tcx: avoid structure holes spotted by pahole
[qemu/mdroth.git] / target-i386 / kvm.c
blobbd850ed7c0ba2c8fd714b5e91e28ee33c3205352
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
43 #define MSR_KVM_WALL_CLOCK 0x11
44 #define MSR_KVM_SYSTEM_TIME 0x12
46 #ifndef BUS_MCEERR_AR
47 #define BUS_MCEERR_AR 4
48 #endif
49 #ifndef BUS_MCEERR_AO
50 #define BUS_MCEERR_AO 5
51 #endif
53 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
60 static bool has_msr_star;
61 static bool has_msr_hsave_pa;
62 static bool has_msr_async_pf_en;
63 static int lm_capable_kernel;
65 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
67 struct kvm_cpuid2 *cpuid;
68 int r, size;
70 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
71 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
72 cpuid->nent = max;
73 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
74 if (r == 0 && cpuid->nent >= max) {
75 r = -E2BIG;
77 if (r < 0) {
78 if (r == -E2BIG) {
79 g_free(cpuid);
80 return NULL;
81 } else {
82 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
83 strerror(-r));
84 exit(1);
87 return cpuid;
90 struct kvm_para_features {
91 int cap;
92 int feature;
93 } para_features[] = {
94 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
95 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
96 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
97 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
98 { -1, -1 }
101 static int get_para_features(KVMState *s)
103 int i, features = 0;
105 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
106 if (kvm_check_extension(s, para_features[i].cap)) {
107 features |= (1 << para_features[i].feature);
111 return features;
115 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
116 uint32_t index, int reg)
118 struct kvm_cpuid2 *cpuid;
119 int i, max;
120 uint32_t ret = 0;
121 uint32_t cpuid_1_edx;
122 int has_kvm_features = 0;
124 max = 1;
125 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
126 max *= 2;
129 for (i = 0; i < cpuid->nent; ++i) {
130 if (cpuid->entries[i].function == function &&
131 cpuid->entries[i].index == index) {
132 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
133 has_kvm_features = 1;
135 switch (reg) {
136 case R_EAX:
137 ret = cpuid->entries[i].eax;
138 break;
139 case R_EBX:
140 ret = cpuid->entries[i].ebx;
141 break;
142 case R_ECX:
143 ret = cpuid->entries[i].ecx;
144 break;
145 case R_EDX:
146 ret = cpuid->entries[i].edx;
147 switch (function) {
148 case 1:
149 /* KVM before 2.6.30 misreports the following features */
150 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
151 break;
152 case 0x80000001:
153 /* On Intel, kvm returns cpuid according to the Intel spec,
154 * so add missing bits according to the AMD spec:
156 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
157 ret |= cpuid_1_edx & 0x183f7ff;
158 break;
160 break;
165 g_free(cpuid);
167 /* fallback for older kernels */
168 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
169 ret = get_para_features(s);
172 return ret;
175 typedef struct HWPoisonPage {
176 ram_addr_t ram_addr;
177 QLIST_ENTRY(HWPoisonPage) list;
178 } HWPoisonPage;
180 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
181 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
183 static void kvm_unpoison_all(void *param)
185 HWPoisonPage *page, *next_page;
187 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
188 QLIST_REMOVE(page, list);
189 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
190 g_free(page);
194 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
196 HWPoisonPage *page;
198 QLIST_FOREACH(page, &hwpoison_page_list, list) {
199 if (page->ram_addr == ram_addr) {
200 return;
203 page = g_malloc(sizeof(HWPoisonPage));
204 page->ram_addr = ram_addr;
205 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
209 int *max_banks)
211 int r;
213 r = kvm_check_extension(s, KVM_CAP_MCE);
214 if (r > 0) {
215 *max_banks = r;
216 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
218 return -ENOSYS;
221 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
223 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
224 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
225 uint64_t mcg_status = MCG_STATUS_MCIP;
227 if (code == BUS_MCEERR_AR) {
228 status |= MCI_STATUS_AR | 0x134;
229 mcg_status |= MCG_STATUS_EIPV;
230 } else {
231 status |= 0xc0;
232 mcg_status |= MCG_STATUS_RIPV;
234 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
235 (MCM_ADDR_PHYS << 6) | 0xc,
236 cpu_x86_support_mca_broadcast(env) ?
237 MCE_INJECT_BROADCAST : 0);
240 static void hardware_memory_error(void)
242 fprintf(stderr, "Hardware memory error!\n");
243 exit(1);
246 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
248 ram_addr_t ram_addr;
249 target_phys_addr_t paddr;
251 if ((env->mcg_cap & MCG_SER_P) && addr
252 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
253 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
254 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
255 &paddr)) {
256 fprintf(stderr, "Hardware memory error for memory used by "
257 "QEMU itself instead of guest system!\n");
258 /* Hope we are lucky for AO MCE */
259 if (code == BUS_MCEERR_AO) {
260 return 0;
261 } else {
262 hardware_memory_error();
265 kvm_hwpoison_page_add(ram_addr);
266 kvm_mce_inject(env, paddr, code);
267 } else {
268 if (code == BUS_MCEERR_AO) {
269 return 0;
270 } else if (code == BUS_MCEERR_AR) {
271 hardware_memory_error();
272 } else {
273 return 1;
276 return 0;
279 int kvm_arch_on_sigbus(int code, void *addr)
281 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
282 ram_addr_t ram_addr;
283 target_phys_addr_t paddr;
285 /* Hope we are lucky for AO MCE */
286 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
287 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
288 &paddr)) {
289 fprintf(stderr, "Hardware memory error for memory used by "
290 "QEMU itself instead of guest system!: %p\n", addr);
291 return 0;
293 kvm_hwpoison_page_add(ram_addr);
294 kvm_mce_inject(first_cpu, paddr, code);
295 } else {
296 if (code == BUS_MCEERR_AO) {
297 return 0;
298 } else if (code == BUS_MCEERR_AR) {
299 hardware_memory_error();
300 } else {
301 return 1;
304 return 0;
307 static int kvm_inject_mce_oldstyle(CPUState *env)
309 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
310 unsigned int bank, bank_num = env->mcg_cap & 0xff;
311 struct kvm_x86_mce mce;
313 env->exception_injected = -1;
316 * There must be at least one bank in use if an MCE is pending.
