Merge branch 'master' of ssh://repo.or.cz/srv/git/qemu
[qemu/hppa.git] / hw / mac_dbdma.c
blobf52868e45869f4b0b3ad804daac7ae6a3983c9ca
1 /*
2 * PowerMac descriptor-based DMA emulation
4 * Copyright (c) 2005-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2009 Laurent Vivier
8 * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
10 * Definitions for using the Apple Descriptor-Based DMA controller
11 * in Power Macintosh computers.
13 * Copyright (C) 1996 Paul Mackerras.
15 * some parts from mol 0.9.71
17 * Descriptor based DMA emulation
19 * Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
21 * Permission is hereby granted, free of charge, to any person obtaining a copy
22 * of this software and associated documentation files (the "Software"), to deal
23 * in the Software without restriction, including without limitation the rights
24 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
25 * copies of the Software, and to permit persons to whom the Software is
26 * furnished to do so, subject to the following conditions:
28 * The above copyright notice and this permission notice shall be included in
29 * all copies or substantial portions of the Software.
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
34 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
35 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
36 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
37 * THE SOFTWARE.
39 #include "hw.h"
40 #include "isa.h"
41 #include "mac_dbdma.h"
43 /* debug DBDMA */
44 //#define DEBUG_DBDMA
46 #ifdef DEBUG_DBDMA
47 #define DBDMA_DPRINTF(fmt, args...) \
48 do { printf("DBDMA: " fmt , ##args); } while (0)
49 #else
50 #define DBDMA_DPRINTF(fmt, args...)
51 #endif
57 * DBDMA control/status registers. All little-endian.
60 #define DBDMA_CONTROL 0x00
61 #define DBDMA_STATUS 0x01
62 #define DBDMA_CMDPTR_HI 0x02
63 #define DBDMA_CMDPTR_LO 0x03
64 #define DBDMA_INTR_SEL 0x04
65 #define DBDMA_BRANCH_SEL 0x05
66 #define DBDMA_WAIT_SEL 0x06
67 #define DBDMA_XFER_MODE 0x07
68 #define DBDMA_DATA2PTR_HI 0x08
69 #define DBDMA_DATA2PTR_LO 0x09
70 #define DBDMA_RES1 0x0A
71 #define DBDMA_ADDRESS_HI 0x0B
72 #define DBDMA_BRANCH_ADDR_HI 0x0C
73 #define DBDMA_RES2 0x0D
74 #define DBDMA_RES3 0x0E
75 #define DBDMA_RES4 0x0F
77 #define DBDMA_REGS 16
78 #define DBDMA_SIZE (DBDMA_REGS * sizeof(uint32_t))
80 #define DBDMA_CHANNEL_SHIFT 7
81 #define DBDMA_CHANNEL_SIZE (1 << DBDMA_CHANNEL_SHIFT)
83 #define DBDMA_CHANNELS (0x1000 >> DBDMA_CHANNEL_SHIFT)
85 /* Bits in control and status registers */
87 #define RUN 0x8000
88 #define PAUSE 0x4000
89 #define FLUSH 0x2000
90 #define WAKE 0x1000
91 #define DEAD 0x0800
92 #define ACTIVE 0x0400
93 #define BT 0x0100
94 #define DEVSTAT 0x00ff
97 * DBDMA command structure. These fields are all little-endian!
