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
812 addr, asi, r1 & 0xffff);
813 break;
814 case 4:
815 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
816 addr, asi, r1 & 0xffffffff);
817 break;
818 case 8:
819 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
820 addr, asi, r1);
821 break;
824 #endif
826 #ifndef TARGET_SPARC64
827 #ifndef CONFIG_USER_ONLY
828 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
830 uint64_t ret = 0;
831 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
832 uint32_t last_addr = addr;
833 #endif
835 switch (asi) {
836 case 2: /* SuperSparc MXCC registers */
837 switch (addr) {
838 case 0x01c00a00: /* MXCC control register */
839 if (size == 8)
840 ret = env->mxccregs[3];
841 else
842 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
843 break;
844 case 0x01c00a04: /* MXCC control register */
845 if (size == 4)
846 ret = env->mxccregs[3];
847 else
848 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
849 break;
850 case 0x01c00c00: /* Module reset register */
851 if (size == 8) {
852 ret = env->mxccregs[5];
853 // should we do something here?
854 } else
855 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
856 break;
857 case 0x01c00f00: /* MBus port address register */
858 if (size == 8)
859 ret = env->mxccregs[7];
860 else
861 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
862 break;
863 default:
864 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
865 break;
867 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, addr = %08x -> ret = %08x,"
868 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
869 #ifdef DEBUG_MXCC
870 dump_mxcc(env);
871 #endif
872 break;
873 case 3: /* MMU probe */
875 int mmulev;
877 mmulev = (addr >> 8) & 15;
878 if (mmulev > 4)
879 ret = 0;
880 else
881 ret = mmu_probe(env, addr, mmulev);
882 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
883 addr, mmulev, ret);
885 break;
886 case 4: /* read MMU regs */
888 int reg = (addr >> 8) & 0x1f;
890 ret = env->mmuregs[reg];
891 if (reg == 3) /* Fault status cleared on read */
892 env->mmuregs[3] = 0;
893 else if (reg == 0x13) /* Fault status read */
894 ret = env->mmuregs[3];
895 else if (reg == 0x14) /* Fault address read */
896 ret = env->mmuregs[4];
897 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
899 break;
900 case 5: // Turbosparc ITLB Diagnostic
901 case 6: // Turbosparc DTLB Diagnostic
902 case 7: // Turbosparc IOTLB Diagnostic
903 break;
904 case 9: /* Supervisor code access */
905 switch(size) {
906 case 1:
907 ret = ldub_code(addr);
908 break;
909 case 2:
910 ret = lduw_code(addr & ~1);
911 break;
912 default:
913 case 4:
914 ret = ldl_code(addr & ~3);
915 break;
916 case 8:
917 ret = ldq_code(addr & ~7);
918 break;
920 break;
921 case 0xa: /* User data access */
922 switch(size) {
923 case 1:
924 ret = ldub_user(addr);
925 break;
926 case 2:
927 ret = lduw_user(addr & ~1);
928 break;
929 default:
930 case 4:
931 ret = ldl_user(addr & ~3);
932 break;
933 case 8:
934 ret = ldq_user(addr & ~7);
935 break;
937 break;
938 case 0xb: /* Supervisor data access */
939 switch(size) {
940 case 1:
941 ret = ldub_kernel(addr);
942 break;
943 case 2:
944 ret = lduw_kernel(addr & ~1);
945 break;
946 default:
947 case 4:
948 ret = ldl_kernel(addr & ~3);
949 break;
950 case 8:
951 ret = ldq_kernel(addr & ~7);
952 break;
954 break;
955 case 0xc: /* I-cache tag */
956 case 0xd: /* I-cache data */
957 case 0xe: /* D-cache tag */
958 case 0xf: /* D-cache data */
959 break;
960 case 0x20: /* MMU passthrough */
961 switch(size) {
962 case 1:
963 ret = ldub_phys(addr);
964 break;
965 case 2:
966 ret = lduw_phys(addr & ~1);
967 break;
968 default:
969 case 4:
970 ret = ldl_phys(addr & ~3);
971 break;
972 case 8:
973 ret = ldq_phys(addr & ~7);
974 break;
976 break;
977 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
978 switch(size) {
979 case 1:
980 ret = ldub_phys((target_phys_addr_t)addr
981 | ((target_phys_addr_t)(asi & 0xf) << 32));
982 break;
983 case 2:
984 ret = lduw_phys((target_phys_addr_t)(addr & ~1)
985 | ((target_phys_addr_t)(asi & 0xf) << 32));
986 break;
987 default:
988 case 4:
989 ret = ldl_phys((target_phys_addr_t)(addr & ~3)
990 | ((target_phys_addr_t)(asi & 0xf) << 32));
991 break;
992 case 8:
993 ret = ldq_phys((target_phys_addr_t)(addr & ~7)
994 | ((target_phys_addr_t)(asi & 0xf) << 32));
995 break;
997 break;
998 case 0x30: // Turbosparc secondary cache diagnostic
999 case 0x31: // Turbosparc RAM snoop
1000 case 0x32: // Turbosparc page table descriptor diagnostic
1001 case 0x39: /* data cache diagnostic register */
1002 ret = 0;
1003 break;
1004 case 8: /* User code access, XXX */
1005 default:
1006 do_unassigned_access(addr, 0, 0, asi);
1007 ret = 0;
1008 break;
1010 if (sign) {
1011 switch(size) {
1012 case 1:
1013 ret = (int8_t) ret;
1014 break;
1015 case 2:
1016 ret = (int16_t) ret;
1017 break;
1018 case 4:
1019 ret = (int32_t) ret;
1020 break;
1021 default:
1022 break;
1025 #ifdef DEBUG_ASI
1026 dump_asi("read ", last_addr, asi, size, ret);
1027 #endif
1028 return ret;
1031 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1033 switch(asi) {
1034 case 2: /* SuperSparc MXCC registers */
1035 switch (addr) {
1036 case 0x01c00000: /* MXCC stream data register 0 */
1037 if (size == 8)
1038 env->mxccdata[0] = val;
1039 else
1040 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1041 break;
1042 case 0x01c00008: /* MXCC stream data register 1 */
1043 if (size == 8)
1044 env->mxccdata[1] = val;
1045 else
1046 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1047 break;
1048 case 0x01c00010: /* MXCC stream data register 2 */
1049 if (size == 8)
1050 env->mxccdata[2] = val;
1051 else
1052 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1053 break;
1054 case 0x01c00018: /* MXCC stream data register 3 */
1055 if (size == 8)
1056 env->mxccdata[3] = val;
1057 else
1058 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1059 break;
1060 case 0x01c00100: /* MXCC stream source */
1061 if (size == 8)
1062 env->mxccregs[0] = val;
1063 else
1064 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1065 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0);
1066 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8);
1067 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