317 * Find it and use its values for the event injection.
319 for (bank = 0; bank < bank_num; bank++) {
320 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
321 break;
324 assert(bank < bank_num);
326 mce.bank = bank;
327 mce.status = env->mce_banks[bank * 4 + 1];
328 mce.mcg_status = env->mcg_status;
329 mce.addr = env->mce_banks[bank * 4 + 2];
330 mce.misc = env->mce_banks[bank * 4 + 3];
332 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
334 return 0;
337 static void cpu_update_state(void *opaque, int running, int reason)
339 CPUState *env = opaque;
341 if (running) {
342 env->tsc_valid = false;
346 int kvm_arch_init_vcpu(CPUState *env)
348 struct {
349 struct kvm_cpuid2 cpuid;
350 struct kvm_cpuid_entry2 entries[100];
351 } __attribute__((packed)) cpuid_data;
352 KVMState *s = env->kvm_state;
353 uint32_t limit, i, j, cpuid_i;
354 uint32_t unused;
355 struct kvm_cpuid_entry2 *c;
356 uint32_t signature[3];
357 int r;
359 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
361 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
362 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
363 env->cpuid_ext_features |= i;
365 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
366 0, R_EDX);
367 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
368 0, R_ECX);
369 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
370 0, R_EDX);
372 cpuid_i = 0;
374 /* Paravirtualization CPUIDs */
375 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
376 c = &cpuid_data.entries[cpuid_i++];
377 memset(c, 0, sizeof(*c));
378 c->function = KVM_CPUID_SIGNATURE;
379 c->eax = 0;
380 c->ebx = signature[0];
381 c->ecx = signature[1];
382 c->edx = signature[2];
384 c = &cpuid_data.entries[cpuid_i++];
385 memset(c, 0, sizeof(*c));
386 c->function = KVM_CPUID_FEATURES;
387 c->eax = env->cpuid_kvm_features &
388 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
390 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
392 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
394 for (i = 0; i <= limit; i++) {
395 c = &cpuid_data.entries[cpuid_i++];
397 switch (i) {
398 case 2: {
399 /* Keep reading function 2 till all the input is received */
400 int times;
402 c->function = i;
403 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
404 KVM_CPUID_FLAG_STATE_READ_NEXT;
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406 times = c->eax & 0xff;
408 for (j = 1; j < times; ++j) {
409 c = &cpuid_data.entries[cpuid_i++];
410 c->function = i;
411 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
412 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
414 break;
416 case 4:
417 case 0xb:
418 case 0xd:
419 for (j = 0; ; j++) {
420 if (i == 0xd && j == 64) {
421 break;
423 c->function = i;
424 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
425 c->index = j;
426 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
428 if (i == 4 && c->eax == 0) {
429 break;
431 if (i == 0xb && !(c->ecx & 0xff00)) {
432 break;
434 if (i == 0xd && c->eax == 0) {
435 continue;
437 c = &cpuid_data.entries[cpuid_i++];
439 break;
440 default:
441 c->function = i;
442 c->flags = 0;
443 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
444 break;
447 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
449 for (i = 0x80000000; i <= limit; i++) {
450 c = &cpuid_data.entries[cpuid_i++];
452 c->function = i;
453 c->flags = 0;
454 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
457 /* Call Centaur's CPUID instructions they are supported. */
458 if (env->cpuid_xlevel2 > 0) {
459 env->cpuid_ext4_features &=
460 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
461 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
463 for (i = 0xC0000000; i <= limit; i++) {
464 c = &cpuid_data.entries[cpuid_i++];
466 c->function = i;
467 c->flags = 0;
468 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
472 cpuid_data.cpuid.nent = cpuid_i;
474 if (((env->cpuid_version >> 8)&0xF) >= 6
475 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
476 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
477 uint64_t mcg_cap;
478 int banks;
479 int ret;
481 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
482 if (ret < 0) {
483 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
484 return ret;
487 if (banks > MCE_BANKS_DEF) {
488 banks = MCE_BANKS_DEF;
490 mcg_cap &= MCE_CAP_DEF;
491 mcg_cap |= banks;
492 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
493 if (ret < 0) {
494 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
495 return ret;
498 env->mcg_cap = mcg_cap;
501 qemu_add_vm_change_state_handler(cpu_update_state, env);
503 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
504 if (r)
505 return r;
507 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
508 if (r && env->tsc_khz) {
509 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
510 if (r < 0) {
511 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
512 return r;
516 return 0;
519 void kvm_arch_reset_vcpu(CPUState *env)
521 env->exception_injected = -1;
522 env->interrupt_injected = -1;
523 env->xcr0 = 1;
524 if (kvm_irqchip_in_kernel()) {
525 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
526 KVM_MP_STATE_UNINITIALIZED;
527 } else {
528 env->mp_state = KVM_MP_STATE_RUNNABLE;
532 static int kvm_get_supported_msrs(KVMState *s)
534 static int kvm_supported_msrs;
535 int ret = 0;
537 /* first time */
538 if (kvm_supported_msrs == 0) {
539 struct kvm_msr_list msr_list, *kvm_msr_list;
541 kvm_supported_msrs = -1;
543 /* Obtain MSR list from KVM. These are the MSRs that we must
544 * save/restore */
545 msr_list.nmsrs = 0;
546 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
547 if (ret < 0 && ret != -E2BIG) {
548 return ret;
550 /* Old kernel modules had a bug and could write beyond the provided
551 memory. Allocate at least a safe amount of 1K. */
552 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
553 msr_list.nmsrs *
554 sizeof(msr_list.indices[0])));
556 kvm_msr_list->nmsrs = msr_list.nmsrs;
557 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
558 if (ret >= 0) {
559 int i;
561 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
562 if (kvm_msr_list->indices[i] == MSR_STAR) {
563 has_msr_star = true;
564 continue;
566 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
567 has_msr_hsave_pa = true;
568 continue;
573 g_free(kvm_msr_list);
576 return ret;
579 int kvm_arch_init(KVMState *s)
581 uint64_t identity_base = 0xfffbc000;
582 int ret;
583 struct utsname utsname;
585 ret = kvm_get_supported_msrs(s);
586 if (ret < 0) {
587 return ret;
590 uname(&utsname);
591 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
594 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
595 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
596 * Since these must be part of guest physical memory, we need to allocate
597 * them, both by setting their start addresses in the kernel and by
598 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
600 * Older KVM versions may not support setting the identity map base. In
601 * that case we need to stick with the default, i.e. a 256K maximum BIOS
602 * size.
