tcg/ppc32: proper setcond implementation
[qemu/mdroth.git] / target-i386 / kvm.c
blob5b093ce3bf1c38075276966b483f7b634cae2176
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
28 #ifdef CONFIG_KVM_PARA
29 #include <linux/kvm_para.h>
30 #endif
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 #define MSR_KVM_WALL_CLOCK 0x11
43 #define MSR_KVM_SYSTEM_TIME 0x12
45 #ifdef KVM_CAP_EXT_CPUID
47 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
49 struct kvm_cpuid2 *cpuid;
50 int r, size;
52 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
53 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
54 cpuid->nent = max;
55 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
56 if (r == 0 && cpuid->nent >= max) {
57 r = -E2BIG;
59 if (r < 0) {
60 if (r == -E2BIG) {
61 qemu_free(cpuid);
62 return NULL;
63 } else {
64 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
65 strerror(-r));
66 exit(1);
69 return cpuid;
72 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
74 struct kvm_cpuid2 *cpuid;
75 int i, max;
76 uint32_t ret = 0;
77 uint32_t cpuid_1_edx;
79 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
80 return -1U;
83 max = 1;
84 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
85 max *= 2;
88 for (i = 0; i < cpuid->nent; ++i) {
89 if (cpuid->entries[i].function == function) {
90 switch (reg) {
91 case R_EAX:
92 ret = cpuid->entries[i].eax;
93 break;
94 case R_EBX:
95 ret = cpuid->entries[i].ebx;
96 break;
97 case R_ECX:
98 ret = cpuid->entries[i].ecx;
99 break;
100 case R_EDX:
101 ret = cpuid->entries[i].edx;
102 if (function == 0x80000001) {
103 /* On Intel, kvm returns cpuid according to the Intel spec,
104 * so add missing bits according to the AMD spec:
106 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
107 ret |= cpuid_1_edx & 0xdfeff7ff;
109 break;
114 qemu_free(cpuid);
116 return ret;
119 #else
121 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
123 return -1U;
126 #endif
128 static void kvm_trim_features(uint32_t *features, uint32_t supported)
130 int i;
131 uint32_t mask;
133 for (i = 0; i < 32; ++i) {
134 mask = 1U << i;
135 if ((*features & mask) && !(supported & mask)) {
136 *features &= ~mask;
141 #ifdef CONFIG_KVM_PARA
142 struct kvm_para_features {
143 int cap;
144 int feature;
145 } para_features[] = {
146 #ifdef KVM_CAP_CLOCKSOURCE
147 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
148 #endif
149 #ifdef KVM_CAP_NOP_IO_DELAY
150 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
151 #endif
152 #ifdef KVM_CAP_PV_MMU
153 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154 #endif
155 #ifdef KVM_CAP_CR3_CACHE
156 { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
157 #endif
158 { -1, -1 }
161 static int get_para_features(CPUState *env)
163 int i, features = 0;
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
167 features |= (1 << para_features[i].feature);
170 return features;
172 #endif
174 int kvm_arch_init_vcpu(CPUState *env)
176 struct {
177 struct kvm_cpuid2 cpuid;
178 struct kvm_cpuid_entry2 entries[100];
179 } __attribute__((packed)) cpuid_data;
180 uint32_t limit, i, j, cpuid_i;
181 uint32_t unused;
182 struct kvm_cpuid_entry2 *c;
183 #ifdef KVM_CPUID_SIGNATURE
184 uint32_t signature[3];
185 #endif
187 env->mp_state = KVM_MP_STATE_RUNNABLE;
189 kvm_trim_features(&env->cpuid_features,
190 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
192 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
193 kvm_trim_features(&env->cpuid_ext_features,
194 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
195 env->cpuid_ext_features |= i;
197 kvm_trim_features(&env->cpuid_ext2_features,
198 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
199 kvm_trim_features(&env->cpuid_ext3_features,
200 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
202 cpuid_i = 0;
204 #ifdef CONFIG_KVM_PARA
205 /* Paravirtualization CPUIDs */
206 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
