4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
34 #include "qemu-char.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
49 GDB_SIGNAL_UNKNOWN
= 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table
[] = {
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
227 static int gdb_signal_table
[] = {
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig
)
241 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
242 if (gdb_signal_table
[i
] == sig
)
244 return GDB_SIGNAL_UNKNOWN
;
248 static int gdb_signal_to_target (int sig
)
250 if (sig
< ARRAY_SIZE (gdb_signal_table
))
251 return gdb_signal_table
[sig
];
258 typedef struct GDBRegisterState
{
264 struct GDBRegisterState
*next
;
275 typedef struct GDBState
{
276 CPUState
*c_cpu
; /* current CPU for step/continue ops */
277 CPUState
*g_cpu
; /* current CPU for other ops */
278 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
279 enum RSState state
; /* parsing state */
280 char line_buf
[MAX_PACKET_LENGTH
];
283 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
286 #ifdef CONFIG_USER_ONLY
290 CharDriverState
*chr
;
291 CharDriverState
*mon_chr
;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
300 static GDBState
*gdbserver_state
;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml
;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd
= -1;
311 static int get_char(GDBState
*s
)
317 ret
= recv(s
->fd
, &ch
, 1, 0);
319 if (errno
== ECONNRESET
)
321 if (errno
!= EINTR
&& errno
!= EAGAIN
)
323 } else if (ret
== 0) {
335 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
348 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
351 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState
*s
)
357 #ifdef CONFIG_USER_ONLY
358 s
->running_state
= 1;
364 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
366 #ifdef CONFIG_USER_ONLY
370 ret
= send(s
->fd
, buf
, len
, 0);
372 if (errno
!= EINTR
&& errno
!= EAGAIN
)
380 qemu_chr_write(s
->chr
, buf
, len
);
384 static inline int fromhex(int v
)
386 if (v
>= '0' && v
<= '9')
388 else if (v
>= 'A' && v
<= 'F')
390 else if (v
>= 'a' && v
<= 'f')
396 static inline int tohex(int v
)
404 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
409 for(i
= 0; i
< len
; i
++) {
411 *q
++ = tohex(c
>> 4);
412 *q
++ = tohex(c
& 0xf);
417 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
421 for(i
= 0; i
< len
; i
++) {
422 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
439 for(i
= 0; i
< len
; i
++) {
443 *(p
++) = tohex((csum
>> 4) & 0xf);
444 *(p
++) = tohex((csum
) & 0xf);
446 s
->last_packet_len
= p
- s
->last_packet
;
447 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
449 #ifdef CONFIG_USER_ONLY
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState
*s
, const char *buf
)
466 printf("reply='%s'\n", buf
);
469 return put_packet_binary(s
, buf
, strlen(buf
));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
501 #if defined(TARGET_I386)
504 static const int gpr_map
[16] = {
505 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
506 8, 9, 10, 11, 12, 13, 14, 15
509 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
516 if (n
< CPU_NB_REGS
) {
517 GET_REGL(env
->regs
[gpr_map
[n
]]);
518 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
519 /* FIXME: byteswap float values. */
520 #ifdef USE_X86LDOUBLE
521 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
523 memset(mem_buf
, 0, 10);
526 } else if (n
>= CPU_NB_REGS
+ 24) {
527 n
-= CPU_NB_REGS
+ 24;
528 if (n
< CPU_NB_REGS
) {
529 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
530 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
532 } else if (n
== CPU_NB_REGS
) {
533 GET_REG32(env
->mxcsr
);
538 case 0: GET_REGL(env
->eip
);
539 case 1: GET_REG32(env
->eflags
);
540 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
541 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
542 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
543 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
544 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
545 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
546 /* 8...15 x87 regs. */
547 case 16: GET_REG32(env
->fpuc
);
548 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
549 case 18: GET_REG32(0); /* ftag */
550 case 19: GET_REG32(0); /* fiseg */
551 case 20: GET_REG32(0); /* fioff */
552 case 21: GET_REG32(0); /* foseg */
553 case 22: GET_REG32(0); /* fooff */
554 case 23: GET_REG32(0); /* fop */
561 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
565 if (i
< CPU_NB_REGS
) {
566 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
567 return sizeof(target_ulong
);
568 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
569 i
-= CPU_NB_REGS
+ 8;
570 #ifdef USE_X86LDOUBLE
571 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
574 } else if (i
>= CPU_NB_REGS
+ 24) {
575 i
-= CPU_NB_REGS
+ 24;
576 if (i
< CPU_NB_REGS
) {
577 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
578 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
580 } else if (i
== CPU_NB_REGS
) {
581 env
->mxcsr
= ldl_p(mem_buf
);
587 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
588 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
589 #if defined(CONFIG_USER_ONLY)
590 #define LOAD_SEG(index, sreg)\
591 tmp = ldl_p(mem_buf);\