604 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
605 /* Allows up to 16M BIOSes. */
606 identity_base = 0xfeffc000;
608 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
609 if (ret < 0) {
610 return ret;
614 /* Set TSS base one page after EPT identity map. */
615 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
616 if (ret < 0) {
617 return ret;
620 /* Tell fw_cfg to notify the BIOS to reserve the range. */
621 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
622 if (ret < 0) {
623 fprintf(stderr, "e820_add_entry() table is full\n");
624 return ret;
626 qemu_register_reset(kvm_unpoison_all, NULL);
628 return 0;
631 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
633 lhs->selector = rhs->selector;
634 lhs->base = rhs->base;
635 lhs->limit = rhs->limit;
636 lhs->type = 3;
637 lhs->present = 1;
638 lhs->dpl = 3;
639 lhs->db = 0;
640 lhs->s = 1;
641 lhs->l = 0;
642 lhs->g = 0;
643 lhs->avl = 0;
644 lhs->unusable = 0;
647 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
649 unsigned flags = rhs->flags;
650 lhs->selector = rhs->selector;
651 lhs->base = rhs->base;
652 lhs->limit = rhs->limit;
653 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
654 lhs->present = (flags & DESC_P_MASK) != 0;
655 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
656 lhs->db = (flags >> DESC_B_SHIFT) & 1;
657 lhs->s = (flags & DESC_S_MASK) != 0;
658 lhs->l = (flags >> DESC_L_SHIFT) & 1;
659 lhs->g = (flags & DESC_G_MASK) != 0;
660 lhs->avl = (flags & DESC_AVL_MASK) != 0;
661 lhs->unusable = 0;
664 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
666 lhs->selector = rhs->selector;
667 lhs->base = rhs->base;
668 lhs->limit = rhs->limit;
669 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
670 (rhs->present * DESC_P_MASK) |
671 (rhs->dpl << DESC_DPL_SHIFT) |
672 (rhs->db << DESC_B_SHIFT) |
673 (rhs->s * DESC_S_MASK) |
674 (rhs->l << DESC_L_SHIFT) |
675 (rhs->g * DESC_G_MASK) |
676 (rhs->avl * DESC_AVL_MASK);
679 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
681 if (set) {
682 *kvm_reg = *qemu_reg;
683 } else {
684 *qemu_reg = *kvm_reg;
688 static int kvm_getput_regs(CPUState *env, int set)
690 struct kvm_regs regs;
691 int ret = 0;
693 if (!set) {
694 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
695 if (ret < 0) {
696 return ret;
700 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
701 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
702 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
703 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
704 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
705 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
706 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
707 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
708 #ifdef TARGET_X86_64
709 kvm_getput_reg(&regs.r8, &env->regs[8], set);
710 kvm_getput_reg(&regs.r9, &env->regs[9], set);
711 kvm_getput_reg(&regs.r10, &env->regs[10], set);
712 kvm_getput_reg(&regs.r11, &env->regs[11], set);
713 kvm_getput_reg(&regs.r12, &env->regs[12], set);
714 kvm_getput_reg(&regs.r13, &env->regs[13], set);
715 kvm_getput_reg(&regs.r14, &env->regs[14], set);
716 kvm_getput_reg(&regs.r15, &env->regs[15], set);
717 #endif
719 kvm_getput_reg(&regs.rflags, &env->eflags, set);
720 kvm_getput_reg(&regs.rip, &env->eip, set);
722 if (set) {
723 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
726 return ret;
729 static int kvm_put_fpu(CPUState *env)
731 struct kvm_fpu fpu;
732 int i;
734 memset(&fpu, 0, sizeof fpu);
735 fpu.fsw = env->fpus & ~(7 << 11);
736 fpu.fsw |= (env->fpstt & 7) << 11;
737 fpu.fcw = env->fpuc;
738 fpu.last_opcode = env->fpop;
739 fpu.last_ip = env->fpip;
740 fpu.last_dp = env->fpdp;
741 for (i = 0; i < 8; ++i) {
742 fpu.ftwx |= (!env->fptags[i]) << i;
744 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
745 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
746 fpu.mxcsr = env->mxcsr;
748 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
751 #define XSAVE_CWD_RIP 2
752 #define XSAVE_CWD_RDP 4
753 #define XSAVE_MXCSR 6
754 #define XSAVE_ST_SPACE 8
755 #define XSAVE_XMM_SPACE 40
756 #define XSAVE_XSTATE_BV 128
757 #define XSAVE_YMMH_SPACE 144
759 static int kvm_put_xsave(CPUState *env)
761 int i, r;
762 struct kvm_xsave* xsave;
763 uint16_t cwd, swd, twd;
765 if (!kvm_has_xsave()) {