100 typedef struct dbdma_cmd {
101 uint16_t req_count; /* requested byte transfer count */
102 uint16_t command; /* command word (has bit-fields) */
103 uint32_t phy_addr; /* physical data address */
104 uint32_t cmd_dep; /* command-dependent field */
105 uint16_t res_count; /* residual count after completion */
106 uint16_t xfer_status; /* transfer status */
107 } dbdma_cmd;
109 /* DBDMA command values in command field */
111 #define COMMAND_MASK 0xf000
112 #define OUTPUT_MORE 0x0000 /* transfer memory data to stream */
113 #define OUTPUT_LAST 0x1000 /* ditto followed by end marker */
114 #define INPUT_MORE 0x2000 /* transfer stream data to memory */
115 #define INPUT_LAST 0x3000 /* ditto, expect end marker */
116 #define STORE_WORD 0x4000 /* write word (4 bytes) to device reg */
117 #define LOAD_WORD 0x5000 /* read word (4 bytes) from device reg */
118 #define DBDMA_NOP 0x6000 /* do nothing */
119 #define DBDMA_STOP 0x7000 /* suspend processing */
121 /* Key values in command field */
123 #define KEY_MASK 0x0700
124 #define KEY_STREAM0 0x0000 /* usual data stream */
125 #define KEY_STREAM1 0x0100 /* control/status stream */
126 #define KEY_STREAM2 0x0200 /* device-dependent stream */
127 #define KEY_STREAM3 0x0300 /* device-dependent stream */
128 #define KEY_STREAM4 0x0400 /* reserved */
129 #define KEY_REGS 0x0500 /* device register space */
130 #define KEY_SYSTEM 0x0600 /* system memory-mapped space */
131 #define KEY_DEVICE 0x0700 /* device memory-mapped space */
133 /* Interrupt control values in command field */
135 #define INTR_MASK 0x0030
136 #define INTR_NEVER 0x0000 /* don't interrupt */
137 #define INTR_IFSET 0x0010 /* intr if condition bit is 1 */
138 #define INTR_IFCLR 0x0020 /* intr if condition bit is 0 */
139 #define INTR_ALWAYS 0x0030 /* always interrupt */
141 /* Branch control values in command field */
143 #define BR_MASK 0x000c
144 #define BR_NEVER 0x0000 /* don't branch */
145 #define BR_IFSET 0x0004 /* branch if condition bit is 1 */
146 #define BR_IFCLR 0x0008 /* branch if condition bit is 0 */
147 #define BR_ALWAYS 0x000c /* always branch */
149 /* Wait control values in command field */
151 #define WAIT_MASK 0x0003
152 #define WAIT_NEVER 0x0000 /* don't wait */
153 #define WAIT_IFSET 0x0001 /* wait if condition bit is 1 */
154 #define WAIT_IFCLR 0x0002 /* wait if condition bit is 0 */
155 #define WAIT_ALWAYS 0x0003 /* always wait */
157 typedef struct DBDMA_channel {
158 int channel;
159 uint32_t regs[DBDMA_REGS];
160 qemu_irq irq;
161 DBDMA_transfer io;
162 DBDMA_transfer_handler transfer_handler;
163 dbdma_cmd current;
164 } DBDMA_channel;
166 #ifdef DEBUG_DBDMA
167 static void dump_dbdma_cmd(dbdma_cmd *cmd)
169 printf("dbdma_cmd %p\n", cmd);
170 printf(" req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
171 printf(" command 0x%04x\n", le16_to_cpu(cmd->command));
172 printf(" phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
173 printf(" cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
174 printf(" res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
175 printf(" xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status));
177 #else