592 if (tmp != env->segs[sreg].selector)\
593 cpu_x86_load_seg(env, sreg, tmp);
595 /* FIXME: Honor segment registers. Needs to avoid raising an exception
596 when the selector is invalid. */
597 #define LOAD_SEG(index, sreg) do {} while(0)
599 case 2: LOAD_SEG(10, R_CS
); return 4;
600 case 3: LOAD_SEG(11, R_SS
); return 4;
601 case 4: LOAD_SEG(12, R_DS
); return 4;
602 case 5: LOAD_SEG(13, R_ES
); return 4;
603 case 6: LOAD_SEG(14, R_FS
); return 4;
604 case 7: LOAD_SEG(15, R_GS
); return 4;
605 /* 8...15 x87 regs. */
606 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
608 tmp
= ldl_p(mem_buf
);
609 env
->fpstt
= (tmp
>> 11) & 7;
610 env
->fpus
= tmp
& ~0x3800;
612 case 18: /* ftag */ return 4;
613 case 19: /* fiseg */ return 4;
614 case 20: /* fioff */ return 4;
615 case 21: /* foseg */ return 4;
616 case 22: /* fooff */ return 4;
617 case 23: /* fop */ return 4;
621 /* Unrecognised register. */
625 #elif defined (TARGET_PPC)
627 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
628 expects whatever the target description contains. Due to a
629 historical mishap the FP registers appear in between core integer
630 regs and PC, MSR, CR, and so forth. We hack round this by giving the
631 FP regs zero size when talking to a newer gdb. */
632 #define NUM_CORE_REGS 71
633 #if defined (TARGET_PPC64)
634 #define GDB_CORE_XML "power64-core.xml"
636 #define GDB_CORE_XML "power-core.xml"
639 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
643 GET_REGL(env
->gpr
[n
]);
648 stfq_p(mem_buf
, env
->fpr
[n
-32]);
652 case 64: GET_REGL(env
->nip
);
653 case 65: GET_REGL(env
->msr
);
658 for (i
= 0; i
< 8; i
++)
659 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
662 case 67: GET_REGL(env
->lr
);
663 case 68: GET_REGL(env
->ctr
);
664 case 69: GET_REGL(env
->xer
);
669 GET_REG32(0); /* fpscr */
676 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
680 env
->gpr
[n
] = ldtul_p(mem_buf
);
681 return sizeof(target_ulong
);
686 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
691 env
->nip
= ldtul_p(mem_buf
);
692 return sizeof(target_ulong
);
694 ppc_store_msr(env
, ldtul_p(mem_buf
));
695 return sizeof(target_ulong
);
698 uint32_t cr
= ldl_p(mem_buf
);
700 for (i
= 0; i
< 8; i
++)
701 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
705 env
->lr
= ldtul_p(mem_buf
);
706 return sizeof(target_ulong
);
708 env
->ctr
= ldtul_p(mem_buf
);
709 return sizeof(target_ulong
);
711 env
->xer
= ldtul_p(mem_buf
);
712 return sizeof(target_ulong
);
723 #elif defined (TARGET_SPARC)
725 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
726 #define NUM_CORE_REGS 86
728 #define NUM_CORE_REGS 72
732 #define GET_REGA(val) GET_REG32(val)
734 #define GET_REGA(val) GET_REGL(val)
737 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
741 GET_REGA(env
->gregs
[n
]);
744 /* register window */
745 GET_REGA(env
->regwptr
[n
- 8]);
747 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
750 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
752 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
754 case 64: GET_REGA(env
->y
);
755 case 65: GET_REGA(GET_PSR(env
));
756 case 66: GET_REGA(env
->wim
);
757 case 67: GET_REGA(env
->tbr
);
758 case 68: GET_REGA(env
->pc
);
759 case 69: GET_REGA(env
->npc
);
760 case 70: GET_REGA(env
->fsr
);
761 case 71: GET_REGA(0); /* csr */
762 default: GET_REGA(0);
767 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
770 /* f32-f62 (double width, even numbers only) */
773 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
774 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
778 case 80: GET_REGL(env
->pc
);
779 case 81: GET_REGL(env
->npc
);
780 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
781 ((env
->asi
& 0xff) << 24) |
782 ((env
->pstate
& 0xfff) << 8) |
784 case 83: GET_REGL(env
->fsr
);
785 case 84: GET_REGL(env
->fprs
);
786 case 85: GET_REGL(env
->y
);
792 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
794 #if defined(TARGET_ABI32)
797 tmp
= ldl_p(mem_buf
);
801 tmp
= ldtul_p(mem_buf
);
808 /* register window */
809 env
->regwptr
[n
- 8] = tmp
;
811 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
814 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
816 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
818 case 64: env
->y
= tmp
; break;
819 case 65: PUT_PSR(env
, tmp
); break;
820 case 66: env
->wim
= tmp
; break;
821 case 67: env
->tbr
= tmp
; break;
822 case 68: env
->pc
= tmp
; break;
823 case 69: env
->npc
= tmp
; break;
824 case 70: env
->fsr
= tmp
; break;
832 env
->fpr
[n
] = ldfl_p(mem_buf
);
835 /* f32-f62 (double width, even numbers only) */
836 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
837 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
840 case 80: env
->pc
= tmp
; break;
841 case 81: env
->npc
= tmp
; break;
843 PUT_CCR(env
, tmp
>> 32);
844 env
->asi
= (tmp
>> 24) & 0xff;
845 env
->pstate
= (tmp
>> 8) & 0xfff;
846 PUT_CWP64(env
, tmp
& 0xff);
848 case 83: env
->fsr
= tmp
; break;
849 case 84: env
->fprs
= tmp
; break;
850 case 85: env
->y
= tmp
; break;
857 #elif defined (TARGET_ARM)
859 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
860 whatever the target description contains. Due to a historical mishap
861 the FPA registers appear in between core integer regs and the CPSR.