766 return kvm_put_fpu(env);
769 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
770 memset(xsave, 0, sizeof(struct kvm_xsave));
771 cwd = swd = twd = 0;
772 swd = env->fpus & ~(7 << 11);
773 swd |= (env->fpstt & 7) << 11;
774 cwd = env->fpuc;
775 for (i = 0; i < 8; ++i) {
776 twd |= (!env->fptags[i]) << i;
778 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
779 xsave->region[1] = (uint32_t)(env->fpop << 16) + twd;
780 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
781 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
782 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
783 sizeof env->fpregs);
784 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
785 sizeof env->xmm_regs);
786 xsave->region[XSAVE_MXCSR] = env->mxcsr;
787 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
788 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
789 sizeof env->ymmh_regs);
790 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
791 g_free(xsave);
792 return r;
795 static int kvm_put_xcrs(CPUState *env)
797 struct kvm_xcrs xcrs;
799 if (!kvm_has_xcrs()) {
800 return 0;
803 xcrs.nr_xcrs = 1;
804 xcrs.flags = 0;
805 xcrs.xcrs[0].xcr = 0;
806 xcrs.xcrs[0].value = env->xcr0;
807 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
810 static int kvm_put_sregs(CPUState *env)
812 struct kvm_sregs sregs;
814 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
815 if (env->interrupt_injected >= 0) {
816 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
817 (uint64_t)1 << (env->interrupt_injected % 64);
820 if ((env->eflags & VM_MASK)) {
821 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
822 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
823 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
824 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
825 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
826 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
827 } else {
828 set_seg(&sregs.cs, &env->segs[R_CS]);
829 set_seg(&sregs.ds, &env->segs[R_DS]);
830 set_seg(&sregs.es, &env->segs[R_ES]);
831 set_seg(&sregs.fs, &env->segs[R_FS]);
832 set_seg(&sregs.gs, &env->segs[R_GS]);
833 set_seg(&sregs.ss, &env->segs[R_SS]);
836 set_seg(&sregs.tr, &env->tr);
837 set_seg(&sregs.ldt, &env->ldt);
839 sregs.idt.limit = env->idt.limit;
840 sregs.idt.base = env->idt.base;
841 sregs.gdt.limit = env->gdt.limit;
842 sregs.gdt.base = env->gdt.base;
844 sregs.cr0 = env->cr[0];
845 sregs.cr2 = env->cr[2];
846 sregs.cr3 = env->cr[3];
847 sregs.cr4 = env->cr[4];
849 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
850 sregs.apic_base = cpu_get_apic_base(env->apic_state);
852 sregs.efer = env->efer;
854 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
857 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
858 uint32_t index, uint64_t value)
860 entry->index = index;
861 entry->data = value;
864 static int kvm_put_msrs(CPUState *env, int level)
866 struct {
867 struct kvm_msrs info;
868 struct kvm_msr_entry entries[100];
869 } msr_data;
870 struct kvm_msr_entry *msrs = msr_data.entries;
871 int n = 0;
873 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
874 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
875 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
876 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
877 if (has_msr_star) {
878 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
880 if (has_msr_hsave_pa) {
881 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
883 #ifdef TARGET_X86_64
884 if (lm_capable_kernel) {
885 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
886 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
887 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
888 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
890 #endif
891 if (level == KVM_PUT_FULL_STATE) {
893 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
894 * writeback. Until this is fixed, we only write the offset to SMP
895 * guests after migration, desynchronizing the VCPUs, but avoiding
896 * huge jump-backs that would occur without any writeback at all.
898 if (smp_cpus == 1 || env->tsc != 0) {
899 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
903 * The following paravirtual MSRs have side effects on the guest or are
904 * too heavy for normal writeback. Limit them to reset or full state
905 * updates.