207 c = &cpuid_data.entries[cpuid_i++];
208 memset(c, 0, sizeof(*c));
209 c->function = KVM_CPUID_SIGNATURE;
210 c->eax = 0;
211 c->ebx = signature[0];
212 c->ecx = signature[1];
213 c->edx = signature[2];
215 c = &cpuid_data.entries[cpuid_i++];
216 memset(c, 0, sizeof(*c));
217 c->function = KVM_CPUID_FEATURES;
218 c->eax = env->cpuid_kvm_features & get_para_features(env);
219 #endif
221 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
223 for (i = 0; i <= limit; i++) {
224 c = &cpuid_data.entries[cpuid_i++];
226 switch (i) {
227 case 2: {
228 /* Keep reading function 2 till all the input is received */
229 int times;
231 c->function = i;
232 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
233 KVM_CPUID_FLAG_STATE_READ_NEXT;
234 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235 times = c->eax & 0xff;
237 for (j = 1; j < times; ++j) {
238 c = &cpuid_data.entries[cpuid_i++];
239 c->function = i;
240 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
241 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
243 break;
245 case 4:
246 case 0xb:
247 case 0xd:
248 for (j = 0; ; j++) {
249 c->function = i;
250 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
251 c->index = j;
252 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
254 if (i == 4 && c->eax == 0)
255 break;
256 if (i == 0xb && !(c->ecx & 0xff00))
257 break;
258 if (i == 0xd && c->eax == 0)
259 break;
261 c = &cpuid_data.entries[cpuid_i++];
263 break;
264 default:
265 c->function = i;
266 c->flags = 0;
267 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
268 break;
271 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
273 for (i = 0x80000000; i <= limit; i++) {
274 c = &cpuid_data.entries[cpuid_i++];
276 c->function = i;
277 c->flags = 0;
278 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
281 cpuid_data.cpuid.nent = cpuid_i;
283 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
286 void kvm_arch_reset_vcpu(CPUState *env)
288 env->exception_injected = -1;
289 env->interrupt_injected = -1;
290 env->nmi_injected = 0;
291 env->nmi_pending = 0;
294 static int kvm_has_msr_star(CPUState *env)
296 static int has_msr_star;
297 int ret;
299 /* first time */
300 if (has_msr_star == 0) {
301 struct kvm_msr_list msr_list, *kvm_msr_list;
303 has_msr_star = -1;
305 /* Obtain MSR list from KVM. These are the MSRs that we must
306 * save/restore */
307 msr_list.nmsrs = 0;
308 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
309 if (ret < 0 && ret != -E2BIG) {
310 return 0;
312 /* Old kernel modules had a bug and could write beyond the provided
313 memory. Allocate at least a safe amount of 1K. */
314 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
315 msr_list.nmsrs *
316 sizeof(msr_list.indices[0])));
318 kvm_msr_list->nmsrs = msr_list.nmsrs;
319 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
320 if (ret >= 0) {
321 int i;
323 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
324 if (kvm_msr_list->indices[i] == MSR_STAR) {
325 has_msr_star = 1;
326 break;
331 free(kvm_msr_list);
334 if (has_msr_star == 1)
335 return 1;
336 return 0;
339 int kvm_arch_init(KVMState *s, int smp_cpus)
341 int ret;
343 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
344 * directly. In order to use vm86 mode, a TSS is needed. Since this
345 * must be part of guest physical memory, we need to allocate it. Older
346 * versions of KVM just assumed that it would be at the end of physical
347 * memory but that doesn't work with more than 4GB of memory. We simply
348 * refuse to work with those older versions of KVM. */
349 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
350 if (ret <= 0) {
351 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
352 return ret;
355 /* this address is 3 pages before the bios, and the bios should present
356 * as unavaible memory. FIXME, need to ensure the e820 map deals with
357 * this?