862 We hack round this by giving the FPA regs zero size when talking to a
864 #define NUM_CORE_REGS 26
865 #define GDB_CORE_XML "arm-core.xml"
867 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
870 /* Core integer register. */
871 GET_REG32(env
->regs
[n
]);
877 memset(mem_buf
, 0, 12);
882 /* FPA status register. */
888 GET_REG32(cpsr_read(env
));
890 /* Unknown register. */
894 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
898 tmp
= ldl_p(mem_buf
);
900 /* Mask out low bit of PC to workaround gdb bugs. This will probably
901 cause problems if we ever implement the Jazelle DBX extensions. */
906 /* Core integer register. */
910 if (n
< 24) { /* 16-23 */
911 /* FPA registers (ignored). */
918 /* FPA status register (ignored). */
924 cpsr_write (env
, tmp
, 0xffffffff);
927 /* Unknown register. */
931 #elif defined (TARGET_M68K)
933 #define NUM_CORE_REGS 18
935 #define GDB_CORE_XML "cf-core.xml"
937 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
941 GET_REG32(env
->dregs
[n
]);
944 GET_REG32(env
->aregs
[n
- 8]);
947 case 16: GET_REG32(env
->sr
);
948 case 17: GET_REG32(env
->pc
);
951 /* FP registers not included here because they vary between
952 ColdFire and m68k. Use XML bits for these. */
956 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
960 tmp
= ldl_p(mem_buf
);
967 env
->aregs
[n
- 8] = tmp
;
970 case 16: env
->sr
= tmp
; break;
971 case 17: env
->pc
= tmp
; break;
977 #elif defined (TARGET_MIPS)
979 #define NUM_CORE_REGS 73
981 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
984 GET_REGL(env
->active_tc
.gpr
[n
]);
986 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
987 if (n
>= 38 && n
< 70) {
988 if (env
->CP0_Status
& (1 << CP0St_FR
))
989 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
991 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
994 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
995 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
999 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1000 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1001 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1002 case 35: GET_REGL(env
->CP0_BadVAddr
);
1003 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1004 case 37: GET_REGL(env
->active_tc
.PC
);
1005 case 72: GET_REGL(0); /* fp */
1006 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1008 if (n
>= 73 && n
<= 88) {
1009 /* 16 embedded regs. */
1016 /* convert MIPS rounding mode in FCR31 to IEEE library */
1017 static unsigned int ieee_rm
[] =
1019 float_round_nearest_even
,
1020 float_round_to_zero
,
1024 #define RESTORE_ROUNDING_MODE \
1025 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1027 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1031 tmp
= ldtul_p(mem_buf
);
1034 env
->active_tc
.gpr
[n
] = tmp
;
1035 return sizeof(target_ulong
);
1037 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1038 && n
>= 38 && n
< 73) {
1040 if (env
->CP0_Status
& (1 << CP0St_FR
))
1041 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1043 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1047 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1048 /* set rounding mode */
1049 RESTORE_ROUNDING_MODE
;
1050 #ifndef CONFIG_SOFTFLOAT
1051 /* no floating point exception for native float */
1052 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1055 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1057 return sizeof(target_ulong
);
1060 case 32: env
->CP0_Status
= tmp
; break;
1061 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1062 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1063 case 35: env
->CP0_BadVAddr
= tmp
; break;
1064 case 36: env
->CP0_Cause
= tmp
; break;
1065 case 37: env
->active_tc
.PC
= tmp
; break;
1066 case 72: /* fp, ignored */ break;
1070 /* Other registers are readonly. Ignore writes. */
1074 return sizeof(target_ulong
);
1076 #elif defined (TARGET_SH4)
1078 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1079 /* FIXME: We should use XML for this. */
1081 #define NUM_CORE_REGS 59
1083 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1086 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1087 GET_REGL(env
->gregs
[n
+ 16]);
1089 GET_REGL(env
->gregs
[n
]);
1091 } else if (n
< 16) {
1092 GET_REGL(env
->gregs
[n
- 8]);
1093 } else if (n
>= 25 && n
< 41) {
1094 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1095 } else if (n
>= 43 && n
< 51) {
1096 GET_REGL(env
->gregs
[n
- 43]);
1097 } else if (n
>= 51 && n
< 59) {
1098 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1101 case 16: GET_REGL(env
->pc
);
1102 case 17: GET_REGL(env
->pr
);
1103 case 18: GET_REGL(env