1068 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
1069 break;
1070 case 0x01c00200: /* MXCC stream destination */
1071 if (size == 8)
1072 env->mxccregs[1] = val;
1073 else
1074 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1075 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]);
1076 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]);
1077 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
1078 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
1079 break;
1080 case 0x01c00a00: /* MXCC control register */
1081 if (size == 8)
1082 env->mxccregs[3] = val;
1083 else
1084 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1085 break;
1086 case 0x01c00a04: /* MXCC control register */
1087 if (size == 4)
1088 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | val;
1089 else
1090 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1091 break;
1092 case 0x01c00e00: /* MXCC error register */
1093 // writing a 1 bit clears the error
1094 if (size == 8)
1095 env->mxccregs[6] &= ~val;
1096 else
1097 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1098 break;
1099 case 0x01c00f00: /* MBus port address register */
1100 if (size == 8)
1101 env->mxccregs[7] = val;
1102 else
1103 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
1104 break;
1105 default:
1106 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
1107 break;
1109 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi, size, addr, val);
1110 #ifdef DEBUG_MXCC
1111 dump_mxcc(env);
1112 #endif
1113 break;
1114 case 3: /* MMU flush */
1116 int mmulev;
1118 mmulev = (addr >> 8) & 15;
1119 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1120 switch (mmulev) {
1121 case 0: // flush page
1122 tlb_flush_page(env, addr & 0xfffff000);
1123 break;
1124 case 1: // flush segment (256k)
1125 case 2: // flush region (16M)
1126 case 3: // flush context (4G)
1127 case 4: // flush entire
1128 tlb_flush(env, 1);
1129 break;
1130 default:
1131 break;
1133 #ifdef DEBUG_MMU
1134 dump_mmu(env);
1135 #endif
1137 break;
1138 case 4: /* write MMU regs */
1140 int reg = (addr >> 8) & 0x1f;
1141 uint32_t oldreg;
1143 oldreg = env->mmuregs[reg];
1144 switch(reg) {
1145 case 0: // Control Register
1146 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1147 (val & 0x00ffffff);
1148 // Mappings generated during no-fault mode or MMU
1149 // disabled mode are invalid in normal mode
1150 if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
1151 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
1152 tlb_flush(env, 1);
1153 break;
1154 case 1: // Context Table Pointer Register
1155 env->mmuregs[reg] = val & env->mmu_ctpr_mask;
1156 break;
1157 case 2: // Context Register
1158 env->mmuregs[reg] = val & env->mmu_cxr_mask;
1159 if (oldreg != env->mmuregs[reg]) {
1160 /* we flush when the MMU context changes because
1161 QEMU has no MMU context support */
1162 tlb_flush(env, 1);
1164 break;
1165 case 3: // Synchronous Fault Status Register with Clear
1166 case 4: // Synchronous Fault Address Register
1167 break;
1168 case 0x10: // TLB Replacement Control Register
1169 env->mmuregs[reg] = val & env->mmu_trcr_mask;
1170 break;
1171 case 0x13: // Synchronous Fault Status Register with Read and Clear
1172 env->mmuregs[3] = val & env->mmu_sfsr_mask;
1173 break;
1174 case 0x14: // Synchronous Fault Address Register
1175 env->mmuregs[4] = val;
1176 break;
1177 default:
1178 env->mmuregs[reg] = val;
1179 break;
1181 if (oldreg != env->mmuregs[reg]) {
1182 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
1184 #ifdef DEBUG_MMU
1185 dump_mmu(env);
1186 #endif
1188 break;
1189 case 5: // Turbosparc ITLB Diagnostic
1190 case 6: // Turbosparc DTLB Diagnostic
1191 case 7: // Turbosparc IOTLB Diagnostic
1192 break;
1193 case 0xa: /* User data access */
1194 switch(size) {
1195 case 1:
1196 stb_user(addr, val);
1197 break;
1198 case 2:
1199 stw_user(addr & ~1, val);
1200 break;
1201 default:
1202 case 4:
1203 stl_user(addr & ~3, val);
1204 break;
1205 case 8:
1206 stq_user(addr & ~7, val);
1207 break;
1209 break;
1210 case 0xb: /* Supervisor data access */
1211 switch(size) {
1212 case 1:
1213 stb_kernel(addr, val);
1214 break;
1215 case 2:
1216 stw_kernel(addr & ~1, val);
1217 break;
1218 default:
1219 case 4:
1220 stl_kernel(addr & ~3, val);
1221 break;
1222 case 8:
1223 stq_kernel(addr & ~7, val);
1224 break;
1226 break;
1227 case 0xc: /* I-cache tag */
1228 case 0xd: /* I-cache data */
1229 case 0xe: /* D-cache tag */
1230 case 0xf: /* D-cache data */
1231 case 0x10: /* I/D-cache flush page */
1232 case 0x11: /* I/D-cache flush segment */
1233 case 0x12: /* I/D-cache flush region */
1234 case 0x13: /* I/D-cache flush context */
1235 case 0x14: /* I/D-cache flush user */
1236 break;
1237 case 0x17: /* Block copy, sta access */
1239 // val = src
1240 // addr = dst
1241 // copy 32 bytes
1242 unsigned int i;
1243 uint32_t src = val & ~3, dst = addr & ~3, temp;
1245 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1246 temp = ldl_kernel(src);
1247 stl_kernel(dst, temp);
1250 break;
1251 case 0x1f: /* Block fill, stda access */
1253 // addr = dst
1254 // fill 32 bytes with val
1255 unsigned int i;
1256 uint32_t dst = addr & 7;
1258 for (i = 0; i < 32; i += 8, dst += 8)
1259 stq_kernel(dst, val);
1261 break;
1262 case 0x20: /* MMU passthrough */
1264 switch(size) {
1265 case 1:
1266 stb_phys(addr, val);
1267 break;
1268 case 2:
1269 stw_phys(addr & ~1, val);
1270 break;
1271 case 4:
1272 default:
1273 stl_phys(addr & ~3, val);
1274 break;
1275 case 8:
1276 stq_phys(addr & ~7, val);
1277 break;
1280 break;
1281 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1283 switch(size) {
1284 case 1:
1285 stb_phys((target_phys_addr_t)addr
1286 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1287 break;
1288 case 2:
1289 stw_phys((target_phys_addr_t)(addr & ~1)
1290 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1291 break;
1292 case 4:
1293 default:
1294 stl_phys((target_phys_addr_t)(addr & ~3)
1295 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1296 break;
1297 case 8:
1298 stq_phys((target_phys_addr_t)(addr & ~7)
1299 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1300 break;
1303 break;