178 static void dump_dbdma_cmd(dbdma_cmd *cmd)
181 #endif
182 static void dbdma_cmdptr_load(DBDMA_channel *ch)
184 DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n",
185 be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]));
186 cpu_physical_memory_read(be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]),
187 (uint8_t*)&ch->current, sizeof(dbdma_cmd));
190 static void dbdma_cmdptr_save(DBDMA_channel *ch)
192 DBDMA_DPRINTF("dbdma_cmdptr_save 0x%08x\n",
193 be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]));
194 DBDMA_DPRINTF("xfer_status 0x%08x res_count 0x%04x\n",
195 le16_to_cpu(ch->current.xfer_status),
196 le16_to_cpu(ch->current.res_count));
197 cpu_physical_memory_write(be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]),
198 (uint8_t*)&ch->current, sizeof(dbdma_cmd));
201 static void kill_channel(DBDMA_channel *ch)
203 DBDMA_DPRINTF("kill_channel\n");
205 ch->regs[DBDMA_STATUS] |= cpu_to_be32(DEAD);
206 ch->regs[DBDMA_STATUS] &= cpu_to_be32(~ACTIVE);
208 qemu_irq_raise(ch->irq);
211 static void conditional_interrupt(DBDMA_channel *ch)
213 dbdma_cmd *current = &ch->current;
214 uint16_t intr;
215 uint16_t sel_mask, sel_value;
216 uint32_t status;
217 int cond;
219 DBDMA_DPRINTF("conditional_interrupt\n");
221 intr = be16_to_cpu(current->command) & INTR_MASK;
223 switch(intr) {
224 case INTR_NEVER: /* don't interrupt */
225 return;
226 case INTR_ALWAYS: /* always interrupt */
227 qemu_irq_raise(ch->irq);
228 return;
231 status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
233 sel_mask = (be32_to_cpu(ch->regs[DBDMA_INTR_SEL]) >> 16) & 0x0f;
234 sel_value = be32_to_cpu(ch->regs[DBDMA_INTR_SEL]) & 0x0f;
236 cond = (status & sel_mask) == (sel_value & sel_mask);
238 switch(intr) {
239 case INTR_IFSET: /* intr if condition bit is 1 */
240 if (cond)
241 qemu_irq_raise(ch->irq);
242 return;
243 case INTR_IFCLR: /* intr if condition bit is 0 */
244 if (!cond)
245 qemu_irq_raise(ch->irq);
246 return;
250 static int conditional_wait(DBDMA_channel *ch)
252 dbdma_cmd *current = &ch->current;
253 uint16_t wait;
254 uint16_t sel_mask, sel_value;
255 uint32_t status;
256 int cond;
258 DBDMA_DPRINTF("conditional_wait\n");
260 wait = be16_to_cpu(current->command) & WAIT_MASK;
262 switch(wait) {
263 case WAIT_NEVER: /* don't wait */
264 return 0;
265 case WAIT_ALWAYS: /* always wait */
266 return 1;
269 status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
271 sel_mask = (be32_to_cpu(ch->regs[DBDMA_WAIT_SEL]) >> 16) & 0x0f;
272 sel_value = be32_to_cpu(ch->regs[DBDMA_WAIT_SEL]) & 0x0f;
274 cond = (status & sel_mask) == (sel_value & sel_mask);
276 switch(wait) {
277 case WAIT_IFSET: /* wait if condition bit is 1 */
278 if (cond)
279 return 1;
280 return 0;
281 case WAIT_IFCLR: /* wait if condition bit is 0 */
282 if (!cond)
283 return 1;
284 return 0;
286 return 0;
289 static void next(DBDMA_channel *ch)
291 uint32_t cp;
293 ch->regs[DBDMA_STATUS] &= cpu_to_be32(~BT);
295 cp = be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]);
296 ch->regs[DBDMA_CMDPTR_LO] = cpu_to_be32(cp + sizeof(dbdma_cmd));
297 dbdma_cmdptr_load(ch);
300 static void branch(DBDMA_channel *ch)