->gbr
);
1104 case 19: GET_REGL(env
->vbr
);
1105 case 20: GET_REGL(env
->mach
);
1106 case 21: GET_REGL(env
->macl
);
1107 case 22: GET_REGL(env
->sr
);
1108 case 23: GET_REGL(env
->fpul
);
1109 case 24: GET_REGL(env
->fpscr
);
1110 case 41: GET_REGL(env
->ssr
);
1111 case 42: GET_REGL(env
->spc
);
1117 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1121 tmp
= ldl_p(mem_buf
);
1124 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1125 env
->gregs
[n
+ 16] = tmp
;
1127 env
->gregs
[n
] = tmp
;
1130 } else if (n
< 16) {
1131 env
->gregs
[n
- 8] = tmp
;
1133 } else if (n
>= 25 && n
< 41) {
1134 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1135 } else if (n
>= 43 && n
< 51) {
1136 env
->gregs
[n
- 43] = tmp
;
1138 } else if (n
>= 51 && n
< 59) {
1139 env
->gregs
[n
- (51 - 16)] = tmp
;
1143 case 16: env
->pc
= tmp
;
1144 case 17: env
->pr
= tmp
;
1145 case 18: env
->gbr
= tmp
;
1146 case 19: env
->vbr
= tmp
;
1147 case 20: env
->mach
= tmp
;
1148 case 21: env
->macl
= tmp
;
1149 case 22: env
->sr
= tmp
;
1150 case 23: env
->fpul
= tmp
;
1151 case 24: env
->fpscr
= tmp
;
1152 case 41: env
->ssr
= tmp
;
1153 case 42: env
->spc
= tmp
;
1159 #elif defined (TARGET_CRIS)
1161 #define NUM_CORE_REGS 49
1163 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1167 srs
= env
->pregs
[PR_SRS
];
1169 GET_REG32(env
->regs
[n
]);
1172 if (n
>= 21 && n
< 32) {
1173 GET_REG32(env
->pregs
[n
- 16]);
1175 if (n
>= 33 && n
< 49) {
1176 GET_REG32(env
->sregs
[srs
][n
- 33]);
1179 case 16: GET_REG8(env
->pregs
[0]);
1180 case 17: GET_REG8(env
->pregs
[1]);
1181 case 18: GET_REG32(env
->pregs
[2]);
1182 case 19: GET_REG8(srs
);
1183 case 20: GET_REG16(env
->pregs
[4]);
1184 case 32: GET_REG32(env
->pc
);
1190 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1197 tmp
= ldl_p(mem_buf
);
1203 if (n
>= 21 && n
< 32) {
1204 env
->pregs
[n
- 16] = tmp
;
1207 /* FIXME: Should support function regs be writable? */
1211 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1214 case 32: env
->pc
= tmp
; break;
1219 #elif defined (TARGET_ALPHA)
1221 #define NUM_CORE_REGS 65
1223 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1226 GET_REGL(env
->ir
[n
]);
1234 val
=*((uint64_t *)&env
->fir
[n
-32]);
1238 GET_REGL(env
->fpcr
);
1250 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1253 tmp
= ldtul_p(mem_buf
);
1259 if (n
> 31 && n
< 63) {
1260 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1269 #elif defined (TARGET_HPPA)
1271 #ifdef TARGET_HPPA64
1272 #define NUM_CORE_REGS 96
1274 #define NUM_CORE_REGS 128
1277 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1281 } else if (n
< 32) {
1282 /* gr0 is hardwired to zero */
1284 GET_REGL(env
->gr
[n
]);
1285 } else if (n
== 32) {
1286 GET_REGL(0); /* FIXME: sar */
1287 } else if (n
== 33) {
1288 GET_REGL(env
->iaoq
[0]);
1289 } else if (n
== 34) {
1290 GET_REG32(env
->iasq
[0]);
1291 } else if (n
== 35) {
1292 GET_REGL(env
->iaoq
[1]);
1293 } else if (n
== 36) {
1294 GET_REG32(env
->iasq
[1]);
1296 /* FIXME: floating point */
1303 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1307 tmp
= ldtul_p(mem_buf
);
1311 } else if (n
< 32) {
1312 /* gr0 is hardwired to zero */
1315 } else if (n
== 32) {
1317 } else if (n
== 33) {
1319 } else if (n
== 34) {
1320 env
->iasq
[0] = ldl_p(mem_buf
);
1322 } else if (n
== 35) {
1324 } else if (n
== 36) {
1325 env
->iasq
[1] = ldl_p(mem_buf
);
1328 /* FIXME: floating point */
1331 return sizeof(target_ulong
);
1336 #define NUM_CORE_REGS 0
1338 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1343 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1350 static int num_g_regs
= NUM_CORE_REGS
;
1353 /* Encode data using the encoding for 'x' packets. */
1354 static int memtox(char *buf
, const char *mem
, int len
)
1362 case '#': case '$': case '*': case '}':
1374 static const char *get_feature_xml(const char *p
, const char **newp
)
1376 extern const char *const xml_builtin
[][2];
1380 static char target_xml
[1024];
1383 while (p
[len
] && p
[len
] != ':')
1388 if (strncmp(p
, "target.xml", len
) == 0) {
1389 /* Generate the XML description for this CPU. */
1390 if (!target_xml
[0]) {
1391 GDBRegisterState
*r
;
1393 snprintf(target_xml
, sizeof(target_xml
),
1394 "<?xml version=\"1.0\"?>"
1395 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1397 "<xi:include href=\"%s\"/>",
1400 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1401 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1402 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1403 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1405 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1409 for (i