1304 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1305 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1306 // Turbosparc snoop RAM
1307 case 0x32: // store buffer control or Turbosparc page table descriptor diagnostic
1308 case 0x36: /* I-cache flash clear */
1309 case 0x37: /* D-cache flash clear */
1310 case 0x38: /* breakpoint diagnostics */
1311 case 0x4c: /* breakpoint action */
1312 break;
1313 case 8: /* User code access, XXX */
1314 case 9: /* Supervisor code access, XXX */
1315 default:
1316 do_unassigned_access(addr, 1, 0, asi);
1317 break;
1319 #ifdef DEBUG_ASI
1320 dump_asi("write", addr, asi, size, val);
1321 #endif
1324 #endif /* CONFIG_USER_ONLY */
1325 #else /* TARGET_SPARC64 */
1327 #ifdef CONFIG_USER_ONLY
1328 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1330 uint64_t ret = 0;
1331 #if defined(DEBUG_ASI)
1332 target_ulong last_addr = addr;
1333 #endif
1335 if (asi < 0x80)
1336 raise_exception(TT_PRIV_ACT);
1338 switch (asi) {
1339 case 0x80: // Primary
1340 case 0x82: // Primary no-fault
1341 case 0x88: // Primary LE
1342 case 0x8a: // Primary no-fault LE
1344 switch(size) {
1345 case 1:
1346 ret = ldub_raw(addr);
1347 break;
1348 case 2:
1349 ret = lduw_raw(addr & ~1);
1350 break;
1351 case 4:
1352 ret = ldl_raw(addr & ~3);
1353 break;
1354 default:
1355 case 8:
1356 ret = ldq_raw(addr & ~7);
1357 break;
1360 break;
1361 case 0x81: // Secondary
1362 case 0x83: // Secondary no-fault
1363 case 0x89: // Secondary LE
1364 case 0x8b: // Secondary no-fault LE
1365 // XXX
1366 break;
1367 default:
1368 break;
1371 /* Convert from little endian */
1372 switch (asi) {
1373 case 0x88: // Primary LE
1374 case 0x89: // Secondary LE
1375 case 0x8a: // Primary no-fault LE
1376 case 0x8b: // Secondary no-fault LE
1377 switch(size) {
1378 case 2:
1379 ret = bswap16(ret);
1380 break;
1381 case 4:
1382 ret = bswap32(ret);
1383 break;
1384 case 8:
1385 ret = bswap64(ret);
1386 break;
1387 default:
1388 break;
1390 default:
1391 break;
1394 /* Convert to signed number */
1395 if (sign) {
1396 switch(size) {
1397 case 1:
1398 ret = (int8_t) ret;
1399 break;
1400 case 2:
1401 ret = (int16_t) ret;
1402 break;
1403 case 4:
1404 ret = (int32_t) ret;
1405 break;
1406 default:
1407 break;
1410 #ifdef DEBUG_ASI
1411 dump_asi("read ", last_addr, asi, size, ret);
1412 #endif
1413 return ret;
1416 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1418 #ifdef DEBUG_ASI
1419 dump_asi("write", addr, asi, size, val);
1420 #endif
1421 if (asi < 0x80)
1422 raise_exception(TT_PRIV_ACT);
1424 /* Convert to little endian */
1425 switch (asi) {
1426 case 0x88: // Primary LE
1427 case 0x89: // Secondary LE
1428 switch(size) {
1429 case 2:
1430 addr = bswap16(addr);
1431 break;
1432 case 4:
1433 addr = bswap32(addr);
1434 break;
1435 case 8:
1436 addr = bswap64(addr);
1437 break;
1438 default:
1439 break;
1441 default:
1442 break;
1445 switch(asi) {
1446 case 0x80: // Primary
1447 case 0x88: // Primary LE
1449 switch(size) {
1450 case 1:
1451 stb_raw(addr, val);
1452 break;
1453 case 2:
1454 stw_raw(addr & ~1, val);
1455 break;
1456 case 4:
1457 stl_raw(addr & ~3, val);
1458 break;
1459 case 8:
1460 default:
1461 stq_raw(addr & ~7, val);
1462 break;
1465 break;
1466 case 0x81: // Secondary
1467 case 0x89: // Secondary LE
1468 // XXX
1469 return;
1471 case 0x82: // Primary no-fault, RO
1472 case 0x83: // Secondary no-fault, RO
1473 case 0x8a: // Primary no-fault LE, RO
1474 case 0x8b: // Secondary no-fault LE, RO
1475 default:
1476 do_unassigned_access(addr, 1, 0, 1);
1477 return;
1481 #else /* CONFIG_USER_ONLY */
1483 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1485 uint64_t ret = 0;
1486 #if defined(DEBUG_ASI)
1487 target_ulong last_addr = addr;
1488 #endif
1490 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1491 || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1492 raise_exception(TT_PRIV_ACT);
1494 switch (asi) {
1495 case 0x10: // As if user primary
1496 case 0x18: // As if user primary LE
1497 case 0x80: // Primary
1498 case 0x82: // Primary no-fault
1499 case 0x88: // Primary LE
1500 case 0x8a: // Primary no-fault LE
1501 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1502 if (env->hpstate & HS_PRIV) {
1503 switch(size) {
1504 case 1:
1505 ret = ldub_hypv(addr);
1506 break;
1507 case 2:
1508 ret = lduw_hypv(addr & ~1);
1509 break;
1510 case 4:
1511 ret = ldl_hypv(addr & ~3);
1512 break;
1513 default:
1514 case 8:
1515 ret = ldq_hypv(addr & ~7);
1516 break;
1518 } else {
1519 switch(size) {
1520 case 1:
1521 ret = ldub_kernel(addr);
1522 break;
1523 case 2:
1524 ret = lduw_kernel(addr & ~1);
1525 break;
1526 case 4:
1527 ret = ldl_kernel(addr & ~3);
1528 break;
1529 default:
1530 case 8:
1531 ret = ldq_kernel(addr & ~7);
1532 break;
1535 } else {
1536 switch(size) {
1537 case 1:
1538 ret = ldub_user(addr);
1539 break;
1540 case 2:
1541 ret = lduw_user(addr & ~1);
1542 break;
1543 case 4:
1544 ret = ldl_user(addr & ~3);
1545 break;
1546 default:
1547 case 8:
1548 ret = ldq_user(addr & ~7);
1549 break;
1552 break;
1553 case 0x14: // Bypass
1554 case 0x15: // Bypass, non-cacheable
1555 case 0x1c: // Bypass LE
1556 case 0x1d: // Bypass, non-cacheable LE
1558 switch(size) {
1559 case 1:
1560 ret = ldub_phys(addr);
1561 break;
1562 case 2:
1563 ret = lduw_phys(addr & ~1);
1564 break;
1565 case 4:
1566 ret = ldl_phys(addr & ~3);
1567 break;
1568 default:
1569 case 8:
1570 ret = ldq_phys(addr & ~7);
1571 break;
1573 break;
1575 case 0x04: // Nucleus
1576 case 0x0c: // Nucleus Little Endian (LE)
1577 case 0x11: // As if user secondary
1578 case 0x19: // As if user secondary LE
1579 case 0x24: // Nucleus quad LDD 128 bit atomic
1580 case 0x2c: // Nucleus quad LDD 128 bit atomic
1581 case 0x4a: // UPA config
1582 case 0x81: // Secondary
1583 case 0x83: // Secondary no-fault
1584 case 0x89: // Secondary LE
1585 case 0x8b: // Secondary no-fault LE
1586 // XXX
1587 break;
1588 case 0x45: // LSU
1589 ret = env->lsu;
1590 break;
1591 case 0x50: // I-MMU regs
1593 int reg = (addr >> 3) & 0xf;
1595 ret = env->immuregs[reg];
1596 break;
1598 case 0x51: // I-MMU 8k TSB pointer
1599 case 0x52: // I-MMU 64k TSB pointer
1600 case 0x55: // I-MMU data access
1601 // XXX
1602 break;
1603 case 0x56: // I-MMU tag read
1605 unsigned int i;
1607 for (i = 0; i < 64; i++) {
1608 // Valid, ctx match, vaddr match