359 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
362 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
364 lhs->selector = rhs->selector;
365 lhs->base = rhs->base;
366 lhs->limit = rhs->limit;
367 lhs->type = 3;
368 lhs->present = 1;
369 lhs->dpl = 3;
370 lhs->db = 0;
371 lhs->s = 1;
372 lhs->l = 0;
373 lhs->g = 0;
374 lhs->avl = 0;
375 lhs->unusable = 0;
378 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
380 unsigned flags = rhs->flags;
381 lhs->selector = rhs->selector;
382 lhs->base = rhs->base;
383 lhs->limit = rhs->limit;
384 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
385 lhs->present = (flags & DESC_P_MASK) != 0;
386 lhs->dpl = rhs->selector & 3;
387 lhs->db = (flags >> DESC_B_SHIFT) & 1;
388 lhs->s = (flags & DESC_S_MASK) != 0;
389 lhs->l = (flags >> DESC_L_SHIFT) & 1;
390 lhs->g = (flags & DESC_G_MASK) != 0;
391 lhs->avl = (flags & DESC_AVL_MASK) != 0;
392 lhs->unusable = 0;
395 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
397 lhs->selector = rhs->selector;
398 lhs->base = rhs->base;
399 lhs->limit = rhs->limit;
400 lhs->flags =
401 (rhs->type << DESC_TYPE_SHIFT)
402 | (rhs->present * DESC_P_MASK)
403 | (rhs->dpl << DESC_DPL_SHIFT)
404 | (rhs->db << DESC_B_SHIFT)
405 | (rhs->s * DESC_S_MASK)
406 | (rhs->l << DESC_L_SHIFT)
407 | (rhs->g * DESC_G_MASK)
408 | (rhs->avl * DESC_AVL_MASK);
411 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
413 if (set)
414 *kvm_reg = *qemu_reg;
415 else
416 *qemu_reg = *kvm_reg;
419 static int kvm_getput_regs(CPUState *env, int set)
421 struct kvm_regs regs;
422 int ret = 0;
424 if (!set) {
425 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
426 if (ret < 0)
427 return ret;
430 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
431 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
432 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
433 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
434 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
435 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
436 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
437 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
438 #ifdef TARGET_X86_64
439 kvm_getput_reg(&regs.r8, &env->regs[8], set);
440 kvm_getput_reg(&regs.r9, &env->regs[9], set);
441 kvm_getput_reg(&regs.r10, &env->regs[10], set);
442 kvm_getput_reg(&regs.r11, &env->regs[11], set);
443 kvm_getput_reg(&regs.r12, &env->regs[12], set);
444 kvm_getput_reg(&regs.r13, &env->regs[13], set);
445 kvm_getput_reg(&regs.r14, &env->regs[14], set);
446 kvm_getput_reg(&regs.r15, &env->regs[15], set);
447 #endif
449 kvm_getput_reg(&regs.rflags, &env->eflags, set);
450 kvm_getput_reg(&regs.rip, &env->eip, set);
452 if (set)
453 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
455 return ret;
458 static int kvm_put_fpu(CPUState *env)
460 struct kvm_fpu fpu;
461 int i;
463 memset(&fpu, 0, sizeof fpu);
464 fpu.fsw = env->fpus & ~(7 << 11);
465 fpu.fsw |= (env->fpstt & 7) << 11;
466 fpu.fcw = env->fpuc;
467 for (i = 0; i < 8; ++i)
468 fpu.ftwx |= (!env->fptags[i]) << i;
469 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
470 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
471 fpu.mxcsr = env->mxcsr;
473 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
476 static int kvm_put_sregs(CPUState *env)
478 struct kvm_sregs sregs;
480 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
481 if (env->interrupt_injected >= 0) {
482 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
483 (uint64_t)1 << (env->interrupt_injected % 64);
486 if ((env->eflags & VM_MASK)) {
487 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
488 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
489 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
490 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
491 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
492 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
493 } else {