= 0; ; i
++) {
1410 name
= xml_builtin
[i
][0];
1411 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1414 return name
? xml_builtin
[i
][1] : NULL
;
1418 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1420 GDBRegisterState
*r
;
1422 if (reg
< NUM_CORE_REGS
)
1423 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1425 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1426 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1427 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1433 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1435 GDBRegisterState
*r
;
1437 if (reg
< NUM_CORE_REGS
)
1438 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1440 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1441 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1442 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1448 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1449 specifies the first register number and these registers are included in
1450 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1451 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1454 void gdb_register_coprocessor(CPUState
* env
,
1455 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1456 int num_regs
, const char *xml
, int g_pos
)
1458 GDBRegisterState
*s
;
1459 GDBRegisterState
**p
;
1460 static int last_reg
= NUM_CORE_REGS
;
1462 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1463 s
->base_reg
= last_reg
;
1464 s
->num_regs
= num_regs
;
1465 s
->get_reg
= get_reg
;
1466 s
->set_reg
= set_reg
;
1470 /* Check for duplicates. */
1471 if (strcmp((*p
)->xml
, xml
) == 0)
1475 /* Add to end of list. */
1476 last_reg
+= num_regs
;
1479 if (g_pos
!= s
->base_reg
) {
1480 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1481 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1483 num_g_regs
= last_reg
;
1488 #ifndef CONFIG_USER_ONLY
1489 static const int xlat_gdb_type
[] = {
1490 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1491 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1492 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1496 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1502 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1505 case GDB_BREAKPOINT_SW
:
1506 case GDB_BREAKPOINT_HW
:
1507 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1508 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1513 #ifndef CONFIG_USER_ONLY
1514 case GDB_WATCHPOINT_WRITE
:
1515 case GDB_WATCHPOINT_READ
:
1516 case GDB_WATCHPOINT_ACCESS
:
1517 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1518 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1530 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1536 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1539 case GDB_BREAKPOINT_SW
:
1540 case GDB_BREAKPOINT_HW
:
1541 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1542 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1547 #ifndef CONFIG_USER_ONLY
1548 case GDB_WATCHPOINT_WRITE
:
1549 case GDB_WATCHPOINT_READ
:
1550 case GDB_WATCHPOINT_ACCESS
:
1551 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1552 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1563 static void gdb_breakpoint_remove_all(void)
1567 if (kvm_enabled()) {
1568 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1572 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1573 cpu_breakpoint_remove_all(env
, BP_GDB
);
1574 #ifndef CONFIG_USER_ONLY
1575 cpu_watchpoint_remove_all(env
, BP_GDB
);
1580 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1582 #if defined(TARGET_I386)
1584 cpu_synchronize_state(s
->c_cpu
, 1);
1585 #elif defined (TARGET_PPC)
1587 #elif defined (TARGET_SPARC)
1589 s
->c_cpu
->npc
= pc
+ 4;
1590 #elif defined (TARGET_ARM)
1591 s
->c_cpu
->regs
[15] = pc
;
1592 #elif defined (TARGET_SH4)
1594 #elif defined (TARGET_MIPS)
1595 s
->c_cpu
->active_tc
.PC
= pc
;
1596 #elif defined (TARGET_CRIS)
1598 #elif defined (TARGET_ALPHA)
1600 #elif defined (TARGET_HPPA)
1601 s
->c_cpu
->iaoq
[0] = pc
;
1602 s
->c_cpu
->iaoq
[1] = pc
+ 4;
1606 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1610 int ch
, reg_size
, type
, res
, thread
;
1611 char buf
[MAX_PACKET_LENGTH
];
1612 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1614 target_ulong addr
, len
;
1617 printf("command='%s'\n", line_buf
);
1623 /* TODO: Make this return the correct value for user-mode. */
1624 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1625 s
->c_cpu
->cpu_index
+1);
1627 /* Remove all the breakpoints when this query is issued,
1628 * because gdb is doing and initial connect and the state
1629 * should be cleaned up.
