Merge branch 'master' of ssh://repo.or.cz/srv/git/qemu
[qemu/hppa.git] / hw / dma.c
blobc8ed6b0a6f7b9d9743c54bb0968a8eab0440aa69
1 /*
2 * QEMU DMA emulation
4 * Copyright (c) 2003-2004 Vassili Karpov (malc)
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "isa.h"
27 /* #define DEBUG_DMA */
29 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
30 #ifdef DEBUG_DMA
31 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
32 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
33 #else
34 #define linfo(...)
35 #define ldebug(...)
36 #endif
38 struct dma_regs {
39 int now[2];
40 uint16_t base[2];
41 uint8_t mode;
42 uint8_t page;
43 uint8_t pageh;
44 uint8_t dack;
45 uint8_t eop;
46 DMA_transfer_handler transfer_handler;
47 void *opaque;
50 #define ADDR 0
51 #define COUNT 1
53 static struct dma_cont {
54 uint8_t status;
55 uint8_t command;
56 uint8_t mask;
57 uint8_t flip_flop;
58 int dshift;
59 struct dma_regs regs[4];
60 } dma_controllers[2];
62 enum {
63 CMD_MEMORY_TO_MEMORY = 0x01,
64 CMD_FIXED_ADDRESS = 0x02,
65 CMD_BLOCK_CONTROLLER = 0x04,
66 CMD_COMPRESSED_TIME = 0x08,
67 CMD_CYCLIC_PRIORITY = 0x10,
68 CMD_EXTENDED_WRITE = 0x20,
69 CMD_LOW_DREQ = 0x40,
70 CMD_LOW_DACK = 0x80,
71 CMD_NOT_SUPPORTED = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
72 | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
73 | CMD_LOW_DREQ | CMD_LOW_DACK
77 static void DMA_run (void);
79 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
81 static void write_page (void *opaque, uint32_t nport, uint32_t data)
83 struct dma_cont *d = opaque;
84 int ichan;
86 ichan = channels[nport & 7];
87 if (-1 == ichan) {
88 dolog ("invalid channel %#x %#x\n", nport, data);
89 return;
91 d->regs[ichan].page = data;
94 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
96 struct dma_cont *d = opaque;
97 int ichan;
99 ichan = channels[nport & 7];
100 if (-1 == ichan) {
101 dolog ("invalid channel %#x %#x\n", nport, data);
102 return;
104 d->regs[ichan].pageh = data;
107 static uint32_t read_page (void *opaque, uint32_t nport)
109 struct dma_cont *d = opaque;
110 int ichan;
112 ichan = channels[nport & 7];
113 if (-1 == ichan) {
114 dolog ("invalid channel read %#x\n", nport);
115 return 0;
117 return d->regs[ichan].page;
120 static uint32_t read_pageh (void *opaque, uint32_t nport)
122 struct dma_cont *d = opaque;
123 int ichan;
125 ichan = channels[nport & 7];
126 if (-1 == ichan) {
127 dolog ("invalid channel read %#x\n", nport);
128 return 0;
130 return d->regs[ichan].pageh;
133 static inline void init_chan (struct dma_cont *d, int ichan)
135 struct dma_regs *r;
137 r = d->regs + ichan;
138 r->now[ADDR] = r->base[ADDR] << d->dshift;
139 r->now[COUNT] = 0;
142 static inline int getff (struct dma_cont *d)
144 int ff;
146 ff = d->flip_flop;
147 d->flip_flop = !ff;
148 return ff;
151 static uint32_t read_chan (void *opaque, uint32_t nport)
153 struct dma_cont *d = opaque;
154 int ichan, nreg, iport, ff, val, dir;
155 struct dma_regs *r;
157 iport = (nport >> d->dshift) & 0x0f;
158 ichan = iport >> 1;
159 nreg = iport & 1;
160 r = d->regs + ichan;
162 dir = ((r->mode >> 5) & 1) ? -1 : 1;
163 ff = getff (d);
164 if (nreg)
165 val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
166 else
167 val = r->now[ADDR] + r->now[COUNT] * dir;
169 ldebug ("read_chan %#x -> %d\n", iport, val);
170 return (val >> (d->dshift + (ff << 3))) & 0xff;
173 static void write_chan (void *opaque, uint32_t nport, uint32_t data)
175 struct dma_cont *d = opaque;
176 int iport, ichan, nreg;
177 struct dma_regs *r;
179 iport = (nport >> d->dshift) & 0x0f;
180 ichan = iport >> 1;
181 nreg = iport & 1;
182 r = d->regs + ichan;
183 if (getff (d)) {
184 r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
185 init_chan (d, ichan);
186 } else {
187 r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
191 static void write_cont (void *opaque, uint32_t nport, uint32_t data)
193 struct dma_cont *d = opaque;
194 int iport, ichan = 0;
196 iport = (nport >> d->dshift) & 0x0f;
197 switch (iport) {
198 case 0x08: /* command */
199 if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
