Convert mulscc
[qemu/hppa.git] / hw / sh_pci.c
blob3f79b1038ba24020db0c039d09fa5b5506750746
1 /*
2 * SuperH on-chip PCIC emulation.
4 * Copyright (c) 2008 Takashi YOSHII
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sh.h"
26 #include "pci.h"
27 #include "bswap.h"
29 typedef struct {
30 PCIBus *bus;
31 PCIDevice *dev;
32 uint32_t par;
33 uint32_t mbr;
34 uint32_t iobr;
35 } SHPCIC;
37 static void sh_pci_reg_write (void *p, target_phys_addr_t addr, uint32_t val)
39 SHPCIC *pcic = p;
40 switch(addr) {
41 case 0 ... 0xfc:
42 cpu_to_le32w((uint32_t*)(pcic->dev->config + addr), val);
43 break;
44 case 0x1c0:
45 pcic->par = val;
46 break;
47 case 0x1c4:
48 pcic->mbr = val;
49 break;
50 case 0x1c8:
51 pcic->iobr = val;
52 break;
53 case 0x220:
54 pci_data_write(pcic->bus, pcic->par, val, 4);
55 break;
59 static uint32_t sh_pci_reg_read (void *p, target_phys_addr_t addr)
61 SHPCIC *pcic = p;
62 switch(addr) {
63 case 0 ... 0xfc:
64 return le32_to_cpup((uint32_t*)(pcic->dev->config + addr));
65 case 0x1c0:
66 return pcic->par;
67 case 0x220:
68 return pci_data_read(pcic->bus, pcic->par, 4);
70 return 0;
73 static void sh_pci_data_write (SHPCIC *pcic, target_phys_addr_t addr,
74 uint32_t val, int size)
76 pci_data_write(pcic->bus, addr + pcic->mbr, val, size);
79 static uint32_t sh_pci_mem_read (SHPCIC *pcic, target_phys_addr_t addr,
80 int size)
82 return pci_data_read(pcic->bus, addr + pcic->mbr, size);
85 static void sh_pci_writeb (void *p, target_phys_addr_t addr, uint32_t val)
87 sh_pci_data_write(p, addr, val, 1);
90 static void sh_pci_writew (void *p, target_phys_addr_t addr, uint32_t val)
92 sh_pci_data_write(p, addr, val, 2);
95 static void sh_pci_writel (void *p, target_phys_addr_t addr, uint32_t val)
97 sh_pci_data_write(p, addr, val, 4);
100 static uint32_t sh_pci_readb (void *p, target_phys_addr_t addr)
102 return sh_pci_mem_read(p, addr, 1);
105 static uint32_t sh_pci_readw (void *p, target_phys_addr_t addr)
107 return sh_pci_mem_read(p, addr, 2);
110 static uint32_t sh_pci_readl (void *p, target_phys_addr_t addr)
112 return sh_pci_mem_read(p, addr, 4);
115 static int sh_pci_addr2port(SHPCIC *pcic, target_phys_addr_t addr)
117 return addr + pcic->iobr;
120 static void sh_pci_outb (void *p, target_phys_addr_t addr, uint32_t val)
122 cpu_outb(NULL, sh_pci_addr2port(p, addr), val);
125 static void sh_pci_outw (void *p, target_phys_addr_t addr, uint32_t val)
127 cpu_outw(NULL, sh_pci_addr2port(p, addr), val);
130 static void sh_pci_outl (void *p, target_phys_addr_t addr, uint32_t val)
132 cpu_outl(NULL, sh_pci_addr2port(p, addr), val);
135 static uint32_t sh_pci_inb (void *p, target_phys_addr_t addr)
137 return cpu_inb(NULL, sh_pci_addr2port(p, addr));
140 static uint32_t sh_pci_inw (void *p, target_phys_addr_t addr)
142 return cpu_inw(NULL, sh_pci_addr2port(p, addr));
145 static uint32_t sh_pci_inl (void *p, target_phys_addr_t addr)
147 return cpu_inl(NULL, sh_pci_addr2port(p, addr));
150 typedef struct {
151 CPUReadMemoryFunc *r[3];
152 CPUWriteMemoryFunc *w[3];
153 } MemOp;
155 static MemOp sh_pci_reg = {
156 { NULL, NULL, sh_pci_reg_read },
157 { NULL, NULL, sh_pci_reg_write },
160 static MemOp sh_pci_mem = {
161 { sh_pci_readb, sh_pci_readw, sh_pci_readl },
162 { sh_pci_writeb, sh_pci_writew, sh_pci_writel },
165 static MemOp sh_pci_iop = {
166 { sh_pci_inb, sh_pci_inw, sh_pci_inl },
167 { sh_pci_outb, sh_pci_outw, sh_pci_outl },
170 PCIBus *sh_pci_register_bus(pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
171 qemu_irq *pic, int devfn_min, int nirq)
173 SHPCIC *p;
174 int mem, reg, iop;
176 p = qemu_mallocz(sizeof(SHPCIC));
177 p->bus = pci_register_bus(set_irq, map_irq, pic, devfn_min, nirq);
179 p->dev = pci_register_device(p->bus, "SH PCIC", sizeof(PCIDevice),
180 -1, NULL, NULL);
181 reg = cpu_register_io_memory(0, sh_pci_reg.r, sh_pci_reg.w, p);
182 iop = cpu_register_io_memory(0, sh_pci_iop.r, sh_pci_iop.w, p);
183 mem = cpu_register_io_memory(0, sh_pci_mem.r, sh_pci_mem.w, p);
184 cpu_register_physical_memory(0x1e200000, 0x224, reg);
185 cpu_register_physical_memory(0x1e240000, 0x40000, iop);
186 cpu_register_physical_memory(0x1d000000, 0x1000000, mem);
187 cpu_register_physical_memory(0xfe200000, 0x224, reg);
188 cpu_register_physical_memory(0xfe240000, 0x40000, iop);
189 cpu_register_physical_memory(0xfd000000, 0x1000000, mem);
191 pci_config_set_vendor_id(p->dev->config, PCI_VENDOR_ID_HITACHI);
192 pci_config_set_device_id(p->dev->config, PCI_DEVICE_ID_HITACHI_SH7751R);
193 p->dev->config[0x04] = 0x80;
194 p->dev->config[0x05] = 0x00;
195 p->dev->config[0x06] = 0x90;
196 p->dev->config[0x07] = 0x02;
198 return p->bus;