494 set_seg(&sregs.cs, &env->segs[R_CS]);
495 set_seg(&sregs.ds, &env->segs[R_DS]);
496 set_seg(&sregs.es, &env->segs[R_ES]);
497 set_seg(&sregs.fs, &env->segs[R_FS]);
498 set_seg(&sregs.gs, &env->segs[R_GS]);
499 set_seg(&sregs.ss, &env->segs[R_SS]);
501 if (env->cr[0] & CR0_PE_MASK) {
502 /* force ss cpl to cs cpl */
503 sregs.ss.selector = (sregs.ss.selector & ~3) |
504 (sregs.cs.selector & 3);
505 sregs.ss.dpl = sregs.ss.selector & 3;
509 set_seg(&sregs.tr, &env->tr);
510 set_seg(&sregs.ldt, &env->ldt);
512 sregs.idt.limit = env->idt.limit;
513 sregs.idt.base = env->idt.base;
514 sregs.gdt.limit = env->gdt.limit;
515 sregs.gdt.base = env->gdt.base;
517 sregs.cr0 = env->cr[0];
518 sregs.cr2 = env->cr[2];
519 sregs.cr3 = env->cr[3];
520 sregs.cr4 = env->cr[4];
522 sregs.cr8 = cpu_get_apic_tpr(env);
523 sregs.apic_base = cpu_get_apic_base(env);
525 sregs.efer = env->efer;
527 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
530 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
531 uint32_t index, uint64_t value)
533 entry->index = index;
534 entry->data = value;
537 static int kvm_put_msrs(CPUState *env)
539 struct {
540 struct kvm_msrs info;
541 struct kvm_msr_entry entries[100];
542 } msr_data;
543 struct kvm_msr_entry *msrs = msr_data.entries;
544 int n = 0;
546 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
547 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
548 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
549 if (kvm_has_msr_star(env))
550 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
551 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
552 #ifdef TARGET_X86_64
553 /* FIXME if lm capable */
554 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
555 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
556 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
557 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
558 #endif
559 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
560 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
562 msr_data.info.nmsrs = n;
564 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
569 static int kvm_get_fpu(CPUState *env)
571 struct kvm_fpu fpu;
572 int i, ret;
574 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
575 if (ret < 0)
576 return ret;
578 env->fpstt = (fpu.fsw >> 11) & 7;
579 env->fpus = fpu.fsw;
580 env->fpuc = fpu.fcw;
581 for (i = 0; i < 8; ++i)
582 env->fptags[i] = !((fpu.ftwx >> i) & 1);
583 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
584 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
585 env->mxcsr = fpu.mxcsr;
587 return 0;
590 static int kvm_get_sregs(CPUState *env)
592 struct kvm_sregs sregs;
593 uint32_t hflags;
594 int bit, i, ret;
596 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
597 if (ret < 0)
598 return ret;
600 /* There can only be one pending IRQ set in the bitmap at a time, so try
601 to find it and save its number instead (-1 for none). */
602 env->interrupt_injected = -1;
603 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
604 if (sregs.interrupt_bitmap[i]) {
605 bit = ctz64(sregs.interrupt_bitmap[i]);
606 env->interrupt_injected = i * 64 + bit;
607 break;
611 get_seg(&env->segs[R_CS], &sregs.cs);
612 get_seg(&env->segs[R_DS], &sregs.ds);
613 get_seg(&env->segs[R_ES], &sregs.es);
614 get_seg(&env->segs[R_FS], &sregs.fs);
615 get_seg(&env->segs[R_GS], &sregs.gs);
616 get_seg(&env->segs[R_SS], &sregs.ss);
618 get_seg(&env->tr, &sregs.tr);
619 get_seg(&env->ldt, &sregs.ldt);
621 env->idt.limit = sregs.idt.limit;
622 env->idt.base = sregs.idt.base;
623 env->gdt.limit = sregs.gdt.limit;
624 env->gdt.base = sregs.gdt.base;
626 env->cr[0] = sregs.cr0;
627 env->cr[2] = sregs.cr2;
628 env->cr[3] = sregs.cr3;
629 env->cr[4] = sregs.cr4;
631 cpu_set_apic_base(env, sregs.apic_base);
633 env->efer = sregs.efer;
634 //cpu_set_apic_tpr(env, sregs.cr8);
636 #define HFLAG_COPY_MASK ~( \
637 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