1609 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1610 env->itlb_tag[i] == addr) {
1611 ret = env->itlb_tag[i];
1612 break;
1615 break;
1617 case 0x58: // D-MMU regs
1619 int reg = (addr >> 3) & 0xf;
1621 ret = env->dmmuregs[reg];
1622 break;
1624 case 0x5e: // D-MMU tag read
1626 unsigned int i;
1628 for (i = 0; i < 64; i++) {
1629 // Valid, ctx match, vaddr match
1630 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1631 env->dtlb_tag[i] == addr) {
1632 ret = env->dtlb_tag[i];
1633 break;
1636 break;
1638 case 0x59: // D-MMU 8k TSB pointer
1639 case 0x5a: // D-MMU 64k TSB pointer
1640 case 0x5b: // D-MMU data pointer
1641 case 0x5d: // D-MMU data access
1642 case 0x48: // Interrupt dispatch, RO
1643 case 0x49: // Interrupt data receive
1644 case 0x7f: // Incoming interrupt vector, RO
1645 // XXX
1646 break;
1647 case 0x54: // I-MMU data in, WO
1648 case 0x57: // I-MMU demap, WO
1649 case 0x5c: // D-MMU data in, WO
1650 case 0x5f: // D-MMU demap, WO
1651 case 0x77: // Interrupt vector, WO
1652 default:
1653 do_unassigned_access(addr, 0, 0, 1);
1654 ret = 0;
1655 break;
1658 /* Convert from little endian */
1659 switch (asi) {
1660 case 0x0c: // Nucleus Little Endian (LE)
1661 case 0x18: // As if user primary LE
1662 case 0x19: // As if user secondary LE
1663 case 0x1c: // Bypass LE
1664 case 0x1d: // Bypass, non-cacheable LE
1665 case 0x88: // Primary LE
1666 case 0x89: // Secondary LE
1667 case 0x8a: // Primary no-fault LE
1668 case 0x8b: // Secondary no-fault LE
1669 switch(size) {
1670 case 2:
1671 ret = bswap16(ret);
1672 break;
1673 case 4:
1674 ret = bswap32(ret);
1675 break;
1676 case 8:
1677 ret = bswap64(ret);
1678 break;
1679 default:
1680 break;
1682 default:
1683 break;
1686 /* Convert to signed number */
1687 if (sign) {
1688 switch(size) {
1689 case 1:
1690 ret = (int8_t) ret;
1691 break;
1692 case 2:
1693 ret = (int16_t) ret;
1694 break;
1695 case 4:
1696 ret = (int32_t) ret;
1697 break;
1698 default:
1699 break;
1702 #ifdef DEBUG_ASI
1703 dump_asi("read ", last_addr, asi, size, ret);
1704 #endif
1705 return ret;
1708 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1710 #ifdef DEBUG_ASI
1711 dump_asi("write", addr, asi, size, val);
1712 #endif
1713 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1714 || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1715 raise_exception(TT_PRIV_ACT);
1717 /* Convert to little endian */
1718 switch (asi) {
1719 case 0x0c: // Nucleus Little Endian (LE)
1720 case 0x18: // As if user primary LE
1721 case 0x19: // As if user secondary LE
1722 case 0x1c: // Bypass LE
1723 case 0x1d: // Bypass, non-cacheable LE
1724 case 0x88: // Primary LE
1725 case 0x89: // Secondary LE
1726 switch(size) {
1727 case 2:
1728 addr = bswap16(addr);
1729 break;
1730 case 4:
1731 addr = bswap32(addr);
1732 break;
1733 case 8:
1734 addr = bswap64(addr);
1735 break;
1736 default:
1737 break;
1739 default:
1740 break;
1743 switch(asi) {
1744 case 0x10: // As if user primary
1745 case 0x18: // As if user primary LE
1746 case 0x80: // Primary
1747 case 0x88: // Primary LE
1748 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1749 if (env->hpstate & HS_PRIV) {
1750 switch(size) {
1751 case 1:
1752 stb_hypv(addr, val);
1753 break;
1754 case 2:
1755 stw_hypv(addr & ~1, val);
1756 break;
1757 case 4:
1758 stl_hypv(addr & ~3, val);
1759 break;
1760 case 8:
1761 default:
1762 stq_hypv(addr & ~7, val);
1763 break;
1765 } else {
1766 switch(size) {
1767 case 1:
1768 stb_kernel(addr, val);
1769 break;
1770 case 2:
1771 stw_kernel(addr & ~1, val);
1772 break;
1773 case 4:
1774 stl_kernel(addr & ~3, val);
1775 break;
1776 case 8:
1777 default:
1778 stq_kernel(addr & ~7, val);
1779 break;
1782 } else {
1783 switch(size) {
1784 case 1:
1785 stb_user(addr, val);
1786 break;
1787 case 2:
1788 stw_user(addr & ~1, val);
1789 break;
1790 case 4:
1791 stl_user(addr & ~3, val);
1792 break;
1793 case 8:
1794 default:
1795 stq_user(addr & ~7, val);
1796 break;
1799 break;
1800 case 0x14: // Bypass
1801 case 0x15: // Bypass, non-cacheable
1802 case 0x1c: // Bypass LE
1803 case 0x1d: // Bypass, non-cacheable LE
1805 switch(size) {
1806 case 1:
1807 stb_phys(addr, val);
1808 break;
1809 case 2:
1810 stw_phys(addr & ~1, val);
1811 break;
1812 case 4:
1813 stl_phys(addr & ~3, val);
1814 break;
1815 case 8:
1816 default:
1817 stq_phys(addr & ~7, val);
1818 break;
1821 return;
1822 case 0x04: // Nucleus
1823 case 0x0c: // Nucleus Little Endian (LE)
1824 case 0x11: // As if user secondary
1825 case 0x19: // As if user secondary LE
1826 case 0x24: // Nucleus quad LDD 128 bit atomic
1827 case 0x2c: // Nucleus quad LDD 128 bit atomic
1828 case 0x4a: // UPA config
1829 case 0x81: // Secondary
1830 case 0x89: // Secondary LE
1831 // XXX
1832 return;
1833 case 0x45: // LSU
1835 uint64_t oldreg;
1837 oldreg = env->lsu;
1838 env->lsu = val & (DMMU_E | IMMU_E);
1839 // Mappings generated during D/I MMU disabled mode are
1840 // invalid in normal mode
1841 if (oldreg != env->lsu) {
1842 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1843 #ifdef DEBUG_MMU
1844 dump_mmu(env);
1845 #endif
1846 tlb_flush(env, 1);
1848 return;
1850 case 0x50: // I-MMU regs
1852 int reg = (addr >> 3) & 0xf;
1853 uint64_t oldreg;
1855 oldreg = env->immuregs[reg];
1856 switch(reg) {
1857 case 0: // RO
1858 case 4:
1859 return;
1860 case 1: // Not in I-MMU
1861 case 2:
1862 case 7:
1863 case 8:
1864 return;
1865 case 3: // SFSR
1866 if ((val & 1) == 0)
1867 val = 0; // Clear SFSR
1868 break;
1869 case 5: // TSB access
1870 case 6: // Tag access
1871 default:
1872 break;
1874 env->immuregs[reg] = val;
1875 if (oldreg != env->immuregs[reg]) {
1876 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1878 #ifdef DEBUG_MMU
1879 dump_mmu(env);
1880 #endif
1881 return;
1883 case 0x54: // I-MMU data in
1885 unsigned int i;
1887 // Try finding an invalid entry
1888 for (i = 0; i < 64; i++) {
1889 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1890 env->itlb_tag[i] = env->immuregs[6];
1891 env->itlb_tte[i] = val;
1892 return;
1895 // Try finding an unlocked entry
1896 for (i = 0; i < 64; i++) {
1897 if ((env->itlb_tte[i] & 0x40) == 0) {
1898 env->itlb_tag[i] = env->immuregs[6];
1899 env->itlb_tte[i] = val;
1900 return;
1903 // error state?