1631 gdb_breakpoint_remove_all();
1635 addr
= strtoull(p
, (char **)&p
, 16);
1636 gdb_set_cpu_pc(s
, addr
);
1642 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1643 if (s
->signal
== -1)
1648 /* Kill the target */
1649 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1653 gdb_breakpoint_remove_all();
1655 put_packet(s
, "OK");
1659 addr
= strtoull(p
, (char **)&p
, 16);
1660 gdb_set_cpu_pc(s
, addr
);
1662 cpu_single_step(s
->c_cpu
, sstep_flags
);
1670 ret
= strtoull(p
, (char **)&p
, 16);
1673 err
= strtoull(p
, (char **)&p
, 16);
1680 if (gdb_current_syscall_cb
)
1681 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1683 put_packet(s
, "T02");
1690 cpu_synchronize_state(s
->g_cpu
, 0);
1692 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1693 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1696 memtohex(buf
, mem_buf
, len
);
1700 registers
= mem_buf
;
1701 len
= strlen(p
) / 2;
1702 hextomem((uint8_t *)registers
, p
, len
);
1703 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1704 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1706 registers
+= reg_size
;
1708 cpu_synchronize_state(s
->g_cpu
, 1);
1709 put_packet(s
, "OK");
1712 addr
= strtoull(p
, (char **)&p
, 16);
1715 len
= strtoull(p
, NULL
, 16);
1716 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1717 put_packet (s
, "E14");
1719 memtohex(buf
, mem_buf
, len
);
1724 addr
= strtoull(p
, (char **)&p
, 16);
1727 len
= strtoull(p
, (char **)&p
, 16);
1730 hextomem(mem_buf
, p
, len
);
1731 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1732 put_packet(s
, "E14");
1734 put_packet(s
, "OK");
1737 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1738 This works, but can be very slow. Anything new enough to
1739 understand XML also knows how to use this properly. */
1741 goto unknown_command
;
1742 addr
= strtoull(p
, (char **)&p
, 16);
1743 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1745 memtohex(buf
, mem_buf
, reg_size
);
1748 put_packet(s
, "E14");
1753 goto unknown_command
;
1754 addr
= strtoull(p
, (char **)&p
, 16);
1757 reg_size
= strlen(p
) / 2;
1758 hextomem(mem_buf
, p
, reg_size
);
1759 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1760 put_packet(s
, "OK");
1764 type
= strtoul(p
, (char **)&p
, 16);
1767 addr
= strtoull(p
, (char **)&p
, 16);
1770 len
= strtoull(p
, (char **)&p
, 16);
1772 res
= gdb_breakpoint_insert(addr
, len
, type
);
1774 res
= gdb_breakpoint_remove(addr
, len
, type
);
1776 put_packet(s
, "OK");
1777 else if (res
== -ENOSYS
)
1780 put_packet(s
, "E22");
1784 thread
= strtoull(p
, (char **)&p
, 16);
1785 if (thread
== -1 || thread
== 0) {
1786 put_packet(s
, "OK");
1789 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1790 if (env
->cpu_index
+ 1 == thread
)
1793 put_packet(s
, "E22");
1799 put_packet(s
, "OK");
1803 put_packet(s
, "OK");
1806 put_packet(s
, "E22");
1811 thread
= strtoull(p
, (char **)&p
, 16);
1812 #ifndef CONFIG_USER_ONLY
1813 if (thread
> 0 && thread
< smp_cpus
+ 1)
1817 put_packet(s
, "OK");
1819 put_packet(s
, "E22");
1823 /* parse any 'q' packets here */
1824 if (!strcmp(p
,"qemu.sstepbits")) {
1825 /* Query Breakpoint bit definitions */
1826 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1832 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1833 /* Display or change the sstep_flags */
1836 /* Display current setting */
1837 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1842 type
= strtoul(p
, (char **)&p
, 16);
1844 put_packet(s
, "OK");
1846 } else if (strcmp(p
,"C") == 0) {
1847 /* "Current thread" remains vague in the spec, so always return
1848 * the first CPU (gdb returns the first thread). */
1849 put_packet(s
, "QC1");
1851 } else if (strcmp(p
,"fThreadInfo") == 0) {
1852 s
->query_cpu
= first_cpu
;
1853 goto report_cpuinfo
;
1854 } else if (strcmp(p
,"sThreadInfo") == 0) {
1857 snprintf(buf
, sizeof(buf
), "m%x", s
->query_cpu
->cpu_index
+1);
1859 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1863 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1864 thread
= strtoull(p
+16, (char **)&p
, 16);
1865 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1866 if (env
->cpu_index
+ 1 == thread
) {
1867 cpu_synchronize_state(env
, 0);
1868 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1869 "CPU#%d [%s]", env
->cpu_index
,
1870 env
->halted
? "halted " : "running");
1871 memtohex(buf
, mem_buf
, len
);
1877 #ifdef CONFIG_USER_ONLY
1878 else if (strncmp(p
, "Offsets", 7) == 0) {
1879 TaskState
*ts
= s
->c_cpu
->opaque
;
1881 snprintf(buf
, sizeof(buf
),
1882 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1883 ";Bss=" TARGET_ABI_FMT_lx
,
1884 ts
->info
->code_offset
,
1885 ts