638 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
639 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
640 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
644 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
645 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
646 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
647 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
648 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
649 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
650 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
652 if (env->efer & MSR_EFER_LMA) {
653 hflags |= HF_LMA_MASK;
656 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
657 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
658 } else {
659 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
660 (DESC_B_SHIFT - HF_CS32_SHIFT);
661 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
662 (DESC_B_SHIFT - HF_SS32_SHIFT);
663 if (!(env->cr[0] & CR0_PE_MASK) ||
664 (env->eflags & VM_MASK) ||
665 !(hflags & HF_CS32_MASK)) {
666 hflags |= HF_ADDSEG_MASK;
667 } else {
668 hflags |= ((env->segs[R_DS].base |
669 env->segs[R_ES].base |
670 env->segs[R_SS].base) != 0) <<
671 HF_ADDSEG_SHIFT;
674 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
676 return 0;
679 static int kvm_get_msrs(CPUState *env)
681 struct {
682 struct kvm_msrs info;
683 struct kvm_msr_entry entries[100];
684 } msr_data;
685 struct kvm_msr_entry *msrs = msr_data.entries;
686 int ret, i, n;
688 n = 0;
689 msrs[n++].index = MSR_IA32_SYSENTER_CS;
690 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
691 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
692 if (kvm_has_msr_star(env))
693 msrs[n++].index = MSR_STAR;
694 msrs[n++].index = MSR_IA32_TSC;
695 #ifdef TARGET_X86_64
696 /* FIXME lm_capable_kernel */
697 msrs[n++].index = MSR_CSTAR;
698 msrs[n++].index = MSR_KERNELGSBASE;
699 msrs[n++].index = MSR_FMASK;
700 msrs[n++].index = MSR_LSTAR;
701 #endif
702 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
703 msrs[n++].index = MSR_KVM_WALL_CLOCK;
705 msr_data.info.nmsrs = n;
706 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
707 if (ret < 0)
708 return ret;
710 for (i = 0; i < ret; i++) {
711 switch (msrs[i].index) {
712 case MSR_IA32_SYSENTER_CS:
713 env->sysenter_cs = msrs[i].data;
714 break;
715 case MSR_IA32_SYSENTER_ESP:
716 env->sysenter_esp = msrs[i].data;
717 break;
718 case MSR_IA32_SYSENTER_EIP:
719 env->sysenter_eip = msrs[i].data;
720 break;
721 case MSR_STAR:
722 env->star = msrs[i].data;
723 break;
724 #ifdef TARGET_X86_64
725 case MSR_CSTAR:
726 env->cstar = msrs[i].data;
727 break;
728 case MSR_KERNELGSBASE:
729 env->kernelgsbase = msrs[i].data;
730 break;
731 case MSR_FMASK:
732 env->fmask = msrs[i].data;
733 break;
734 case MSR_LSTAR:
735 env->lstar = msrs[i].data;
736 break;
737 #endif
738 case MSR_IA32_TSC:
739 env->tsc = msrs[i].data;
740 break;
741 case MSR_KVM_SYSTEM_TIME:
742 env->system_time_msr = msrs[i].data;
743 break;
744 case MSR_KVM_WALL_CLOCK:
745 env->wall_clock_msr = msrs[i].data;
746 break;
750 return 0;
753 static int kvm_put_mp_state(CPUState *env)
755 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
757 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
760 static int kvm_get_mp_state(CPUState *env)
762 struct kvm_mp_state mp_state;
763 int ret;
765 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
766 if (ret < 0) {
767 return ret;
769 env->mp_state = mp_state.mp_state;
770 return 0;
773 static int kvm_put_vcpu_events(CPUState *env)
775 #ifdef KVM_CAP_VCPU_EVENTS
776 struct kvm_vcpu_events events;
778 if (!kvm_has_vcpu_events()) {
779 return 0;
782 events.exception.injected = (env->exception_injected >= 0);
783 events.exception.nr = env->exception_injected;
784 events.exception.has_error_code = env->has_error_code;
785 events.exception.error_code = env->error_code;
787 events.interrupt.injected = (env->interrupt_injected >= 0);