1904 return;
1906 case 0x55: // I-MMU data access
1908 unsigned int i = (addr >> 3) & 0x3f;
1910 env->itlb_tag[i] = env->immuregs[6];
1911 env->itlb_tte[i] = val;
1912 return;
1914 case 0x57: // I-MMU demap
1915 // XXX
1916 return;
1917 case 0x58: // D-MMU regs
1919 int reg = (addr >> 3) & 0xf;
1920 uint64_t oldreg;
1922 oldreg = env->dmmuregs[reg];
1923 switch(reg) {
1924 case 0: // RO
1925 case 4:
1926 return;
1927 case 3: // SFSR
1928 if ((val & 1) == 0) {
1929 val = 0; // Clear SFSR, Fault address
1930 env->dmmuregs[4] = 0;
1932 env->dmmuregs[reg] = val;
1933 break;
1934 case 1: // Primary context
1935 case 2: // Secondary context
1936 case 5: // TSB access
1937 case 6: // Tag access
1938 case 7: // Virtual Watchpoint
1939 case 8: // Physical Watchpoint
1940 default:
1941 break;
1943 env->dmmuregs[reg] = val;
1944 if (oldreg != env->dmmuregs[reg]) {
1945 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1947 #ifdef DEBUG_MMU
1948 dump_mmu(env);
1949 #endif
1950 return;
1952 case 0x5c: // D-MMU data in
1954 unsigned int i;
1956 // Try finding an invalid entry
1957 for (i = 0; i < 64; i++) {
1958 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1959 env->dtlb_tag[i] = env->dmmuregs[6];
1960 env->dtlb_tte[i] = val;
1961 return;
1964 // Try finding an unlocked entry
1965 for (i = 0; i < 64; i++) {
1966 if ((env->dtlb_tte[i] & 0x40) == 0) {
1967 env->dtlb_tag[i] = env->dmmuregs[6];
1968 env->dtlb_tte[i] = val;
1969 return;
1972 // error state?
1973 return;
1975 case 0x5d: // D-MMU data access
1977 unsigned int i = (addr >> 3) & 0x3f;
1979 env->dtlb_tag[i] = env->dmmuregs[6];
1980 env->dtlb_tte[i] = val;
1981 return;
1983 case 0x5f: // D-MMU demap
1984 case 0x49: // Interrupt data receive
1985 // XXX
1986 return;
1987 case 0x51: // I-MMU 8k TSB pointer, RO
1988 case 0x52: // I-MMU 64k TSB pointer, RO
1989 case 0x56: // I-MMU tag read, RO
1990 case 0x59: // D-MMU 8k TSB pointer, RO
1991 case 0x5a: // D-MMU 64k TSB pointer, RO
1992 case 0x5b: // D-MMU data pointer, RO
1993 case 0x5e: // D-MMU tag read, RO
1994 case 0x48: // Interrupt dispatch, RO
1995 case 0x7f: // Incoming interrupt vector, RO
1996 case 0x82: // Primary no-fault, RO
1997 case 0x83: // Secondary no-fault, RO
1998 case 0x8a: // Primary no-fault LE, RO
1999 case 0x8b: // Secondary no-fault LE, RO
2000 default:
2001 do_unassigned_access(addr, 1, 0, 1);
2002 return;
2005 #endif /* CONFIG_USER_ONLY */
2007 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2009 unsigned int i;
2010 target_ulong val;
2012 switch (asi) {
2013 case 0xf0: // Block load primary
2014 case 0xf1: // Block load secondary
2015 case 0xf8: // Block load primary LE
2016 case 0xf9: // Block load secondary LE
2017 if (rd & 7) {
2018 raise_exception(TT_ILL_INSN);
2019 return;
2021 if (addr & 0x3f) {
2022 raise_exception(TT_UNALIGNED);
2023 return;
2025 for (i = 0; i < 16; i++) {
2026 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0);
2027 addr += 4;
2030 return;
2031 default:
2032 break;
2035 val = helper_ld_asi(addr, asi, size, 0);
2036 switch(size) {
2037 default:
2038 case 4:
2039 *((uint32_t *)&FT0) = val;
2040 break;
2041 case 8:
2042 *((int64_t *)&DT0) = val;
2043 break;
2044 case 16:
2045 // XXX
2046 break;
2050 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2052 unsigned int i;
2053 target_ulong val = 0;
2055 switch (asi) {
2056 case 0xf0: // Block store primary
2057 case 0xf1: // Block store secondary
2058 case 0xf8: // Block store primary LE
2059 case 0xf9: // Block store secondary LE
2060 if (rd & 7) {
2061 raise_exception(TT_ILL_INSN);
2062 return;
2064 if (addr & 0x3f) {
2065 raise_exception(TT_UNALIGNED);
2066 return;
2068 for (i = 0; i < 16; i++) {
2069 val = *(uint32_t *)&env->fpr[rd++];
2070 helper_st_asi(addr, val, asi & 0x8f, 4);
2071 addr += 4;
2074 return;
2075 default:
2076 break;
2079 switch(size) {
2080 default:
2081 case 4:
2082 val = *((uint32_t *)&FT0);
2083 break;
2084 case 8:
2085 val = *((int64_t *)&DT0);
2086 break;
2087 case 16:
2088 // XXX
2089 break;
2091 helper_st_asi(addr, val, asi, size);
2094 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2095 target_ulong val2, uint32_t asi)
2097 target_ulong ret;
2099 val1 &= 0xffffffffUL;
2100 ret = helper_ld_asi(addr, asi, 4, 0);
2101 ret &= 0xffffffffUL;
2102 if (val1 == ret)
2103 helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2104 return ret;
2107 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2108 target_ulong val2, uint32_t asi)
2110 target_ulong ret;
2112 ret = helper_ld_asi(addr, asi, 8, 0);
2113 if (val1 == ret)
2114 helper_st_asi(addr, val2, asi, 8);
2115 return ret;
2117 #endif /* TARGET_SPARC64 */
2119 #ifndef TARGET_SPARC64
2120 void helper_rett(void)
2122 unsigned int cwp;
2124 if (env->psret == 1)
2125 raise_exception(TT_ILL_INSN);
2127 env->psret = 1;
2128 cwp = (env->cwp + 1) & (NWINDOWS - 1);
2129 if (env->wim & (1 << cwp)) {
2130 raise_exception(TT_WIN_UNF);
2132 set_cwp(cwp);
2133 env->psrs = env->psrps;
2135 #endif
2137 target_ulong helper_udiv(target_ulong a, target_ulong b)
2139 uint64_t x0;
2140 uint32_t x1;
2142 x0 = a | ((uint64_t) (env->y) << 32);
2143 x1 = b;
2145 if (x1 == 0) {
2146 raise_exception(TT_DIV_ZERO);
2149 x0 = x0 / x1;
2150 if (x0 > 0xffffffff) {
2151 env->cc_src2 = 1;
2152 return 0xffffffff;
2153 } else {
2154 env->cc_src2 = 0;
2155 return x0;
2159 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2161 int64_t x0;
2162 int32_t x1;
2164 x0 = a | ((int64_t) (env->y) << 32);
2165 x1 = b;
2167 if (x1 == 0) {
2168 raise_exception(TT_DIV_ZERO);
2171 x0 = x0 / x1;
2172 if ((int32_t) x0 != x0) {
2173 env->cc_src2 = 1;
2174 return x0 < 0? 0x80000000: 0x7fffffff;