302 dbdma_cmd *current = &ch->current;
304 ch->regs[DBDMA_CMDPTR_LO] = current->cmd_dep;
305 ch->regs[DBDMA_STATUS] |= cpu_to_be32(BT);
306 dbdma_cmdptr_load(ch);
309 static void conditional_branch(DBDMA_channel *ch)
311 dbdma_cmd *current = &ch->current;
312 uint16_t br;
313 uint16_t sel_mask, sel_value;
314 uint32_t status;
315 int cond;
317 DBDMA_DPRINTF("conditional_branch\n");
319 /* check if we must branch */
321 br = be16_to_cpu(current->command) & BR_MASK;
323 switch(br) {
324 case BR_NEVER: /* don't branch */
325 next(ch);
326 return;
327 case BR_ALWAYS: /* always branch */
328 branch(ch);
329 return;
332 status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
334 sel_mask = (be32_to_cpu(ch->regs[DBDMA_BRANCH_SEL]) >> 16) & 0x0f;
335 sel_value = be32_to_cpu(ch->regs[DBDMA_BRANCH_SEL]) & 0x0f;
337 cond = (status & sel_mask) == (sel_value & sel_mask);
339 switch(br) {
340 case BR_IFSET: /* branch if condition bit is 1 */
341 if (cond)
342 branch(ch);
343 else
344 next(ch);
345 return;
346 case BR_IFCLR: /* branch if condition bit is 0 */
347 if (!cond)
348 branch(ch);
349 else
350 next(ch);
351 return;
355 static int dbdma_read_memory(DBDMA_transfer *io)
357 DBDMA_channel *ch = io->channel;
358 dbdma_cmd *current = &ch->current;
360 DBDMA_DPRINTF("DBDMA_read_memory\n");
362 cpu_physical_memory_read(le32_to_cpu(current->phy_addr) + io->buf_pos,
363 io->buf, io->buf_len);
365 return io->buf_len;
368 static int dbdma_write_memory(DBDMA_transfer *io)
370 DBDMA_channel *ch = io->channel;
371 dbdma_cmd *current = &ch->current;
373 DBDMA_DPRINTF("DBDMA_write_memory\n");
375 cpu_physical_memory_write(le32_to_cpu(current->phy_addr) + io->buf_pos,
376 io->buf, io->buf_len);
378 return io->buf_len;
381 static int start_output(DBDMA_channel *ch, int key, uint32_t addr,
382 uint16_t req_count, int is_last)
384 dbdma_cmd *current = &ch->current;
385 uint32_t n;
387 DBDMA_DPRINTF("start_output\n");
389 /* KEY_REGS, KEY_DEVICE and KEY_STREAM
390 * are not implemented in the mac-io chip
393 DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key);
394 if (!addr || key > KEY_STREAM3) {
395 kill_channel(ch);
396 return 0;
399 ch->io.buf = NULL;
400 ch->io.buf_pos = 0;
401 ch->io.buf_len = 0;
402 ch->io.len = req_count;
403 ch->io.is_last = is_last;
404 n = ch->transfer_handler(&ch->io, dbdma_read_memory);
406 if (conditional_wait(ch))
407 return 1;
409 current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
410 current->res_count = cpu_to_le16(0);
411 dbdma_cmdptr_save(ch);
413 conditional_interrupt(ch);
414 conditional_branch(ch);
416 return 1;
419 static int start_input(DBDMA_channel *ch, int key, uint32_t addr,
420 uint16_t req_count, int is_last)
422 dbdma_cmd *current = &ch->current;
423 uint32_t n;
425 DBDMA_DPRINTF("start_input\n");
427 /* KEY_REGS, KEY_DEVICE and KEY_STREAM
428 * are not implemented in the mac-io chip
431 if (!addr || key > KEY_STREAM3) {
432 kill_channel(ch);
433 return 0;
436 ch->io.buf = NULL;
437 ch->io.buf_pos = 0;
438 ch->io.buf_len = 0;
439 ch->io.len = req_count;
440 ch->io.is_last = is_last;
441 n = ch->transfer_handler(&ch->io, dbdma_write_memory);