200 dolog ("command %#x not supported\n", data);
201 return;
203 d->command = data;
204 break;
206 case 0x09:
207 ichan = data & 3;
208 if (data & 4) {
209 d->status |= 1 << (ichan + 4);
211 else {
212 d->status &= ~(1 << (ichan + 4));
214 d->status &= ~(1 << ichan);
215 DMA_run();
216 break;
218 case 0x0a: /* single mask */
219 if (data & 4)
220 d->mask |= 1 << (data & 3);
221 else
222 d->mask &= ~(1 << (data & 3));
223 DMA_run();
224 break;
226 case 0x0b: /* mode */
228 ichan = data & 3;
229 #ifdef DEBUG_DMA
231 int op, ai, dir, opmode;
232 op = (data >> 2) & 3;
233 ai = (data >> 4) & 1;
234 dir = (data >> 5) & 1;
235 opmode = (data >> 6) & 3;
237 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
238 ichan, op, ai, dir, opmode);
240 #endif
241 d->regs[ichan].mode = data;
242 break;
245 case 0x0c: /* clear flip flop */
246 d->flip_flop = 0;
247 break;
249 case 0x0d: /* reset */
250 d->flip_flop = 0;
251 d->mask = ~0;
252 d->status = 0;
253 d->command = 0;
254 break;
256 case 0x0e: /* clear mask for all channels */
257 d->mask = 0;
258 DMA_run();
259 break;
261 case 0x0f: /* write mask for all channels */
262 d->mask = data;
263 DMA_run();
264 break;
266 default:
267 dolog ("unknown iport %#x\n", iport);
268 break;
271 #ifdef DEBUG_DMA
272 if (0xc != iport) {
273 linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
274 nport, ichan, data);
276 #endif
279 static uint32_t read_cont (void *opaque, uint32_t nport)
281 struct dma_cont *d = opaque;
282 int iport, val;
284 iport = (nport >> d->dshift) & 0x0f;
285 switch (iport) {
286 case 0x08: /* status */
287 val = d->status;
288 d->status &= 0xf0;
289 break;
290 case 0x0f: /* mask */
291 val = d->mask;
292 break;
293 default:
294 val = 0;
295 break;
298 ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
299 return val;
302 int DMA_get_channel_mode (int nchan)
304 return dma_controllers[nchan > 3].regs[nchan & 3].mode;
307 void DMA_hold_DREQ (int nchan)
309 int ncont, ichan;
311 ncont = nchan > 3;
312 ichan = nchan & 3;
313 linfo ("held cont=%d chan=%d\n", ncont, ichan);
314 dma_controllers[ncont].status |= 1 << (ichan + 4);
315 DMA_run();
318 void DMA_release_DREQ (int nchan)
320 int ncont, ichan;
322 ncont = nchan > 3;
323 ichan = nchan & 3;
324 linfo ("released cont=%d chan=%d\n", ncont, ichan);
325 dma_controllers[ncont].status &= ~(1 << (ichan + 4));
326 DMA_run();
329 static void channel_run (int ncont, int ichan)
331 int n;
332 struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
333 #ifdef DEBUG_DMA
334 int dir, opmode;
336 dir = (r->mode >> 5) & 1;
337 opmode = (r->mode >> 6) & 3;
339 if (dir) {
340 dolog ("DMA in address decrement mode\n");
342 if (opmode != 1) {
343 dolog ("DMA not in single mode select %#x\n", opmode);
345 #endif
347 r = dma_controllers[ncont].regs + ichan;
348 n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
349 r->now[COUNT], (r->base[COUNT] + 1) << ncont);
350 r->now[COUNT] = n;
351 ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
354 static QEMUBH *dma_bh;
356 static void DMA_run (void)
358 struct dma_cont *d;
359 int icont, ichan;
360 int rearm = 0;
362 d = dma_controllers;
364 for (icont = 0; icont < 2; icont++, d++) {
365 for (ichan = 0; ichan < 4; ichan++) {
366 int mask;
368 mask = 1 << ichan;
370 if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
371 channel_run (icont, ichan);
372 rearm = 1;
377 if (rearm)
378 qemu_bh_schedule_idle(dma_bh);
381 static void DMA_run_bh(void *unused)
383 DMA_run();
386 void DMA_register_channel (int nchan,
387 DMA_transfer_handler transfer_handler,
388 void *opaque)
390 struct dma_regs *r;
391 int ichan, ncont;
393 ncont = nchan > 3;
394 ichan = nchan & 3;
396 r = dma_controllers[ncont].regs + ichan;
397 r->transfer_handler = transfer_handler;
398 r->opaque = opaque;
401 int DMA_read_memory (int nchan, void *buf, int pos, int len)
403 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
404 target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
406 if (r->mode & 0x20) {
407 int i;
408 uint8_t *p = buf;
410 cpu_physical_memory_read (addr - pos - len, buf, len);
411 /* What about 16bit transfers? */