907 if (level >= KVM_PUT_RESET_STATE) {
908 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
909 env->system_time_msr);
910 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
911 if (has_msr_async_pf_en) {
912 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
913 env->async_pf_en_msr);
916 if (env->mcg_cap) {
917 int i;
919 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
920 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
921 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
922 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
926 msr_data.info.nmsrs = n;
928 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
933 static int kvm_get_fpu(CPUState *env)
935 struct kvm_fpu fpu;
936 int i, ret;
938 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
939 if (ret < 0) {
940 return ret;
943 env->fpstt = (fpu.fsw >> 11) & 7;
944 env->fpus = fpu.fsw;
945 env->fpuc = fpu.fcw;
946 env->fpop = fpu.last_opcode;
947 env->fpip = fpu.last_ip;
948 env->fpdp = fpu.last_dp;
949 for (i = 0; i < 8; ++i) {
950 env->fptags[i] = !((fpu.ftwx >> i) & 1);
952 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
953 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
954 env->mxcsr = fpu.mxcsr;
956 return 0;
959 static int kvm_get_xsave(CPUState *env)
961 struct kvm_xsave* xsave;
962 int ret, i;
963 uint16_t cwd, swd, twd;
965 if (!kvm_has_xsave()) {
966 return kvm_get_fpu(env);
969 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
970 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
971 if (ret < 0) {
972 g_free(xsave);
973 return ret;
976 cwd = (uint16_t)xsave->region[0];
977 swd = (uint16_t)(xsave->region[0] >> 16);
978 twd = (uint16_t)xsave->region[1];
979 env->fpop = (uint16_t)(xsave->region[1] >> 16);
980 env->fpstt = (swd >> 11) & 7;
981 env->fpus = swd;
982 env->fpuc = cwd;
983 for (i = 0; i < 8; ++i) {
984 env->fptags[i] = !((twd >> i) & 1);
986 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
987 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
988 env->mxcsr = xsave->region[XSAVE_MXCSR];
989 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
990 sizeof env->fpregs);
991 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
992 sizeof env->xmm_regs);
993 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
994 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
995 sizeof env->ymmh_regs);
996 g_free(xsave);
997 return 0;
1000 static int kvm_get_xcrs(CPUState *env)
1002 int i, ret;
1003 struct kvm_xcrs xcrs;
1005 if (!kvm_has_xcrs()) {
1006 return 0;
1009 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1010 if (ret < 0) {
1011 return ret;
1014 for (i = 0; i < xcrs.nr_xcrs; i++) {
1015 /* Only support xcr0 now */
1016 if (xcrs.xcrs[0].xcr == 0) {
1017 env->xcr0 = xcrs.xcrs[0].value;
1018 break;
1021 return 0;
1024 static int kvm_get_sregs(CPUState *env)
1026 struct kvm_sregs sregs;
1027 uint32_t hflags;
1028 int bit, i, ret;
1030 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1031 if (ret < 0) {
1032 return ret;
1035 /* There can only be one pending IRQ set in the bitmap at a time, so try
1036 to find it and save its number instead (-1 for none). */
1037 env->interrupt_injected = -1;
1038 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1039 if (sregs.interrupt_bitmap[i]) {
1040 bit = ctz64(sregs.interrupt_bitmap[i]);
1041 env->interrupt_injected = i * 64 + bit;
1042 break;
1046 get_seg(&env->segs[R_CS], &sregs.cs);
1047 get_seg(&env->segs[R_DS], &sregs.ds);
1048 get_seg(&env->segs[R_ES], &sregs.es);
1049 get_seg(&env->segs[R_FS], &sregs.fs);
1050 get_seg(&env->segs[R_GS], &sregs.gs);
1051 get_seg(&env->segs[R_SS], &sregs.ss);
1053 get_seg(&env->tr, &sregs.tr);
1054 get_seg(&env->ldt, &sregs.ldt);
1056 env->idt.limit = sregs.idt.limit;
1057 env->idt.base = sregs.idt.base;
1058 env->gdt.limit = sregs.gdt.limit;
1059 env->gdt.base = sregs.gdt.base;
1061 env->cr[0] = sregs.cr0;
1062 env->cr[2] = sregs.cr2;
1063 env->cr[3] = sregs.cr3;
1064 env->cr[4] = sregs.cr4;
1066 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1068 env->efer = sregs.efer;
1069 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1071 #define HFLAG_COPY_MASK \
1072 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1073 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1074 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1075 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1077 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1078 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1079 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1080 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1081 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1082 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1083 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1085 if (env->efer & MSR_EFER_LMA) {
1086 hflags |= HF_LMA_MASK;
1089 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1090 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1091 } else {
1092 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1093 (DESC_B_SHIFT - HF_CS32_SHIFT);
1094 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1095 (DESC_B_SHIFT - HF_SS32_SHIFT);
1096 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1097 !(hflags & HF_CS32_MASK)) {
1098 hflags |= HF_ADDSEG_MASK;
1099 } else {
1100 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1101 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1104 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1106 return 0;
1109 static int kvm_get_msrs(CPUState *env)
1111 struct {
1112 struct kvm_msrs info;
1113 struct kvm_msr_entry entries[100];
1114 } msr_data;
1115 struct kvm_msr_entry *msrs = msr_data.entries;
1116 int ret, i, n;