2175 } else {
2176 env->cc_src2 = 0;
2177 return x0;
2181 uint64_t helper_pack64(target_ulong high, target_ulong low)
2183 return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2186 #ifdef TARGET_ABI32
2187 #define ADDR(x) ((x) & 0xffffffff)
2188 #else
2189 #define ADDR(x) (x)
2190 #endif
2192 void helper_stdf(target_ulong addr, int mem_idx)
2194 #if !defined(CONFIG_USER_ONLY)
2195 switch (mem_idx) {
2196 case 0:
2197 stfq_user(ADDR(addr), DT0);
2198 break;
2199 case 1:
2200 stfq_kernel(ADDR(addr), DT0);
2201 break;
2202 #ifdef TARGET_SPARC64
2203 case 2:
2204 stfq_hypv(ADDR(addr), DT0);
2205 break;
2206 #endif
2207 default:
2208 break;
2210 #else
2211 stfq_raw(ADDR(addr), DT0);
2212 #endif
2215 void helper_lddf(target_ulong addr, int mem_idx)
2217 #if !defined(CONFIG_USER_ONLY)
2218 switch (mem_idx) {
2219 case 0:
2220 DT0 = ldfq_user(ADDR(addr));
2221 break;
2222 case 1:
2223 DT0 = ldfq_kernel(ADDR(addr));
2224 break;
2225 #ifdef TARGET_SPARC64
2226 case 2:
2227 DT0 = ldfq_hypv(ADDR(addr));
2228 break;
2229 #endif
2230 default:
2231 break;
2233 #else
2234 DT0 = ldfq_raw(ADDR(addr));
2235 #endif
2238 void helper_ldqf(target_ulong addr, int mem_idx)
2240 // XXX add 128 bit load
2241 CPU_QuadU u;
2243 #if !defined(CONFIG_USER_ONLY)
2244 switch (mem_idx) {
2245 case 0:
2246 u.ll.upper = ldq_user(ADDR(addr));
2247 u.ll.lower = ldq_user(ADDR(addr + 8));
2248 QT0 = u.q;
2249 break;
2250 case 1:
2251 u.ll.upper = ldq_kernel(ADDR(addr));
2252 u.ll.lower = ldq_kernel(ADDR(addr + 8));
2253 QT0 = u.q;
2254 break;
2255 #ifdef TARGET_SPARC64
2256 case 2:
2257 u.ll.upper = ldq_hypv(ADDR(addr));
2258 u.ll.lower = ldq_hypv(ADDR(addr + 8));
2259 QT0 = u.q;
2260 break;
2261 #endif
2262 default:
2263 break;
2265 #else
2266 u.ll.upper = ldq_raw(ADDR(addr));
2267 u.ll.lower = ldq_raw(ADDR(addr + 8));
2268 QT0 = u.q;
2269 #endif
2272 void helper_stqf(target_ulong addr, int mem_idx)
2274 // XXX add 128 bit store
2275 CPU_QuadU u;
2277 #if !defined(CONFIG_USER_ONLY)
2278 switch (mem_idx) {
2279 case 0:
2280 u.q = QT0;
2281 stq_user(ADDR(addr), u.ll.upper);
2282 stq_user(ADDR(addr + 8), u.ll.lower);
2283 break;
2284 case 1:
2285 u.q = QT0;
2286 stq_kernel(ADDR(addr), u.ll.upper);
2287 stq_kernel(ADDR(addr + 8), u.ll.lower);
2288 break;
2289 #ifdef TARGET_SPARC64
2290 case 2:
2291 u.q = QT0;
2292 stq_hypv(ADDR(addr), u.ll.upper);
2293 stq_hypv(ADDR(addr + 8), u.ll.lower);
2294 break;
2295 #endif
2296 default:
2297 break;
2299 #else
2300 u.q = QT0;
2301 stq_raw(ADDR(addr), u.ll.upper);
2302 stq_raw(ADDR(addr + 8), u.ll.lower);
2303 #endif
2306 #undef ADDR
2308 void helper_ldfsr(void)
2310 int rnd_mode;
2312 PUT_FSR32(env, *((uint32_t *) &FT0));
2313 switch (env->fsr & FSR_RD_MASK) {
2314 case FSR_RD_NEAREST:
2315 rnd_mode = float_round_nearest_even;
2316 break;
2317 default:
2318 case FSR_RD_ZERO:
2319 rnd_mode = float_round_to_zero;
2320 break;
2321 case FSR_RD_POS:
2322 rnd_mode = float_round_up;
2323 break;
2324 case FSR_RD_NEG:
2325 rnd_mode = float_round_down;
2326 break;
2328 set_float_rounding_mode(rnd_mode, &env->fp_status);
2331 void helper_stfsr(void)
2333 *((uint32_t *) &FT0) = GET_FSR32(env);
2336 void helper_debug(void)
2338 env->exception_index = EXCP_DEBUG;
2339 cpu_loop_exit();
2342 #ifndef TARGET_SPARC64
2343 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2344 handling ? */
2345 void helper_save(void)
2347 uint32_t cwp;
2349 cwp = (env->cwp - 1) & (NWINDOWS - 1);
2350 if (env->wim & (1 << cwp)) {
2351 raise_exception(TT_WIN_OVF);
2353 set_cwp(cwp);
2356 void helper_restore(void)
2358 uint32_t cwp;
2360 cwp = (env->cwp + 1) & (NWINDOWS - 1);
2361 if (env->wim & (1 << cwp)) {
2362 raise_exception(TT_WIN_UNF);
2364 set_cwp(cwp);
2367 void helper_wrpsr(target_ulong new_psr)
2369 if ((new_psr & PSR_CWP) >= NWINDOWS)
2370 raise_exception(TT_ILL_INSN);
2371 else
2372 PUT_PSR(env, new_psr);
2375 target_ulong helper_rdpsr(void)
2377 return GET_PSR(env);
2380 #else
2381 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2382 handling ? */
2383 void helper_save(void)
2385 uint32_t cwp;
2387 cwp = (env->cwp - 1) & (NWINDOWS - 1);
2388 if (env->cansave == 0) {
2389 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2390 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2391 ((env->wstate & 0x7) << 2)));
2392 } else {
2393 if (env->cleanwin - env->canrestore == 0) {
2394 // XXX Clean windows without trap
2395 raise_exception(TT_CLRWIN);
2396 } else {
2397 env->cansave--;
2398 env->canrestore++;
2399 set_cwp(cwp);
2404 void helper_restore(void)
2406 uint32_t cwp;
2408 cwp = (env->cwp + 1) & (NWINDOWS - 1);
2409 if (env->canrestore == 0) {
2410 raise_exception(TT_FILL | (env->otherwin != 0 ?
2411 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2412 ((env->wstate & 0x7) << 2)));
2413 } else {
2414 env->cansave++;
2415 env->canrestore--;
2416 set_cwp(cwp);
2420 void helper_flushw(void)
2422 if (env->cansave != NWINDOWS - 2) {
2423 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2424 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2425 ((env->wstate & 0x7) << 2)));
2429 void helper_saved(void)
2431 env->cansave++;
2432 if (env->otherwin == 0)
2433 env->canrestore--;
2434 else
2435 env->otherwin--;
2438 void helper_restored(void)
2440 env->canrestore++;
2441 if (env->cleanwin < NWINDOWS - 1)
2442 env->cleanwin++;
2443 if (env->otherwin == 0)
2444 env->cansave--;
2445 else
2446 env->otherwin--;
2449 target_ulong helper_rdccr(void)
2451 return GET_CCR(env);
2454 void helper_wrccr(target_ulong new_ccr)
2456 PUT_CCR(env, new_ccr);
2459 // CWP handling is reversed in V9, but we still use the V8 register
2460 // order.