412 for (i = 0; i < len >> 1; i++) {
413 uint8_t b = p[len - i - 1];
414 p[i] = b;
417 else
418 cpu_physical_memory_read (addr + pos, buf, len);
420 return len;
423 int DMA_write_memory (int nchan, void *buf, int pos, int len)
425 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
426 target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
428 if (r->mode & 0x20) {
429 int i;
430 uint8_t *p = buf;
432 cpu_physical_memory_write (addr - pos - len, buf, len);
433 /* What about 16bit transfers? */
434 for (i = 0; i < len; i++) {
435 uint8_t b = p[len - i - 1];
436 p[i] = b;
439 else
440 cpu_physical_memory_write (addr + pos, buf, len);
442 return len;
445 /* request the emulator to transfer a new DMA memory block ASAP */
446 void DMA_schedule(int nchan)
448 CPUState *env = cpu_single_env;
449 if (env)
450 cpu_exit(env);
453 static void dma_reset(void *opaque)
455 struct dma_cont *d = opaque;
456 write_cont (d, (0x0d << d->dshift), 0);
459 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
461 dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
462 nchan, dma_pos, dma_len);
463 return dma_pos;
466 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
467 static void dma_init2(struct dma_cont *d, int base, int dshift,
468 int page_base, int pageh_base)
470 static const int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 };
471 int i;
473 d->dshift = dshift;
474 for (i = 0; i < 8; i++) {
475 register_ioport_write (base + (i << dshift), 1, 1, write_chan, d);
476 register_ioport_read (base + (i << dshift), 1, 1, read_chan, d);
478 for (i = 0; i < ARRAY_SIZE (page_port_list); i++) {
479 register_ioport_write (page_base + page_port_list[i], 1, 1,
480 write_page, d);
481 register_ioport_read (page_base + page_port_list[i], 1, 1,
482 read_page, d);
483 if (pageh_base >= 0) {
484 register_ioport_write (pageh_base + page_port_list[i], 1, 1,
485 write_pageh, d);
486 register_ioport_read (pageh_base + page_port_list[i], 1, 1,
487 read_pageh, d);
490 for (i = 0; i < 8; i++) {
491 register_ioport_write (base + ((i + 8) << dshift), 1, 1,
492 write_cont, d);
493 register_ioport_read (base + ((i + 8) << dshift), 1, 1,
494 read_cont, d);
496 qemu_register_reset(dma_reset, 0, d);
497 dma_reset(d);
498 for (i = 0; i < ARRAY_SIZE (d->regs); ++i) {
499 d->regs[i].transfer_handler = dma_phony_handler;
503 static void dma_save (QEMUFile *f, void *opaque)
505 struct dma_cont *d = opaque;
506 int i;
508 /* qemu_put_8s (f, &d->status); */
509 qemu_put_8s (f, &d->command);
510 qemu_put_8s (f, &d->mask);
511 qemu_put_8s (f, &d->flip_flop);
512 qemu_put_be32 (f, d->dshift);
514 for (i = 0; i < 4; ++i) {
515 struct dma_regs *r = &d->regs[i];
516 qemu_put_be32 (f, r->now[0]);
517 qemu_put_be32 (f, r->now[1]);
518 qemu_put_be16s (f, &r->base[0]);
519 qemu_put_be16s (f, &r->base[1]);
520 qemu_put_8s (f, &r->mode);
521 qemu_put_8s (f, &r->page);
522 qemu_put_8s (f, &r->pageh);
523 qemu_put_8s (f, &r->dack);
524 qemu_put_8s (f, &r->eop);
528 static int dma_load (QEMUFile *f, void *opaque, int version_id)
530 struct dma_cont *d = opaque;
531 int i;
533 if (version_id != 1)
534 return -EINVAL;
536 /* qemu_get_8s (f, &d->status); */
537 qemu_get_8s (f, &d->command);
538 qemu_get_8s (f, &d->mask);
539 qemu_get_8s (f, &d->flip_flop);
540 d->dshift=qemu_get_be32 (f);
542 for (i = 0; i < 4; ++i) {
543 struct dma_regs *r = &d->regs[i];
544 r->now[0]=qemu_get_be32 (f);
545 r->now[1]=qemu_get_be32 (f);
546 qemu_get_be16s (f, &r->base[0]);
547 qemu_get_be16s (f, &r->base[1]);
548 qemu_get_8s (f, &r->mode);
549 qemu_get_8s (f, &r->page);
550 qemu_get_8s (f, &r->pageh);
551 qemu_get_8s (f, &r->dack);
552 qemu_get_8s (f, &r->eop);
555 DMA_run();
557 return 0;
560 void DMA_init (int high_page_enable)
562 dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
563 high_page_enable ? 0x480 : -1);
564 dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
565 high_page_enable ? 0x488 : -1);
566 register_savevm ("dma", 0, 1, dma_save, dma_load, &dma_controllers[0]);
567 register_savevm ("dma", 1, 1, dma_save, dma_load, &dma_controllers[1]);
569 dma_bh = qemu_bh_new(DMA_run_bh, NULL);