1118 n = 0;
1119 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1120 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1121 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1122 msrs[n++].index = MSR_PAT;
1123 if (has_msr_star) {
1124 msrs[n++].index = MSR_STAR;
1126 if (has_msr_hsave_pa) {
1127 msrs[n++].index = MSR_VM_HSAVE_PA;
1130 if (!env->tsc_valid) {
1131 msrs[n++].index = MSR_IA32_TSC;
1132 env->tsc_valid = !vm_running;
1135 #ifdef TARGET_X86_64
1136 if (lm_capable_kernel) {
1137 msrs[n++].index = MSR_CSTAR;
1138 msrs[n++].index = MSR_KERNELGSBASE;
1139 msrs[n++].index = MSR_FMASK;
1140 msrs[n++].index = MSR_LSTAR;
1142 #endif
1143 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1144 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1145 if (has_msr_async_pf_en) {
1146 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1149 if (env->mcg_cap) {
1150 msrs[n++].index = MSR_MCG_STATUS;
1151 msrs[n++].index = MSR_MCG_CTL;
1152 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1153 msrs[n++].index = MSR_MC0_CTL + i;
1157 msr_data.info.nmsrs = n;
1158 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1159 if (ret < 0) {
1160 return ret;
1163 for (i = 0; i < ret; i++) {
1164 switch (msrs[i].index) {
1165 case MSR_IA32_SYSENTER_CS:
1166 env->sysenter_cs = msrs[i].data;
1167 break;
1168 case MSR_IA32_SYSENTER_ESP:
1169 env->sysenter_esp = msrs[i].data;
1170 break;
1171 case MSR_IA32_SYSENTER_EIP:
1172 env->sysenter_eip = msrs[i].data;
1173 break;
1174 case MSR_PAT:
1175 env->pat = msrs[i].data;
1176 break;
1177 case MSR_STAR:
1178 env->star = msrs[i].data;
1179 break;
1180 #ifdef TARGET_X86_64
1181 case MSR_CSTAR:
1182 env->cstar = msrs[i].data;
1183 break;
1184 case MSR_KERNELGSBASE:
1185 env->kernelgsbase = msrs[i].data;
1186 break;
1187 case MSR_FMASK:
1188 env->fmask = msrs[i].data;
1189 break;
1190 case MSR_LSTAR:
1191 env->lstar = msrs[i].data;
1192 break;
1193 #endif
1194 case MSR_IA32_TSC:
1195 env->tsc = msrs[i].data;
1196 break;
1197 case MSR_VM_HSAVE_PA:
1198 env->vm_hsave = msrs[i].data;
1199 break;
1200 case MSR_KVM_SYSTEM_TIME:
1201 env->system_time_msr = msrs[i].data;
1202 break;
1203 case MSR_KVM_WALL_CLOCK:
1204 env->wall_clock_msr = msrs[i].data;
1205 break;
1206 case MSR_MCG_STATUS:
1207 env->mcg_status = msrs[i].data;
1208 break;
1209 case MSR_MCG_CTL:
1210 env->mcg_ctl = msrs[i].data;
1211 break;
1212 default:
1213 if (msrs[i].index >= MSR_MC0_CTL &&
1214 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1215 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1217 break;
1218 case MSR_KVM_ASYNC_PF_EN:
1219 env->async_pf_en_msr = msrs[i].data;
1220 break;
1224 return 0;
1227 static int kvm_put_mp_state(CPUState *env)
1229 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1231 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1234 static int kvm_get_mp_state(CPUState *env)
1236 struct kvm_mp_state mp_state;
1237 int ret;
1239 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1240 if (ret < 0) {
1241 return ret;
1243 env->mp_state = mp_state.mp_state;
1244 if (kvm_irqchip_in_kernel()) {
1245 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1247 return 0;
1250 static int kvm_put_vcpu_events(CPUState *env, int level)
1252 struct kvm_vcpu_events events;
1254 if (!kvm_has_vcpu_events()) {
1255 return 0;
1258 events.exception.injected = (env->exception_injected >= 0);
1259 events.exception.nr = env->exception_injected;
1260 events.exception.has_error_code = env->has_error_code;
1261 events.exception.error_code = env->error_code;
1263 events.interrupt.injected = (env->interrupt_injected >= 0);
1264 events.interrupt.nr = env->interrupt_injected;
1265 events.interrupt.soft = env->soft_interrupt;
1267 events.nmi.injected = env->nmi_injected;
1268 events.nmi.pending = env->nmi_pending;
1269 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1271 events.sipi_vector = env->sipi_vector;
1273 events.flags = 0;
1274 if (level >= KVM_PUT_RESET_STATE) {
1275 events.flags |=
1276 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1279 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1282 static int kvm_get_vcpu_events(CPUState *env)
1284 struct kvm_vcpu_events events;
1285 int ret;
1287 if (!kvm_has_vcpu_events()) {
1288 return 0;
1291 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1292 if (ret < 0) {
1293 return ret;
1295 env->exception_injected =
1296 events.exception.injected ? events.exception.nr : -1;
1297 env->has_error_code = events.exception.has_error_code;
1298 env->error_code = events.exception.error_code;
1300 env->interrupt_injected =
1301 events.interrupt.injected ? events.interrupt.nr : -1;
1302 env->soft_interrupt = events.interrupt.soft;
1304 env->nmi_injected = events.nmi.injected;
1305 env->nmi_pending = events.nmi.pending;
1306 if (events.nmi.masked) {
1307 env->hflags2 |= HF2_NMI_MASK;
1308 } else {
1309 env->hflags2 &= ~HF2_NMI_MASK;
1312 env->sipi_vector = events.sipi_vector;
1314 return 0;
1317 static int kvm_guest_debug_workarounds(CPUState *env)
1319 int ret = 0;
1320 unsigned long reinject_trap = 0;
1322 if (!kvm_has_vcpu_events()) {
1323 if (env->exception_injected == 1) {
1324 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1325 } else if (env->exception_injected == 3) {
1326 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1328 env->exception_injected = -1;
1332 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1333 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1334 * by updating the debug state once again if single-stepping is on.
1335 * Another reason to call kvm_update_guest_debug here is a pending debug
1336 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1337 * reinject them via SET_GUEST_DEBUG.