->info
->data_offset
,
1886 ts
->info
->data_offset
);
1890 #else /* !CONFIG_USER_ONLY */
1891 else if (strncmp(p
, "Rcmd,", 5) == 0) {
1892 int len
= strlen(p
+ 5);
1894 if ((len
% 2) != 0) {
1895 put_packet(s
, "E01");
1898 hextomem(mem_buf
, p
+ 5, len
);
1901 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
1902 put_packet(s
, "OK");
1905 #endif /* !CONFIG_USER_ONLY */
1906 if (strncmp(p
, "Supported", 9) == 0) {
1907 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1909 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
1915 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1917 target_ulong total_len
;
1921 xml
= get_feature_xml(p
, &p
);
1923 snprintf(buf
, sizeof(buf
), "E00");
1930 addr
= strtoul(p
, (char **)&p
, 16);
1933 len
= strtoul(p
, (char **)&p
, 16);
1935 total_len
= strlen(xml
);
1936 if (addr
> total_len
) {
1937 snprintf(buf
, sizeof(buf
), "E00");
1941 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1942 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1943 if (len
< total_len
- addr
) {
1945 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1948 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1950 put_packet_binary(s
, buf
, len
+ 1);
1954 /* Unrecognised 'q' command. */
1955 goto unknown_command
;
1959 /* put empty packet */
1967 void gdb_set_stop_cpu(CPUState
*env
)
1969 gdbserver_state
->c_cpu
= env
;
1970 gdbserver_state
->g_cpu
= env
;
1973 #ifndef CONFIG_USER_ONLY
1974 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
1976 GDBState
*s
= gdbserver_state
;
1977 CPUState
*env
= s
->c_cpu
;
1982 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
1983 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
1986 /* disable single step if it was enable */
1987 cpu_single_step(env
, 0);
1989 if (reason
== EXCP_DEBUG
) {
1990 if (env
->watchpoint_hit
) {
1991 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2002 snprintf(buf
, sizeof(buf
),
2003 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2004 GDB_SIGNAL_TRAP
, env
->cpu_index
+1, type
,
2005 env
->watchpoint_hit
->vaddr
);
2007 env
->watchpoint_hit
= NULL
;
2011 ret
= GDB_SIGNAL_TRAP
;
2013 ret
= GDB_SIGNAL_INT
;
2015 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, env
->cpu_index
+1);
2020 /* Send a gdb syscall request.
2021 This accepts limited printf-style format specifiers, specifically:
2022 %x - target_ulong argument printed in hex.
2023 %lx - 64-bit argument printed in hex.
2024 %s - string pointer (target_ulong) and length (int) pair. */
2025 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2034 s
= gdbserver_state
;
2037 gdb_current_syscall_cb
= cb
;
2038 s
->state
= RS_SYSCALL
;
2039 #ifndef CONFIG_USER_ONLY
2040 vm_stop(EXCP_DEBUG
);
2051 addr
= va_arg(va
, target_ulong
);
2052 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2055 if (*(fmt
++) != 'x')
2057 i64
= va_arg(va
, uint64_t);
2058 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2061 addr
= va_arg(va
, target_ulong
);
2062 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2063 addr
, va_arg(va
, int));
2067 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2078 #ifdef CONFIG_USER_ONLY
2079 gdb_handlesig(s
->c_cpu
, 0);
2085 static void gdb_read_byte(GDBState
*s
, int ch
)
2090 #ifndef CONFIG_USER_ONLY
2091 if (s
->last_packet_len
) {
2092 /* Waiting for a response to the last packet. If we see the start
2093 of a new command then abandon the previous response. */
2096 printf("Got NACK, retransmitting\n");
2098 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2102 printf("Got ACK\n");
2104 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2106 if (ch
== '+' || ch
== '$')
2107 s
->last_packet_len
= 0;
2112 /* when the CPU is running, we cannot do anything except stop
2113 it when receiving a char */
2114 vm_stop(EXCP_INTERRUPT
);
2121 s
->line_buf_index
= 0;
2122 s
->state
= RS_GETLINE
;
2127 s
->state
= RS_CHKSUM1
;
2128 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2131 s
->line_buf
[s
->line_buf_index
++] = ch
;
2135 s
->line_buf
[s
->line_buf_index
] = '\0';
2136 s
->line_csum
= fromhex(ch
) << 4;
2137 s
->state
= RS_CHKSUM2
;
2140 s
->line_csum
|= fromhex(ch
);
2142 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2143 csum
+= s
->line_buf
[i
];
2145 if (s
->line_csum
!= (csum
& 0xff)) {
2147 put_buffer(s
, &reply
, 1);
2151 put_buffer(s
, &reply
, 1);
2152 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2161 #ifdef CONFIG_USER_ONLY
2167 s
= gdbserver_state
;
2169 if (gdbserver_fd
< 0 || s
->fd
< 0)
2176 gdb_handlesig (CPUState
*env
, int sig
)
2182 s
= gdbserver_state
;
2183 if (gdbserver_fd
< 0 || s
->fd
< 0)
2186 /* disable single step if it was enabled */