443 if (conditional_wait(ch))
444 return 1;
446 current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
447 current->res_count = cpu_to_le16(0);
448 dbdma_cmdptr_save(ch);
450 conditional_interrupt(ch);
451 conditional_branch(ch);
453 return 1;
456 static int load_word(DBDMA_channel *ch, int key, uint32_t addr,
457 uint16_t len)
459 dbdma_cmd *current = &ch->current;
460 uint32_t val;
462 DBDMA_DPRINTF("load_word\n");
464 /* only implements KEY_SYSTEM */
466 if (key != KEY_SYSTEM) {
467 printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
468 kill_channel(ch);
469 return 0;
472 cpu_physical_memory_read(addr, (uint8_t*)&val, len);
474 if (len == 2)
475 val = (val << 16) | (current->cmd_dep & 0x0000ffff);
476 else if (len == 1)
477 val = (val << 24) | (current->cmd_dep & 0x00ffffff);
479 current->cmd_dep = val;
481 if (conditional_wait(ch))
482 return 1;
484 current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
485 dbdma_cmdptr_save(ch);
487 conditional_interrupt(ch);
488 next(ch);
490 return 1;
493 static int store_word(DBDMA_channel *ch, int key, uint32_t addr,
494 uint16_t len)
496 dbdma_cmd *current = &ch->current;
497 uint32_t val;
499 DBDMA_DPRINTF("store_word\n");
501 /* only implements KEY_SYSTEM */
503 if (key != KEY_SYSTEM) {
504 printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
505 kill_channel(ch);
506 return 0;
509 val = current->cmd_dep;
510 if (len == 2)
511 val >>= 16;
512 else if (len == 1)
513 val >>= 24;
515 cpu_physical_memory_write(addr, (uint8_t*)&val, len);
517 if (conditional_wait(ch))
518 return 1;
520 current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
521 dbdma_cmdptr_save(ch);
523 conditional_interrupt(ch);
524 next(ch);
526 return 1;
529 static int nop(DBDMA_channel *ch)
531 dbdma_cmd *current = &ch->current;
533 if (conditional_wait(ch))
534 return 1;
536 current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
537 dbdma_cmdptr_save(ch);
539 conditional_interrupt(ch);
540 conditional_branch(ch);
542 return 1;
545 static int stop(DBDMA_channel *ch)
547 ch->regs[DBDMA_STATUS] &= cpu_to_be32(~(ACTIVE|DEAD));
549 /* the stop command does not increment command pointer */
551 return 0;
554 static int channel_run(DBDMA_channel *ch)
556 dbdma_cmd *current = &ch->current;
557 uint16_t cmd, key;
558 uint16_t req_count;
559 uint32_t phy_addr;
561 DBDMA_DPRINTF("channel_run\n");
562 dump_dbdma_cmd(current);
564 /* clear WAKE flag at command fetch */
566 ch->regs[DBDMA_STATUS] &= cpu_to_be32(~WAKE);
568 cmd = le16_to_cpu(current->command) & COMMAND_MASK;
570 switch (cmd) {
571 case DBDMA_NOP:
572 return nop(ch);
574 case DBDMA_STOP:
575 return stop(ch);
578 key = le16_to_cpu(current->command) & 0x0700;
579 req_count = le16_to_cpu(current->req_count);
580 phy_addr = le32_to_cpu(current->phy_addr);
582 if (key == KEY_STREAM4) {
583 printf("command %x, invalid key 4\n", cmd);
584 kill_channel(ch);
585 return 0;
588 switch (cmd) {
589 case OUTPUT_MORE:
590 return start_output(ch, key, phy_addr, req_count, 0);
592 case OUTPUT_LAST:
593 return start_output(ch, key, phy_addr, req_count, 1);
595 case INPUT_MORE:
596 return start_input(ch, key, phy_addr, req_count, 0);
598 case INPUT_LAST:
599 return start_input(ch, key, phy_addr, req_count, 1);
602 if (key < KEY_REGS) {
603 printf("command %x, invalid key %x\n", cmd, key);
604 key = KEY_SYSTEM;
607 /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
608 * and BRANCH is invalid
611 req_count = req_count & 0x0007;
612 if (req_count & 0x4) {
613 req_count = 4;
614 phy_addr &= ~3;
615 } else if (req_count & 0x2) {
616 req_count = 2;
617 phy_addr &= ~1;
618 } else
619 req_count = 1;
621 switch (cmd) {
622 case LOAD_WORD:
623 return load_word(ch, key, phy_addr, req_count);
625 case STORE_WORD:
626 return store_word(ch, key, phy_addr, req_count);
629 return 0;
632 static QEMUBH *dbdma_bh;
634 static void DBDMA_run (DBDMA_channel *ch)
636 int channel;
637 int rearm = 0;
639 for (channel = 0; channel < DBDMA_CHANNELS; channel++, ch++) {
640 uint32_t status = be32_to_cpu(ch->regs[DBDMA_STATUS]);
641 if ((status & RUN) && (status & ACTIVE)) {
642 if (status & FLUSH)
643 while (channel_run(ch));
644 else if (channel_run(ch))
645 rearm = 1;
647 ch->regs[DBDMA_STATUS] &= cpu_to_be32(~FLUSH);
650 if (rearm)
651 qemu_bh_schedule_idle(dbdma_bh);
654 static void DBDMA_run_bh(void *opaque)
656 DBDMA_channel *ch = opaque;
658 DBDMA_DPRINTF("DBDMA_run_bh\n");
660 DBDMA_run(ch);
663 void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
664 DBDMA_transfer_handler transfer_handler,
665 void *opaque)
667 DBDMA_channel *ch = ( DBDMA_channel *)dbdma + nchan;
669 DBDMA_DPRINTF("DBDMA_register_channel 0x%x\n", nchan);
671 ch->irq = irq;
672 ch->channel = nchan;
673 ch->transfer_handler = transfer_handler;
674 ch->io.opaque = opaque;
675 ch->io.channel = ch;
678 void DBDMA_schedule(void)
680 CPUState *env = cpu_single_env;
681 if (env)
682 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
685 static void
686 dbdma_control_write(DBDMA_channel *ch)
688 uint16_t mask, value;
689 uint32_t status;
691 mask = (be32_to_cpu(ch->regs[DBDMA_CONTROL]) >> 16) & 0xffff;
692 value = be32_to_cpu(ch->regs[DBDMA_CONTROL]) & 0xffff;
694 value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT);
696 status = be32_to_cpu(ch->regs[DBDMA_STATUS]);
698 status = (value & mask) | (status & ~mask);
700 if (status & WAKE)
701 status |= ACTIVE;
702 if (status & RUN) {
703 status |= ACTIVE;
704 status &= ~DEAD;
706 if (status & PAUSE)
707 status &= ~ACTIVE;
708 if ((be32_to_cpu(ch->regs[DBDMA_STATUS]) & RUN) && !(status & RUN)) {
709 /* RUN is cleared */
710 status &= ~(ACTIVE|DEAD);
713 DBDMA_DPRINTF(" status 0x%08x\n", status);
715 ch->regs[DBDMA_STATUS] = cpu_to_be32(status);
717 if (status & ACTIVE) {
718 qemu_bh_schedule_idle(dbdma_bh);
719 if (status & FLUSH)
720 DBDMA_schedule();
724 static void dbdma_writel (void *opaque,
725 target_phys_addr_t addr, uint32_t value)
727 int channel = addr >> DBDMA_CHANNEL_SHIFT;
728 DBDMA_channel *ch = (DBDMA_channel *)opaque + channel;
729 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
731 DBDMA_DPRINTF("writel 0x" TARGET_FMT_plx " <= 0x%08x\n", addr, value);
732 DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
733 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