1339 if (reinject_trap ||
1340 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1341 ret = kvm_update_guest_debug(env, reinject_trap);
1343 return ret;
1346 static int kvm_put_debugregs(CPUState *env)
1348 struct kvm_debugregs dbgregs;
1349 int i;
1351 if (!kvm_has_debugregs()) {
1352 return 0;
1355 for (i = 0; i < 4; i++) {
1356 dbgregs.db[i] = env->dr[i];
1358 dbgregs.dr6 = env->dr[6];
1359 dbgregs.dr7 = env->dr[7];
1360 dbgregs.flags = 0;
1362 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1365 static int kvm_get_debugregs(CPUState *env)
1367 struct kvm_debugregs dbgregs;
1368 int i, ret;
1370 if (!kvm_has_debugregs()) {
1371 return 0;
1374 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1375 if (ret < 0) {
1376 return ret;
1378 for (i = 0; i < 4; i++) {
1379 env->dr[i] = dbgregs.db[i];
1381 env->dr[4] = env->dr[6] = dbgregs.dr6;
1382 env->dr[5] = env->dr[7] = dbgregs.dr7;
1384 return 0;
1387 int kvm_arch_put_registers(CPUState *env, int level)
1389 int ret;
1391 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1393 ret = kvm_getput_regs(env, 1);
1394 if (ret < 0) {
1395 return ret;
1397 ret = kvm_put_xsave(env);
1398 if (ret < 0) {
1399 return ret;
1401 ret = kvm_put_xcrs(env);
1402 if (ret < 0) {
1403 return ret;
1405 ret = kvm_put_sregs(env);
1406 if (ret < 0) {
1407 return ret;
1409 /* must be before kvm_put_msrs */
1410 ret = kvm_inject_mce_oldstyle(env);
1411 if (ret < 0) {
1412 return ret;
1414 ret = kvm_put_msrs(env, level);
1415 if (ret < 0) {
1416 return ret;
1418 if (level >= KVM_PUT_RESET_STATE) {
1419 ret = kvm_put_mp_state(env);
1420 if (ret < 0) {
1421 return ret;
1424 ret = kvm_put_vcpu_events(env, level);
1425 if (ret < 0) {
1426 return ret;
1428 ret = kvm_put_debugregs(env);
1429 if (ret < 0) {
1430 return ret;
1432 /* must be last */
1433 ret = kvm_guest_debug_workarounds(env);
1434 if (ret < 0) {
1435 return ret;
1437 return 0;
1440 int kvm_arch_get_registers(CPUState *env)
1442 int ret;
1444 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1446 ret = kvm_getput_regs(env, 0);
1447 if (ret < 0) {
1448 return ret;
1450 ret = kvm_get_xsave(env);
1451 if (ret < 0) {
1452 return ret;
1454 ret = kvm_get_xcrs(env);
1455 if (ret < 0) {
1456 return ret;
1458 ret = kvm_get_sregs(env);
1459 if (ret < 0) {
1460 return ret;
1462 ret = kvm_get_msrs(env);
1463 if (ret < 0) {
1464 return ret;
1466 ret = kvm_get_mp_state(env);
1467 if (ret < 0) {
1468 return ret;
1470 ret = kvm_get_vcpu_events(env);
1471 if (ret < 0) {
1472 return ret;
1474 ret = kvm_get_debugregs(env);
1475 if (ret < 0) {
1476 return ret;
1478 return 0;
1481 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1483 int ret;
1485 /* Inject NMI */
1486 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1487 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1488 DPRINTF("injected NMI\n");
1489 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1490 if (ret < 0) {
1491 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1492 strerror(-ret));
1496 if (!kvm_irqchip_in_kernel()) {
1497 /* Force the VCPU out of its inner loop to process the INIT request */
1498 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1499 env->exit_request = 1;
1502 /* Try to inject an interrupt if the guest can accept it */
1503 if (run->ready_for_interrupt_injection &&
1504 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1505 (env->eflags & IF_MASK)) {
1506 int irq;
1508 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1509 irq = cpu_get_pic_interrupt(env);
1510 if (irq >= 0) {
1511 struct kvm_interrupt intr;
1513 intr.irq = irq;
1514 DPRINTF("injected interrupt %d\n", irq);
1515 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1516 if (ret < 0) {
1517 fprintf(stderr,
1518 "KVM: injection failed, interrupt lost (%s)\n",
1519 strerror(-ret));
1524 /* If we have an interrupt but the guest is not ready to receive an
1525 * interrupt, request an interrupt window exit. This will
1526 * cause a return to userspace as soon as the guest is ready to
1527 * receive interrupts. */
1528 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1529 run->request_interrupt_window = 1;
1530 } else {
1531 run->request_interrupt_window = 0;
1534 DPRINTF("setting tpr\n");
1535 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1539 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1541 if (run->if_flag) {
1542 env->eflags |= IF_MASK;
1543 } else {
1544 env->eflags &= ~IF_MASK;
1546 cpu_set_apic_tpr(env->apic_state, run->cr8);
1547 cpu_set_apic_base(env->apic_state, run->apic_base);
1550 int kvm_arch_process_async_events(CPUState *env)
1552 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1553 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1554 assert(env->mcg_cap);
1556 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1558 kvm_cpu_synchronize_state(env);
1560 if (env->exception_injected == EXCP08_DBLE) {
1561 /* this means triple fault */
1562 qemu_system_reset_request();
1563 env->exit_request = 1;
1564 return 0;
1566 env->exception_injected = EXCP12_MCHK;
1567 env->has_error_code = 0;
1569 env->halted = 0;
1570 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1571 env->mp_state = KVM_MP_STATE_RUNNABLE;
1575 if (kvm_irqchip_in_kernel()) {
1576 return 0;
1579 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1580 (env->eflags & IF_MASK)) ||
1581 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1582 env->halted = 0;
1584 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1585 kvm_cpu_synchronize_state(env);
1586 do_cpu_init(env);
1588 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1589 kvm_cpu_synchronize_state(env);
1590 do_cpu_sipi(env);
1593 return env->halted;
1596 static int kvm_handle_halt(CPUState *env)
1598 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1599 (env->eflags & IF_MASK)) &&