2461 target_ulong helper_rdcwp(void)
2463 return GET_CWP64(env);
2466 void helper_wrcwp(target_ulong new_cwp)
2468 PUT_CWP64(env, new_cwp);
2471 // This function uses non-native bit order
2472 #define GET_FIELD(X, FROM, TO) \
2473 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2475 // This function uses the order in the manuals, i.e. bit 0 is 2^0
2476 #define GET_FIELD_SP(X, FROM, TO) \
2477 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2479 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2481 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2482 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2483 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2484 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2485 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2486 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2487 (((pixel_addr >> 55) & 1) << 4) |
2488 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2489 GET_FIELD_SP(pixel_addr, 11, 12);
2492 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2494 uint64_t tmp;
2496 tmp = addr + offset;
2497 env->gsr &= ~7ULL;
2498 env->gsr |= tmp & 7ULL;
2499 return tmp & ~7ULL;
2502 target_ulong helper_popc(target_ulong val)
2504 return ctpop64(val);
2507 static inline uint64_t *get_gregset(uint64_t pstate)
2509 switch (pstate) {
2510 default:
2511 case 0:
2512 return env->bgregs;
2513 case PS_AG:
2514 return env->agregs;
2515 case PS_MG:
2516 return env->mgregs;
2517 case PS_IG:
2518 return env->igregs;
2522 static inline void change_pstate(uint64_t new_pstate)
2524 uint64_t pstate_regs, new_pstate_regs;
2525 uint64_t *src, *dst;
2527 pstate_regs = env->pstate & 0xc01;
2528 new_pstate_regs = new_pstate & 0xc01;
2529 if (new_pstate_regs != pstate_regs) {
2530 // Switch global register bank
2531 src = get_gregset(new_pstate_regs);
2532 dst = get_gregset(pstate_regs);
2533 memcpy32(dst, env->gregs);
2534 memcpy32(env->gregs, src);
2536 env->pstate = new_pstate;
2539 void helper_wrpstate(target_ulong new_state)
2541 change_pstate(new_state & 0xf3f);
2544 void helper_done(void)
2546 env->tl--;
2547 env->tsptr = &env->ts[env->tl];
2548 env->pc = env->tsptr->tpc;
2549 env->npc = env->tsptr->tnpc + 4;
2550 PUT_CCR(env, env->tsptr->tstate >> 32);
2551 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2552 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2553 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2556 void helper_retry(void)
2558 env->tl--;
2559 env->tsptr = &env->ts[env->tl];
2560 env->pc = env->tsptr->tpc;
2561 env->npc = env->tsptr->tnpc;
2562 PUT_CCR(env, env->tsptr->tstate >> 32);
2563 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2564 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2565 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2567 #endif
2569 void set_cwp(int new_cwp)
2571 /* put the modified wrap registers at their proper location */
2572 if (env->cwp == (NWINDOWS - 1))
2573 memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
2574 env->cwp = new_cwp;
2575 /* put the wrap registers at their temporary location */
2576 if (new_cwp == (NWINDOWS - 1))
2577 memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
2578 env->regwptr = env->regbase + (new_cwp * 16);
2579 REGWPTR = env->regwptr;
2582 void cpu_set_cwp(CPUState *env1, int new_cwp)
2584 CPUState *saved_env;
2585 #ifdef reg_REGWPTR
2586 target_ulong *saved_regwptr;
2587 #endif
2589 saved_env = env;
2590 #ifdef reg_REGWPTR
2591 saved_regwptr = REGWPTR;
2592 #endif
2593 env = env1;
2594 set_cwp(new_cwp);
2595 env = saved_env;
2596 #ifdef reg_REGWPTR
2597 REGWPTR = saved_regwptr;
2598 #endif
2601 #ifdef TARGET_SPARC64
2602 #ifdef DEBUG_PCALL
2603 static const char * const excp_names[0x50] = {
2604 [TT_TFAULT] = "Instruction Access Fault",
2605 [TT_TMISS] = "Instruction Access MMU Miss",
2606 [TT_CODE_ACCESS] = "Instruction Access Error",
2607 [TT_ILL_INSN] = "Illegal Instruction",
2608 [TT_PRIV_INSN] = "Privileged Instruction",
2609 [TT_NFPU_INSN] = "FPU Disabled",
2610 [TT_FP_EXCP] = "FPU Exception",
2611 [TT_TOVF] = "Tag Overflow",
2612 [TT_CLRWIN] = "Clean Windows",
2613 [TT_DIV_ZERO] = "Division By Zero",
2614 [TT_DFAULT] = "Data Access Fault",
2615 [TT_DMISS] = "Data Access MMU Miss",
2616 [TT_DATA_ACCESS] = "Data Access Error",
2617 [TT_DPROT] = "Data Protection Error",
2618 [TT_UNALIGNED] = "Unaligned Memory Access",
2619 [TT_PRIV_ACT] = "Privileged Action",
2620 [TT_EXTINT | 0x1] = "External Interrupt 1",
2621 [TT_EXTINT | 0x2] = "External Interrupt 2",
2622 [TT_EXTINT | 0x3] = "External Interrupt 3",
2623 [TT_EXTINT | 0x4] = "External Interrupt 4",
2624 [TT_EXTINT | 0x5] = "External Interrupt 5",
2625 [TT_EXTINT | 0x6] = "External Interrupt 6",
2626 [TT_EXTINT | 0x7] = "External Interrupt 7",
2627 [TT_EXTINT | 0x8] = "External Interrupt 8",
2628 [TT_EXTINT | 0x9] = "External Interrupt 9",
2629 [TT_EXTINT | 0xa] = "External Interrupt 10",
2630 [TT_EXTINT | 0xb] = "External Interrupt 11",
2631 [TT_EXTINT | 0xc] = "External Interrupt 12",
2632 [TT_EXTINT | 0xd] = "External Interrupt 13",
2633 [TT_EXTINT | 0xe] = "External Interrupt 14",
2634 [TT_EXTINT | 0xf] = "External Interrupt 15",
2636 #endif
2638 void do_interrupt(int intno)
2640 #ifdef DEBUG_PCALL
2641 if (loglevel & CPU_LOG_INT) {
2642 static int count;
2643 const char *name;
2645 if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80))
2646 name = "Unknown";
2647 else if (intno >= 0x100)
2648 name = "Trap Instruction";
2649 else if (intno >= 0xc0)
2650 name = "Window Fill";
2651 else if (intno >= 0x80)
2652 name = "Window Spill";
2653 else {
2654 name = excp_names[intno];
2655 if (!name)
2656 name = "Unknown";
2659 fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2660 " SP=%016" PRIx64 "\n",
2661 count, name, intno,
2662 env->pc,
2663 env->npc, env->regwptr[6]);
2664 cpu_dump_state(env, logfile, fprintf, 0);
2665 #if 0
2667 int i;
2668 uint8_t *ptr;
2670 fprintf(logfile, " code=");
2671 ptr = (uint8_t *)env->pc;
2672 for(i = 0; i < 16; i++) {
2673 fprintf(logfile, " %02x", ldub(ptr + i));
2675 fprintf(logfile, "\n");
2677 #endif
2678 count++;
2680 #endif
2681 #if !defined(CONFIG_USER_ONLY)
2682 if (env->tl == MAXTL) {
2683 cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
2684 return;
2686 #endif
2687 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2688 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2689 GET_CWP64(env);
2690 env->tsptr->tpc = env->pc;
2691 env->tsptr->tnpc = env->npc;
2692 env->tsptr->tt = intno;
2693 change_pstate(PS_PEF | PS_PRIV | PS_AG);
2695 if (intno == TT_CLRWIN)
2696 set_cwp((env->cwp - 1) & (NWINDOWS - 1));
2697 else if ((intno & 0x1c0) == TT_SPILL)
