virtagent: various bits to build QEMU with virtagent
[qemu/mdroth.git] / target-sh4 / op_helper.c
blob2e5f5552a2da9d67ebc4f593aacccb01f9ea49a2
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <assert.h>
20 #include <stdlib.h>
21 #include "exec.h"
22 #include "helper.h"
24 #ifndef CONFIG_USER_ONLY
26 #define MMUSUFFIX _mmu
28 #define SHIFT 0
29 #include "softmmu_template.h"
31 #define SHIFT 1
32 #include "softmmu_template.h"
34 #define SHIFT 2
35 #include "softmmu_template.h"
37 #define SHIFT 3
38 #include "softmmu_template.h"
40 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
42 TranslationBlock *tb;
43 CPUState *saved_env;
44 unsigned long pc;
45 int ret;
47 /* XXX: hack to restore env in all cases, even if not called from
48 generated code */
49 saved_env = env;
50 env = cpu_single_env;
51 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
52 if (ret) {
53 if (retaddr) {
54 /* now we have a real cpu fault */
55 pc = (unsigned long) retaddr;
56 tb = tb_find_pc(pc);
57 if (tb) {
58 /* the PC is inside the translated code. It means that we have
59 a virtual CPU fault */
60 cpu_restore_state(tb, env, pc, NULL);
63 cpu_loop_exit();
65 env = saved_env;
68 #endif
70 void helper_ldtlb(void)
72 #ifdef CONFIG_USER_ONLY
73 /* XXXXX */
74 cpu_abort(env, "Unhandled ldtlb");
75 #else
76 cpu_load_tlb(env);
77 #endif
80 void helper_raise_illegal_instruction(void)
82 env->exception_index = 0x180;
83 cpu_loop_exit();
86 void helper_raise_slot_illegal_instruction(void)
88 env->exception_index = 0x1a0;
89 cpu_loop_exit();
92 void helper_raise_fpu_disable(void)
94 env->exception_index = 0x800;
95 cpu_loop_exit();
98 void helper_raise_slot_fpu_disable(void)
100 env->exception_index = 0x820;
101 cpu_loop_exit();
104 void helper_debug(void)
106 env->exception_index = EXCP_DEBUG;
107 cpu_loop_exit();
110 void helper_sleep(uint32_t next_pc)
112 env->halted = 1;
113 env->exception_index = EXCP_HLT;
114 env->pc = next_pc;
115 cpu_loop_exit();
118 void helper_trapa(uint32_t tra)
120 env->tra = tra << 2;
121 env->exception_index = 0x160;
122 cpu_loop_exit();
125 void helper_movcal(uint32_t address, uint32_t value)
127 if (cpu_sh4_is_cached (env, address))
129 memory_content *r = malloc (sizeof(memory_content));
130 r->address = address;
131 r->value = value;
132 r->next = NULL;
134 *(env->movcal_backup_tail) = r;
135 env->movcal_backup_tail = &(r->next);
139 void helper_discard_movcal_backup(void)
141 memory_content *current = env->movcal_backup;
143 while(current)
145 memory_content *next = current->next;
146 free (current);
147 env->movcal_backup = current = next;
148 if (current == NULL)
149 env->movcal_backup_tail = &(env->movcal_backup);
153 void helper_ocbi(uint32_t address)
155 memory_content **current = &(env->movcal_backup);
156 while (*current)
158 uint32_t a = (*current)->address;
159 if ((a & ~0x1F) == (address & ~0x1F))
161 memory_content *next = (*current)->next;
162 stl(a, (*current)->value);
164 if (next == NULL)
166 env->movcal_backup_tail = current;
169 free (*current);
170 *current = next;
171 break;
176 uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
178 uint32_t tmp0, tmp1;
180 tmp1 = arg0 + arg1;
181 tmp0 = arg1;
182 arg1 = tmp1 + (env->sr & 1);
183 if (tmp0 > tmp1)
184 env->sr |= SR_T;
185 else
186 env->sr &= ~SR_T;
187 if (tmp1 > arg1)
188 env->sr |= SR_T;
189 return arg1;
192 uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
194 uint32_t dest, src, ans;
196 if ((int32_t) arg1 >= 0)
197 dest = 0;
198 else
199 dest = 1;
200 if ((int32_t) arg0 >= 0)
201 src = 0;
202 else
203 src = 1;
204 src += dest;
205 arg1 += arg0;
206 if ((int32_t) arg1 >= 0)
207 ans = 0;
208 else
209 ans = 1;
210 ans += dest;
211 if (src == 0 || src == 2) {
212 if (ans == 1)
213 env->sr |= SR_T;
214 else
215 env->sr &= ~SR_T;
216 } else
217 env->sr &= ~SR_T;
218 return arg1;
221 #define T (env->sr & SR_T)
222 #define Q (env->sr & SR_Q ? 1 : 0)
223 #define M (env->sr & SR_M ? 1 : 0)