788 events.interrupt.nr = env->interrupt_injected;
789 events.interrupt.soft = env->soft_interrupt;
791 events.nmi.injected = env->nmi_injected;
792 events.nmi.pending = env->nmi_pending;
793 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
795 events.sipi_vector = env->sipi_vector;
797 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
798 #else
799 return 0;
800 #endif
803 static int kvm_get_vcpu_events(CPUState *env)
805 #ifdef KVM_CAP_VCPU_EVENTS
806 struct kvm_vcpu_events events;
807 int ret;
809 if (!kvm_has_vcpu_events()) {
810 return 0;
813 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
814 if (ret < 0) {
815 return ret;
817 env->exception_injected =
818 events.exception.injected ? events.exception.nr : -1;
819 env->has_error_code = events.exception.has_error_code;
820 env->error_code = events.exception.error_code;
822 env->interrupt_injected =
823 events.interrupt.injected ? events.interrupt.nr : -1;
824 env->soft_interrupt = events.interrupt.soft;
826 env->nmi_injected = events.nmi.injected;
827 env->nmi_pending = events.nmi.pending;
828 if (events.nmi.masked) {
829 env->hflags2 |= HF2_NMI_MASK;
830 } else {
831 env->hflags2 &= ~HF2_NMI_MASK;
834 env->sipi_vector = events.sipi_vector;
835 #endif
837 return 0;
840 int kvm_arch_put_registers(CPUState *env)
842 int ret;
844 ret = kvm_getput_regs(env, 1);
845 if (ret < 0)
846 return ret;
848 ret = kvm_put_fpu(env);
849 if (ret < 0)
850 return ret;
852 ret = kvm_put_sregs(env);
853 if (ret < 0)
854 return ret;
856 ret = kvm_put_msrs(env);
857 if (ret < 0)
858 return ret;
860 ret = kvm_put_mp_state(env);
861 if (ret < 0)
862 return ret;
864 ret = kvm_put_vcpu_events(env);
865 if (ret < 0)
866 return ret;
868 return 0;
871 int kvm_arch_get_registers(CPUState *env)
873 int ret;
875 ret = kvm_getput_regs(env, 0);
876 if (ret < 0)
877 return ret;
879 ret = kvm_get_fpu(env);
880 if (ret < 0)
881 return ret;
883 ret = kvm_get_sregs(env);
884 if (ret < 0)
885 return ret;
887 ret = kvm_get_msrs(env);
888 if (ret < 0)
889 return ret;
891 ret = kvm_get_mp_state(env);
892 if (ret < 0)
893 return ret;
895 ret = kvm_get_vcpu_events(env);
896 if (ret < 0)
897 return ret;
899 return 0;
902 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
904 /* Try to inject an interrupt if the guest can accept it */
905 if (run->ready_for_interrupt_injection &&
906 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
907 (env->eflags & IF_MASK)) {
908 int irq;
910 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
911 irq = cpu_get_pic_interrupt(env);
912 if (irq >= 0) {
913 struct kvm_interrupt intr;
914 intr.irq = irq;
915 /* FIXME: errors */
916 dprintf("injected interrupt %d\n", irq);
917 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
921 /* If we have an interrupt but the guest is not ready to receive an
922 * interrupt, request an interrupt window exit. This will
923 * cause a return to userspace as soon as the guest is ready to
924 * receive interrupts. */
925 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
926 run->request_interrupt_window = 1;
927 else
928 run->request_interrupt_window = 0;
930 dprintf("setting tpr\n");
931 run->cr8 = cpu_get_apic_tpr(env);
933 return 0;
936 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
938 if (run->if_flag)
939 env->eflags |= IF_MASK;
940 else
941 env->eflags &= ~IF_MASK;
943 cpu_set_apic_tpr(env, run->cr8);
944 cpu_set_apic_base(env, run->apic_base);
946 return 0;
949 static int kvm_handle_halt(CPUState *env)
951 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
952 (env->eflags & IF_MASK)) &&
953 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
954 env->halted = 1;
955 env->exception_index = EXCP_HLT;
956 return 0;
959 return 1;
962 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
964 int ret = 0;
966 switch (run->exit_reason) {
967 case KVM_EXIT_HLT:
968 dprintf("handle_hlt\n");
969 ret = kvm_handle_halt(env);
970 break;
973 return ret;
976 #ifdef KVM_CAP_SET_GUEST_DEBUG
