ide: device version property
[qemu/mdroth.git] / target-arm / helper.c
blobb3aec994422ee6540944f3a97824fc2aaac8741e
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
12 static uint32_t cortexa9_cp15_c0_c1[8] =
13 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
15 static uint32_t cortexa9_cp15_c0_c2[8] =
16 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
18 static uint32_t cortexa8_cp15_c0_c1[8] =
19 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
21 static uint32_t cortexa8_cp15_c0_c2[8] =
22 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
24 static uint32_t mpcore_cp15_c0_c1[8] =
25 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
27 static uint32_t mpcore_cp15_c0_c2[8] =
28 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
30 static uint32_t arm1136_cp15_c0_c1[8] =
31 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
33 static uint32_t arm1136_cp15_c0_c2[8] =
34 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
36 static uint32_t cpu_arm_find_by_name(const char *name);
38 static inline void set_feature(CPUARMState *env, int feature)
40 env->features |= 1u << feature;
43 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
45 env->cp15.c0_cpuid = id;
46 switch (id) {
47 case ARM_CPUID_ARM926:
48 set_feature(env, ARM_FEATURE_VFP);
49 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
50 env->cp15.c0_cachetype = 0x1dd20d2;
51 env->cp15.c1_sys = 0x00090078;
52 break;
53 case ARM_CPUID_ARM946:
54 set_feature(env, ARM_FEATURE_MPU);
55 env->cp15.c0_cachetype = 0x0f004006;
56 env->cp15.c1_sys = 0x00000078;
57 break;
58 case ARM_CPUID_ARM1026:
59 set_feature(env, ARM_FEATURE_VFP);
60 set_feature(env, ARM_FEATURE_AUXCR);
61 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
62 env->cp15.c0_cachetype = 0x1dd20d2;
63 env->cp15.c1_sys = 0x00090078;
64 break;
65 case ARM_CPUID_ARM1136_R2:
66 case ARM_CPUID_ARM1136:
67 set_feature(env, ARM_FEATURE_V6);
68 set_feature(env, ARM_FEATURE_VFP);
69 set_feature(env, ARM_FEATURE_AUXCR);
70 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
71 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
72 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
73 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
74 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
75 env->cp15.c0_cachetype = 0x1dd20d2;
76 break;
77 case ARM_CPUID_ARM11MPCORE:
78 set_feature(env, ARM_FEATURE_V6);
79 set_feature(env, ARM_FEATURE_V6K);
80 set_feature(env, ARM_FEATURE_VFP);
81 set_feature(env, ARM_FEATURE_AUXCR);
82 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
83 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
84 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
85 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
86 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
87 env->cp15.c0_cachetype = 0x1dd20d2;
88 break;
89 case ARM_CPUID_CORTEXA8:
90 set_feature(env, ARM_FEATURE_V6);
91 set_feature(env, ARM_FEATURE_V6K);
92 set_feature(env, ARM_FEATURE_V7);
93 set_feature(env, ARM_FEATURE_AUXCR);
94 set_feature(env, ARM_FEATURE_THUMB2);
95 set_feature(env, ARM_FEATURE_VFP);
96 set_feature(env, ARM_FEATURE_VFP3);
97 set_feature(env, ARM_FEATURE_NEON);
98 set_feature(env, ARM_FEATURE_THUMB2EE);
99 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
100 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
101 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
102 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
103 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
104 env->cp15.c0_cachetype = 0x82048004;
105 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
106 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
107 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
108 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
109 break;
110 case ARM_CPUID_CORTEXA9:
111 set_feature(env, ARM_FEATURE_V6);
112 set_feature(env, ARM_FEATURE_V6K);
113 set_feature(env, ARM_FEATURE_V7);
114 set_feature(env, ARM_FEATURE_AUXCR);