2698 set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
2699 else if ((intno & 0x1c0) == TT_FILL)
2700 set_cwp((env->cwp + 1) & (NWINDOWS - 1));
2701 env->tbr &= ~0x7fffULL;
2702 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2703 if (env->tl < MAXTL - 1) {
2704 env->tl++;
2705 } else {
2706 env->pstate |= PS_RED;
2707 if (env->tl != MAXTL)
2708 env->tl++;
2710 env->tsptr = &env->ts[env->tl];
2711 env->pc = env->tbr;
2712 env->npc = env->pc + 4;
2713 env->exception_index = 0;
2715 #else
2716 #ifdef DEBUG_PCALL
2717 static const char * const excp_names[0x80] = {
2718 [TT_TFAULT] = "Instruction Access Fault",
2719 [TT_ILL_INSN] = "Illegal Instruction",
2720 [TT_PRIV_INSN] = "Privileged Instruction",
2721 [TT_NFPU_INSN] = "FPU Disabled",
2722 [TT_WIN_OVF] = "Window Overflow",
2723 [TT_WIN_UNF] = "Window Underflow",
2724 [TT_UNALIGNED] = "Unaligned Memory Access",
2725 [TT_FP_EXCP] = "FPU Exception",
2726 [TT_DFAULT] = "Data Access Fault",
2727 [TT_TOVF] = "Tag Overflow",
2728 [TT_EXTINT | 0x1] = "External Interrupt 1",
2729 [TT_EXTINT | 0x2] = "External Interrupt 2",
2730 [TT_EXTINT | 0x3] = "External Interrupt 3",
2731 [TT_EXTINT | 0x4] = "External Interrupt 4",
2732 [TT_EXTINT | 0x5] = "External Interrupt 5",
2733 [TT_EXTINT | 0x6] = "External Interrupt 6",
2734 [TT_EXTINT | 0x7] = "External Interrupt 7",
2735 [TT_EXTINT | 0x8] = "External Interrupt 8",
2736 [TT_EXTINT | 0x9] = "External Interrupt 9",
2737 [TT_EXTINT | 0xa] = "External Interrupt 10",
2738 [TT_EXTINT | 0xb] = "External Interrupt 11",
2739 [TT_EXTINT | 0xc] = "External Interrupt 12",
2740 [TT_EXTINT | 0xd] = "External Interrupt 13",
2741 [TT_EXTINT | 0xe] = "External Interrupt 14",
2742 [TT_EXTINT | 0xf] = "External Interrupt 15",
2743 [TT_TOVF] = "Tag Overflow",
2744 [TT_CODE_ACCESS] = "Instruction Access Error",
2745 [TT_DATA_ACCESS] = "Data Access Error",
2746 [TT_DIV_ZERO] = "Division By Zero",
2747 [TT_NCP_INSN] = "Coprocessor Disabled",
2749 #endif
2751 void do_interrupt(int intno)
2753 int cwp;
2755 #ifdef DEBUG_PCALL
2756 if (loglevel & CPU_LOG_INT) {
2757 static int count;
2758 const char *name;
2760 if (intno < 0 || intno >= 0x100)
2761 name = "Unknown";
2762 else if (intno >= 0x80)
2763 name = "Trap Instruction";
2764 else {
2765 name = excp_names[intno];
2766 if (!name)
2767 name = "Unknown";
2770 fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2771 count, name, intno,
2772 env->pc,
2773 env->npc, env->regwptr[6]);
2774 cpu_dump_state(env, logfile, fprintf, 0);
2775 #if 0
2777 int i;
2778 uint8_t *ptr;
2780 fprintf(logfile, " code=");
2781 ptr = (uint8_t *)env->pc;
2782 for(i = 0; i < 16; i++) {
2783 fprintf(logfile, " %02x", ldub(ptr + i));
2785 fprintf(logfile, "\n");
2787 #endif
2788 count++;
2790 #endif
2791 #if !defined(CONFIG_USER_ONLY)
2792 if (env->psret == 0) {
2793 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
2794 return;
2796 #endif
2797 env->psret = 0;
2798 cwp = (env->cwp - 1) & (NWINDOWS - 1);
2799 set_cwp(cwp);
2800 env->regwptr[9] = env->pc;
2801 env->regwptr[10] = env->npc;
2802 env->psrps = env->psrs;
2803 env->psrs = 1;
2804 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2805 env->pc = env->tbr;
2806 env->npc = env->pc + 4;
2807 env->exception_index = 0;
2809 #endif
2811 #if !defined(CONFIG_USER_ONLY)
2813 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2814 void *retaddr);
2816 #define MMUSUFFIX _mmu
2817 #define ALIGNED_ONLY
2818 #ifdef __s390__
2819 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2820 #else
2821 # define GETPC() (__builtin_return_address(0))
2822 #endif
2824 #define SHIFT 0
2825 #include "softmmu_template.h"
2827 #define SHIFT 1
2828 #include "softmmu_template.h"
2830 #define SHIFT 2
2831 #include "softmmu_template.h"
2833 #define SHIFT 3
2834 #include "softmmu_template.h"
2836 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2837 void *retaddr)
2839 #ifdef DEBUG_UNALIGNED
2840 printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
2841 #endif
2842 raise_exception(TT_UNALIGNED);
2845 /* try to fill the TLB and return an exception if error. If retaddr is
2846 NULL, it means that the function was called in C code (i.e. not
2847 from generated code or from helper.c) */
2848 /* XXX: fix it to restore all registers */
2849 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2851 TranslationBlock *tb;
2852 int ret;
2853 unsigned long pc;
2854 CPUState *saved_env;
2856 /* XXX: hack to restore env in all cases, even if not called from
2857 generated code */
2858 saved_env = env;
2859 env = cpu_single_env;
2861 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2862 if (ret) {
2863 if (retaddr) {
2864 /* now we have a real cpu fault */
2865 pc = (unsigned long)retaddr;
2866 tb = tb_find_pc(pc);
2867 if (tb) {
2868 /* the PC is inside the translated code. It means that we have
2869 a virtual CPU fault */
2870 cpu_restore_state(tb, env, pc, (void *)env->cond);
2873 cpu_loop_exit();
2875 env = saved_env;
2878 #endif
2880 #ifndef TARGET_SPARC64
2881 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2882 int is_asi)
2884 CPUState *saved_env;
2886 /* XXX: hack to restore env in all cases, even if not called from
2887 generated code */
2888 saved_env = env;
2889 env = cpu_single_env;
2890 #ifdef DEBUG_UNASSIGNED
2891 if (is_asi)
2892 printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from "
2893 TARGET_FMT_lx "\n",
2894 is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2895 env->pc);
2896 else
2897 printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2898 TARGET_FMT_lx "\n",
2899 is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2900 #endif
2901 if (env->mmuregs[3]) /* Fault status register */
2902 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
2903 if (is_asi)
2904 env->mmuregs[3] |= 1 << 16;
2905 if (env->psrs)
2906 env->mmuregs[3] |= 1 << 5;
2907 if (is_exec)
2908 env->mmuregs[3] |= 1 << 6;
2909 if (is_write)
2910 env->mmuregs[3] |= 1 << 7;
2911 env->mmuregs[3] |= (5 << 2) | 2;
2912 env->mmuregs[4] = addr; /* Fault address register */
2913 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2914 if (is_exec)
2915 raise_exception(TT_CODE_ACCESS);
2916 else
2917 raise_exception(TT_DATA_ACCESS);
2919 env = saved_env;
2921 #else
2922 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2923 int is_asi)
2925 #ifdef DEBUG_UNASSIGNED
2926 CPUState *saved_env;
2928 /* XXX: hack to restore env in all cases, even if not called from
2929 generated code */
2930 saved_env = env;
2931 env = cpu_single_env;
2932 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
2933 addr, env->pc);
2934 env = saved_env;
2935 #endif
2936 if (is_exec)
2937 raise_exception(TT_CODE_ACCESS);
2938 else
2939 raise_exception(TT_DATA_ACCESS);
2941 #endif