2187 cpu_single_step(env
, 0);
2192 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2195 /* put_packet() might have detected that the peer terminated the
2202 s
->running_state
= 0;
2203 while (s
->running_state
== 0) {
2204 n
= read (s
->fd
, buf
, 256);
2209 for (i
= 0; i
< n
; i
++)
2210 gdb_read_byte (s
, buf
[i
]);
2212 else if (n
== 0 || errno
!= EAGAIN
)
2214 /* XXX: Connection closed. Should probably wait for annother
2215 connection before continuing. */
2224 /* Tell the remote gdb that the process has exited. */
2225 void gdb_exit(CPUState
*env
, int code
)
2230 s
= gdbserver_state
;
2231 if (gdbserver_fd
< 0 || s
->fd
< 0)
2234 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2238 /* Tell the remote gdb that the process has exited due to SIG. */
2239 void gdb_signalled(CPUState
*env
, int sig
)
2244 s
= gdbserver_state
;
2245 if (gdbserver_fd
< 0 || s
->fd
< 0)
2248 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2252 static void gdb_accept(void)
2255 struct sockaddr_in sockaddr
;
2260 len
= sizeof(sockaddr
);
2261 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2262 if (fd
< 0 && errno
!= EINTR
) {
2265 } else if (fd
>= 0) {
2270 /* set short latency */
2272 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2274 s
= qemu_mallocz(sizeof(GDBState
));
2275 s
->c_cpu
= first_cpu
;
2276 s
->g_cpu
= first_cpu
;
2280 gdbserver_state
= s
;
2282 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2285 static int gdbserver_open(int port
)
2287 struct sockaddr_in sockaddr
;
2290 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2296 /* allow fast reuse */
2298 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2300 sockaddr
.sin_family
= AF_INET
;
2301 sockaddr
.sin_port
= htons(port
);
2302 sockaddr
.sin_addr
.s_addr
= 0;
2303 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2308 ret
= listen(fd
, 0);
2316 int gdbserver_start(int port
)
2318 gdbserver_fd
= gdbserver_open(port
);
2319 if (gdbserver_fd
< 0)
2321 /* accept connections */
2326 /* Disable gdb stub for child processes. */
2327 void gdbserver_fork(CPUState
*env
)
2329 GDBState
*s
= gdbserver_state
;
2330 if (gdbserver_fd
< 0 || s
->fd
< 0)
2334 cpu_breakpoint_remove_all(env
, BP_GDB
);
2335 cpu_watchpoint_remove_all(env
, BP_GDB
);
2338 static int gdb_chr_can_receive(void *opaque
)
2340 /* We can handle an arbitrarily large amount of data.
2341 Pick the maximum packet size, which is as good as anything. */
2342 return MAX_PACKET_LENGTH
;
2345 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2349 for (i
= 0; i
< size
; i
++) {
2350 gdb_read_byte(gdbserver_state
, buf
[i
]);
2354 static void gdb_chr_event(void *opaque
, int event
)
2357 case CHR_EVENT_RESET
:
2358 vm_stop(EXCP_INTERRUPT
);
2366 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2368 char buf
[MAX_PACKET_LENGTH
];
2371 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2372 len
= (MAX_PACKET_LENGTH
/2) - 1;
2373 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2377 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2379 const char *p
= (const char *)buf
;
2382 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2384 if (len
<= max_sz
) {
2385 gdb_monitor_output(gdbserver_state
, p
, len
);
2388 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2396 static void gdb_sigterm_handler(int signal
)
2399 vm_stop(EXCP_INTERRUPT
);
2403 int gdbserver_start(const char *device
)
2406 char gdbstub_device_name
[128];
2407 CharDriverState
*chr
= NULL
;
2408 CharDriverState
*mon_chr
;
2412 if (strcmp(device
, "none") != 0) {
2413 if (strstart(device
, "tcp:", NULL
)) {
2414 /* enforce required TCP attributes */
2415 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2416 "%s,nowait,nodelay,server", device
);
2417 device
= gdbstub_device_name
;
2420 else if (strcmp(device
, "stdio") == 0) {
2421 struct sigaction act
;
2423 memset(&act
, 0, sizeof(act
));
2424 act
.sa_handler
= gdb_sigterm_handler
;
2425 sigaction(SIGINT
, &act
, NULL
);
2428 chr
= qemu_chr_open("gdb", device
, NULL
);
2432 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2433 gdb_chr_event
, NULL
);
2436 s
= gdbserver_state
;
2438 s
= qemu_mallocz(sizeof(GDBState
));
2439 gdbserver_state
= s
;
2441 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2443 /* Initialize a monitor terminal for gdb */
2444 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2445 mon_chr
->chr_write
= gdb_monitor_write
;
2446 monitor_init(mon_chr
, 0);
2449 qemu_chr_close(s
->chr
);
2450 mon_chr
= s
->mon_chr
;
2451 memset(s
, 0, sizeof(GDBState
));
2453 s
->c_cpu
= first_cpu
;
2454 s
->g_cpu
= first_cpu
;
2456 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2457 s
->mon_chr
= mon_chr
;