977 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
979 static const uint8_t int3 = 0xcc;
981 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
982 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
983 return -EINVAL;
984 return 0;
987 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
989 uint8_t int3;
991 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
992 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
993 return -EINVAL;
994 return 0;
997 static struct {
998 target_ulong addr;
999 int len;
1000 int type;
1001 } hw_breakpoint[4];
1003 static int nb_hw_breakpoint;
1005 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1007 int n;
1009 for (n = 0; n < nb_hw_breakpoint; n++)
1010 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1011 (hw_breakpoint[n].len == len || len == -1))
1012 return n;
1013 return -1;
1016 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1017 target_ulong len, int type)
1019 switch (type) {
1020 case GDB_BREAKPOINT_HW:
1021 len = 1;
1022 break;
1023 case GDB_WATCHPOINT_WRITE:
1024 case GDB_WATCHPOINT_ACCESS:
1025 switch (len) {
1026 case 1:
1027 break;
1028 case 2:
1029 case 4:
1030 case 8:
1031 if (addr & (len - 1))
1032 return -EINVAL;
1033 break;
1034 default:
1035 return -EINVAL;
1037 break;
1038 default:
1039 return -ENOSYS;
1042 if (nb_hw_breakpoint == 4)
1043 return -ENOBUFS;
1045 if (find_hw_breakpoint(addr, len, type) >= 0)
1046 return -EEXIST;
1048 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1049 hw_breakpoint[nb_hw_breakpoint].len = len;
1050 hw_breakpoint[nb_hw_breakpoint].type = type;
1051 nb_hw_breakpoint++;
1053 return 0;
1056 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1057 target_ulong len, int type)
1059 int n;
1061 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1062 if (n < 0)
1063 return -ENOENT;
1065 nb_hw_breakpoint--;
1066 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1068 return 0;
1071 void kvm_arch_remove_all_hw_breakpoints(void)
1073 nb_hw_breakpoint = 0;
1076 static CPUWatchpoint hw_watchpoint;
1078 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1080 int handle = 0;
1081 int n;
1083 if (arch_info->exception == 1) {
1084 if (arch_info->dr6 & (1 << 14)) {
1085 if (cpu_single_env->singlestep_enabled)
1086 handle = 1;
1087 } else {
1088 for (n = 0; n < 4; n++)
1089 if (arch_info->dr6 & (1 << n))
1090 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1091 case 0x0:
1092 handle = 1;
1093 break;
1094 case 0x1:
1095 handle = 1;
1096 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1097 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1098 hw_watchpoint.flags = BP_MEM_WRITE;
1099 break;
1100 case 0x3:
1101 handle = 1;
1102 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1103 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1104 hw_watchpoint.flags = BP_MEM_ACCESS;
1105 break;
1108 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1109 handle = 1;
1111 if (!handle)
1112 kvm_update_guest_debug(cpu_single_env,
1113 (arch_info->exception == 1) ?
1114 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1116 return handle;
1119 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1121 const uint8_t type_code[] = {
1122 [GDB_BREAKPOINT_HW] = 0x0,
1123 [GDB_WATCHPOINT_WRITE] = 0x1,
1124 [GDB_WATCHPOINT_ACCESS] = 0x3
1126 const uint8_t len_code[] = {
1127 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1129 int n;
1131 if (kvm_sw_breakpoints_active(env))
1132 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1134 if (nb_hw_breakpoint > 0) {
1135 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1136 dbg->arch.debugreg[7] = 0x0600;
1137 for (n = 0; n < nb_hw_breakpoint; n++) {
1138 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1139 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1140 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1141 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1145 #endif /* KVM_CAP_SET_GUEST_DEBUG */