224 #define SETT env->sr |= SR_T
225 #define CLRT env->sr &= ~SR_T
226 #define SETQ env->sr |= SR_Q
227 #define CLRQ env->sr &= ~SR_Q
228 #define SETM env->sr |= SR_M
229 #define CLRM env->sr &= ~SR_M
231 uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
233 uint32_t tmp0, tmp2;
234 uint8_t old_q, tmp1 = 0xff;
236 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
237 old_q = Q;
238 if ((0x80000000 & arg1) != 0)
239 SETQ;
240 else
241 CLRQ;
242 tmp2 = arg0;
243 arg1 <<= 1;
244 arg1 |= T;
245 switch (old_q) {
246 case 0:
247 switch (M) {
248 case 0:
249 tmp0 = arg1;
250 arg1 -= tmp2;
251 tmp1 = arg1 > tmp0;
252 switch (Q) {
253 case 0:
254 if (tmp1)
255 SETQ;
256 else
257 CLRQ;
258 break;
259 case 1:
260 if (tmp1 == 0)
261 SETQ;
262 else
263 CLRQ;
264 break;
266 break;
267 case 1:
268 tmp0 = arg1;
269 arg1 += tmp2;
270 tmp1 = arg1 < tmp0;
271 switch (Q) {
272 case 0:
273 if (tmp1 == 0)
274 SETQ;
275 else
276 CLRQ;
277 break;
278 case 1:
279 if (tmp1)
280 SETQ;
281 else
282 CLRQ;
283 break;
285 break;
287 break;
288 case 1:
289 switch (M) {
290 case 0:
291 tmp0 = arg1;
292 arg1 += tmp2;
293 tmp1 = arg1 < tmp0;
294 switch (Q) {
295 case 0:
296 if (tmp1)
297 SETQ;
298 else
299 CLRQ;
300 break;
301 case 1:
302 if (tmp1 == 0)
303 SETQ;
304 else
305 CLRQ;
306 break;
308 break;
309 case 1:
310 tmp0 = arg1;
311 arg1 -= tmp2;
312 tmp1 = arg1 > tmp0;
313 switch (Q) {
314 case 0:
315 if (tmp1 == 0)
316 SETQ;
317 else
318 CLRQ;
319 break;
320 case 1:
321 if (tmp1)
322 SETQ;
323 else
324 CLRQ;
325 break;
327 break;
329 break;
331 if (Q == M)
332 SETT;
333 else
334 CLRT;
335 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
336 return arg1;
339 void helper_macl(uint32_t arg0, uint32_t arg1)
341 int64_t res;
343 res = ((uint64_t) env->mach << 32) | env->macl;
344 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
345 env->mach = (res >> 32) & 0xffffffff;
346 env->macl = res & 0xffffffff;
347 if (env->sr & SR_S) {
348 if (res < 0)
349 env->mach |= 0xffff0000;
350 else
351 env->mach &= 0x00007fff;
355 void helper_macw(uint32_t arg0, uint32_t arg1)
357 int64_t res;
359 res = ((uint64_t) env->mach << 32) | env->macl;
360 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
361 env->mach = (res >> 32) & 0xffffffff;
362 env->macl = res & 0xffffffff;
363 if (env->sr & SR_S) {
364 if (res < -0x80000000) {
365 env->mach = 1;
366 env->macl = 0x80000000;
367 } else if (res > 0x000000007fffffff) {
368 env->mach = 1;
369 env->macl = 0x7fffffff;
374 uint32_t helper_negc(uint32_t arg)
376 uint32_t temp;
378 temp = -arg;
379 arg = temp - (env->sr & SR_T);
380 if (0 < temp)
381 env->sr |= SR_T;
382 else
383 env->sr &= ~SR_T;
384 if (temp < arg)
385 env->sr |= SR_T;
386 return arg;
389 uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
391 uint32_t tmp0, tmp1;
393 tmp1 = arg1 - arg0;
394 tmp0 = arg1;
395 arg1 = tmp1 - (env->sr & SR_T);
396 if (tmp0 < tmp1)
397 env->sr |= SR_T;
398 else
399 env->sr &= ~SR_T;
400 if (tmp1 < arg1)
401 env->sr |= SR_T;
402 return arg1;
405 uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
407 int32_t dest, src, ans;
409 if ((int32_t) arg1 >= 0)
410 dest = 0;
411 else
412 dest = 1;
413 if ((int32_t) arg0 >= 0)
414 src = 0;
415 else
416 src = 1;
417 src += dest;
418 arg1 -= arg0;
419 if ((int32_t) arg1 >= 0)
420 ans = 0;
421 else
422 ans = 1;
423 ans += dest;
424 if (src == 1) {
425 if (ans == 1)
426 env->sr |= SR_T;
427 else
428 env->sr &= ~SR_T;
429 } else
430 env->sr &= ~SR_T;
431 return arg1;
434 static inline void set_t(void)
436 env->sr |= SR_T;
439 static inline void clr_t(void)
441 env->sr &= ~SR_T;
444 void helper_ld_fpscr(uint32_t val)
446 env->fpscr = val & 0x003fffff;
447 if (val & 0x01)
448 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
449 else
450 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
453 uint32_t helper_fabs_FT(uint32_t t0)
455 CPU_FloatU f;
456 f.l = t0;
457 f.f = float32_abs(f.f);
458 return f.l;
461 uint64_t helper_fabs_DT(uint64_t t0)