1600 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1601 env->halted = 1;
1602 return EXCP_HLT;
1605 return 0;
1608 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1610 static const uint8_t int3 = 0xcc;
1612 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1613 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1614 return -EINVAL;
1616 return 0;
1619 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1621 uint8_t int3;
1623 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1624 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1625 return -EINVAL;
1627 return 0;
1630 static struct {
1631 target_ulong addr;
1632 int len;
1633 int type;
1634 } hw_breakpoint[4];
1636 static int nb_hw_breakpoint;
1638 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1640 int n;
1642 for (n = 0; n < nb_hw_breakpoint; n++) {
1643 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1644 (hw_breakpoint[n].len == len || len == -1)) {
1645 return n;
1648 return -1;
1651 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1652 target_ulong len, int type)
1654 switch (type) {
1655 case GDB_BREAKPOINT_HW:
1656 len = 1;
1657 break;
1658 case GDB_WATCHPOINT_WRITE:
1659 case GDB_WATCHPOINT_ACCESS:
1660 switch (len) {
1661 case 1:
1662 break;
1663 case 2:
1664 case 4:
1665 case 8:
1666 if (addr & (len - 1)) {
1667 return -EINVAL;
1669 break;
1670 default:
1671 return -EINVAL;
1673 break;
1674 default:
1675 return -ENOSYS;
1678 if (nb_hw_breakpoint == 4) {
1679 return -ENOBUFS;
1681 if (find_hw_breakpoint(addr, len, type) >= 0) {
1682 return -EEXIST;
1684 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1685 hw_breakpoint[nb_hw_breakpoint].len = len;
1686 hw_breakpoint[nb_hw_breakpoint].type = type;
1687 nb_hw_breakpoint++;
1689 return 0;
1692 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1693 target_ulong len, int type)
1695 int n;
1697 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1698 if (n < 0) {
1699 return -ENOENT;
1701 nb_hw_breakpoint--;
1702 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1704 return 0;
1707 void kvm_arch_remove_all_hw_breakpoints(void)
1709 nb_hw_breakpoint = 0;
1712 static CPUWatchpoint hw_watchpoint;
1714 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1716 int ret = 0;
1717 int n;
1719 if (arch_info->exception == 1) {
1720 if (arch_info->dr6 & (1 << 14)) {
1721 if (cpu_single_env->singlestep_enabled) {
1722 ret = EXCP_DEBUG;
1724 } else {
1725 for (n = 0; n < 4; n++) {
1726 if (arch_info->dr6 & (1 << n)) {
1727 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1728 case 0x0:
1729 ret = EXCP_DEBUG;
1730 break;
1731 case 0x1:
1732 ret = EXCP_DEBUG;
1733 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1734 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1735 hw_watchpoint.flags = BP_MEM_WRITE;
1736 break;
1737 case 0x3:
1738 ret = EXCP_DEBUG;
1739 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1740 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1741 hw_watchpoint.flags = BP_MEM_ACCESS;
1742 break;
1747 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1748 ret = EXCP_DEBUG;
1750 if (ret == 0) {
1751 cpu_synchronize_state(cpu_single_env);
1752 assert(cpu_single_env->exception_injected == -1);
1754 /* pass to guest */
1755 cpu_single_env->exception_injected = arch_info->exception;
1756 cpu_single_env->has_error_code = 0;
1759 return ret;
1762 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1764 const uint8_t type_code[] = {
1765 [GDB_BREAKPOINT_HW] = 0x0,
1766 [GDB_WATCHPOINT_WRITE] = 0x1,
1767 [GDB_WATCHPOINT_ACCESS] = 0x3
1769 const uint8_t len_code[] = {
1770 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1772 int n;
1774 if (kvm_sw_breakpoints_active(env)) {
1775 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1777 if (nb_hw_breakpoint > 0) {
1778 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1779 dbg->arch.debugreg[7] = 0x0600;
1780 for (n = 0; n < nb_hw_breakpoint; n++) {
1781 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1782 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1783 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1784 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1789 static bool host_supports_vmx(void)
1791 uint32_t ecx, unused;
1793 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1794 return ecx & CPUID_EXT_VMX;
1797 #define VMX_INVALID_GUEST_STATE 0x80000021
1799 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1801 uint64_t code;
1802 int ret;
1804 switch (run->exit_reason) {
1805 case KVM_EXIT_HLT:
1806 DPRINTF("handle_hlt\n");
1807 ret = kvm_handle_halt(env);
1808 break;
1809 case KVM_EXIT_SET_TPR:
1810 ret = 0;
1811 break;
1812 case KVM_EXIT_FAIL_ENTRY:
1813 code = run->fail_entry.hardware_entry_failure_reason;
1814 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1815 code);
1816 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1817 fprintf(stderr,
1818 "\nIf you're runnning a guest on an Intel machine without "
1819 "unrestricted mode\n"
1820 "support, the failure can be most likely due to the guest "
1821 "entering an invalid\n"
1822 "state for Intel VT. For example, the guest maybe running "
1823 "in big real mode\n"
1824 "which is not supported on less recent Intel processors."
1825 "\n\n");
1827 ret = -1;
1828 break;
1829 case KVM_EXIT_EXCEPTION:
1830 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1831 run->ex.exception, run->ex.error_code);
1832 ret = -1;
1833 break;
1834 case KVM_EXIT_DEBUG:
1835 DPRINTF("kvm_exit_debug\n");
1836 ret = kvm_handle_debug(&run->debug.arch);
1837 break;
1838 default:
1839 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1840 ret = -1;
1841 break;
1844 return ret;
1847 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1849 return !(env->cr[0] & CR0_PE_MASK) ||
1850 ((env->segs[R_CS].selector & 3) != 3);