735 /* cmdptr cannot be modified if channel is RUN or ACTIVE */
737 if (reg == DBDMA_CMDPTR_LO &&
738 (ch->regs[DBDMA_STATUS] & cpu_to_be32(RUN | ACTIVE)))
739 return;
741 ch->regs[reg] = value;
743 switch(reg) {
744 case DBDMA_CONTROL:
745 dbdma_control_write(ch);
746 break;
747 case DBDMA_CMDPTR_LO:
748 /* 16-byte aligned */
749 ch->regs[DBDMA_CMDPTR_LO] &= cpu_to_be32(~0xf);
750 dbdma_cmdptr_load(ch);
751 break;
752 case DBDMA_STATUS:
753 case DBDMA_INTR_SEL:
754 case DBDMA_BRANCH_SEL:
755 case DBDMA_WAIT_SEL:
756 /* nothing to do */
757 break;
758 case DBDMA_XFER_MODE:
759 case DBDMA_CMDPTR_HI:
760 case DBDMA_DATA2PTR_HI:
761 case DBDMA_DATA2PTR_LO:
762 case DBDMA_ADDRESS_HI:
763 case DBDMA_BRANCH_ADDR_HI:
764 case DBDMA_RES1:
765 case DBDMA_RES2:
766 case DBDMA_RES3:
767 case DBDMA_RES4:
768 /* unused */
769 break;
773 static uint32_t dbdma_readl (void *opaque, target_phys_addr_t addr)
775 uint32_t value;
776 int channel = addr >> DBDMA_CHANNEL_SHIFT;
777 DBDMA_channel *ch = (DBDMA_channel *)opaque + channel;
778 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
780 value = ch->regs[reg];
782 DBDMA_DPRINTF("readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value);
783 DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
784 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
786 switch(reg) {
787 case DBDMA_CONTROL:
788 value = 0;
789 break;
790 case DBDMA_STATUS:
791 case DBDMA_CMDPTR_LO:
792 case DBDMA_INTR_SEL:
793 case DBDMA_BRANCH_SEL:
794 case DBDMA_WAIT_SEL:
795 /* nothing to do */
796 break;
797 case DBDMA_XFER_MODE:
798 case DBDMA_CMDPTR_HI:
799 case DBDMA_DATA2PTR_HI:
800 case DBDMA_DATA2PTR_LO:
801 case DBDMA_ADDRESS_HI:
802 case DBDMA_BRANCH_ADDR_HI:
803 /* unused */
804 value = 0;
805 break;
806 case DBDMA_RES1:
807 case DBDMA_RES2:
808 case DBDMA_RES3:
809 case DBDMA_RES4:
810 /* reserved */
811 break;
814 return value;
817 static CPUWriteMemoryFunc *dbdma_write[] = {
818 NULL,
819 NULL,
820 dbdma_writel,
823 static CPUReadMemoryFunc *dbdma_read[] = {
824 NULL,
825 NULL,
826 dbdma_readl,
829 static void dbdma_save(QEMUFile *f, void *opaque)
831 DBDMA_channel *s = opaque;
832 unsigned int i, j;
834 for (i = 0; i < DBDMA_CHANNELS; i++)
835 for (j = 0; j < DBDMA_REGS; j++)
836 qemu_put_be32s(f, &s[i].regs[j]);
839 static int dbdma_load(QEMUFile *f, void *opaque, int version_id)
841 DBDMA_channel *s = opaque;
842 unsigned int i, j;
844 if (version_id != 2)
845 return -EINVAL;
847 for (i = 0; i < DBDMA_CHANNELS; i++)
848 for (j = 0; j < DBDMA_REGS; j++)
849 qemu_get_be32s(f, &s[i].regs[j]);
851 return 0;
854 static void dbdma_reset(void *opaque)
856 DBDMA_channel *s = opaque;
857 int i;
859 for (i = 0; i < DBDMA_CHANNELS; i++)
860 memset(s[i].regs, 0, DBDMA_SIZE);
863 void* DBDMA_init (int *dbdma_mem_index)
865 DBDMA_channel *s;
867 s = qemu_mallocz(sizeof(DBDMA_channel) * DBDMA_CHANNELS);
869 *dbdma_mem_index = cpu_register_io_memory(0, dbdma_read, dbdma_write, s);
870 register_savevm("dbdma", -1, 1, dbdma_save, dbdma_load, s);
871 qemu_register_reset(dbdma_reset, s);
872 dbdma_reset(s);
874 dbdma_bh = qemu_bh_new(DBDMA_run_bh, s);
876 return s;