463 CPU_DoubleU d;
464 d.ll = t0;
465 d.d = float64_abs(d.d);
466 return d.ll;
469 uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
471 CPU_FloatU f0, f1;
472 f0.l = t0;
473 f1.l = t1;
474 f0.f = float32_add(f0.f, f1.f, &env->fp_status);
475 return f0.l;
478 uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
480 CPU_DoubleU d0, d1;
481 d0.ll = t0;
482 d1.ll = t1;
483 d0.d = float64_add(d0.d, d1.d, &env->fp_status);
484 return d0.ll;
487 void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
489 CPU_FloatU f0, f1;
490 f0.l = t0;
491 f1.l = t1;
493 if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
494 set_t();
495 else
496 clr_t();
499 void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
501 CPU_DoubleU d0, d1;
502 d0.ll = t0;
503 d1.ll = t1;
505 if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
506 set_t();
507 else
508 clr_t();
511 void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
513 CPU_FloatU f0, f1;
514 f0.l = t0;
515 f1.l = t1;
517 if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
518 set_t();
519 else
520 clr_t();
523 void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
525 CPU_DoubleU d0, d1;
526 d0.ll = t0;
527 d1.ll = t1;
529 if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
530 set_t();
531 else
532 clr_t();
535 uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
537 CPU_DoubleU d;
538 CPU_FloatU f;
539 f.l = t0;
540 d.d = float32_to_float64(f.f, &env->fp_status);
541 return d.ll;
544 uint32_t helper_fcnvds_DT_FT(uint64_t t0)
546 CPU_DoubleU d;
547 CPU_FloatU f;
548 d.ll = t0;
549 f.f = float64_to_float32(d.d, &env->fp_status);
550 return f.l;
553 uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
555 CPU_FloatU f0, f1;
556 f0.l = t0;
557 f1.l = t1;
558 f0.f = float32_div(f0.f, f1.f, &env->fp_status);
559 return f0.l;
562 uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
564 CPU_DoubleU d0, d1;
565 d0.ll = t0;
566 d1.ll = t1;
567 d0.d = float64_div(d0.d, d1.d, &env->fp_status);
568 return d0.ll;
571 uint32_t helper_float_FT(uint32_t t0)
573 CPU_FloatU f;
574 f.f = int32_to_float32(t0, &env->fp_status);
575 return f.l;
578 uint64_t helper_float_DT(uint32_t t0)
580 CPU_DoubleU d;
581 d.d = int32_to_float64(t0, &env->fp_status);
582 return d.ll;
585 uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
587 CPU_FloatU f0, f1, f2;
588 f0.l = t0;
589 f1.l = t1;
590 f2.l = t2;
591 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
592 f0.f = float32_add(f0.f, f2.f, &env->fp_status);
593 return f0.l;
596 uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
598 CPU_FloatU f0, f1;
599 f0.l = t0;
600 f1.l = t1;
601 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
602 return f0.l;
605 uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
607 CPU_DoubleU d0, d1;
608 d0.ll = t0;
609 d1.ll = t1;
610 d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
611 return d0.ll;
614 uint32_t helper_fneg_T(uint32_t t0)
616 CPU_FloatU f;
617 f.l = t0;
618 f.f = float32_chs(f.f);
619 return f.l;
622 uint32_t helper_fsqrt_FT(uint32_t t0)
624 CPU_FloatU f;
625 f.l = t0;
626 f.f = float32_sqrt(f.f, &env->fp_status);
627 return f.l;
630 uint64_t helper_fsqrt_DT(uint64_t t0)
632 CPU_DoubleU d;
633 d.ll = t0;
634 d.d = float64_sqrt(d.d, &env->fp_status);
635 return d.ll;
638 uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
640 CPU_FloatU f0, f1;
641 f0.l = t0;
642 f1.l = t1;
643 f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
644 return f0.l;
647 uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
649 CPU_DoubleU d0, d1;
650 d0.ll = t0;
651 d1.ll = t1;
652 d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
653 return d0.ll;
656 uint32_t helper_ftrc_FT(uint32_t t0)
658 CPU_FloatU f;
659 f.l = t0;
660 return float32_to_int32_round_to_zero(f.f, &env->fp_status);
663 uint32_t helper_ftrc_DT(uint64_t t0)
665 CPU_DoubleU d;
666 d.ll = t0;
667 return float64_to_int32_round_to_zero(d.d, &env->fp_status);