115 set_feature(env, ARM_FEATURE_THUMB2);
116 set_feature(env, ARM_FEATURE_VFP);
117 set_feature(env, ARM_FEATURE_VFP3);
118 set_feature(env, ARM_FEATURE_VFP_FP16);
119 set_feature(env, ARM_FEATURE_NEON);
120 set_feature(env, ARM_FEATURE_THUMB2EE);
121 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
122 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
123 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
124 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
125 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
126 env->cp15.c0_cachetype = 0x80038003;
127 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
128 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
129 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
130 break;
131 case ARM_CPUID_CORTEXM3:
132 set_feature(env, ARM_FEATURE_V6);
133 set_feature(env, ARM_FEATURE_THUMB2);
134 set_feature(env, ARM_FEATURE_V7);
135 set_feature(env, ARM_FEATURE_M);
136 set_feature(env, ARM_FEATURE_DIV);
137 break;
138 case ARM_CPUID_ANY: /* For userspace emulation. */
139 set_feature(env, ARM_FEATURE_V6);
140 set_feature(env, ARM_FEATURE_V6K);
141 set_feature(env, ARM_FEATURE_V7);
142 set_feature(env, ARM_FEATURE_THUMB2);
143 set_feature(env, ARM_FEATURE_VFP);
144 set_feature(env, ARM_FEATURE_VFP3);
145 set_feature(env, ARM_FEATURE_VFP_FP16);
146 set_feature(env, ARM_FEATURE_NEON);
147 set_feature(env, ARM_FEATURE_THUMB2EE);
148 set_feature(env, ARM_FEATURE_DIV);
149 break;
150 case ARM_CPUID_TI915T:
151 case ARM_CPUID_TI925T:
152 set_feature(env, ARM_FEATURE_OMAPCP);
153 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
154 env->cp15.c0_cachetype = 0x5109149;
155 env->cp15.c1_sys = 0x00000070;
156 env->cp15.c15_i_max = 0x000;
157 env->cp15.c15_i_min = 0xff0;
158 break;
159 case ARM_CPUID_PXA250:
160 case ARM_CPUID_PXA255:
161 case ARM_CPUID_PXA260:
162 case ARM_CPUID_PXA261:
163 case ARM_CPUID_PXA262:
164 set_feature(env, ARM_FEATURE_XSCALE);
165 /* JTAG_ID is ((id << 28) | 0x09265013) */
166 env->cp15.c0_cachetype = 0xd172172;
167 env->cp15.c1_sys = 0x00000078;
168 break;
169 case ARM_CPUID_PXA270_A0:
170 case ARM_CPUID_PXA270_A1:
171 case ARM_CPUID_PXA270_B0:
172 case ARM_CPUID_PXA270_B1:
173 case ARM_CPUID_PXA270_C0:
174 case ARM_CPUID_PXA270_C5:
175 set_feature(env, ARM_FEATURE_XSCALE);
176 /* JTAG_ID is ((id << 28) | 0x09265013) */
177 set_feature(env, ARM_FEATURE_IWMMXT);
178 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
179 env->cp15.c0_cachetype = 0xd172172;
180 env->cp15.c1_sys = 0x00000078;
181 break;
182 default:
183 cpu_abort(env, "Bad CPU ID: %x\n", id);
184 break;
188 void cpu_reset(CPUARMState *env)
190 uint32_t id;
192 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
193 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
194 log_cpu_state(env, 0);
197 id = env->cp15.c0_cpuid;
198 memset(env, 0, offsetof(CPUARMState, breakpoints));
199 if (id)
200 cpu_reset_model_id(env, id);
201 #if defined (CONFIG_USER_ONLY)
202 env->uncached_cpsr = ARM_CPU_MODE_USR;
203 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
204 #else
205 /* SVC mode with interrupts disabled. */
206 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
207 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
208 clear at reset. */
209 if (IS_M(env))
210 env->uncached_cpsr &= ~CPSR_I;
211 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
212 env->cp15.c2_base_mask = 0xffffc000u;
213 #endif
214 env->regs[15] = 0;
215 tlb_flush(env, 1);
218 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
220 int nregs;
222 /* VFP data registers are always little-endian. */
223 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
224 if (reg < nregs) {
225 stfq_le_p(buf, env->vfp.regs[reg]);
226 return 8;
228 if (arm_feature(env, ARM_FEATURE_NEON)) {
229 /* Aliases for Q regs. */
230 nregs += 16;
231 if (reg < nregs) {
232 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
233 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
234 return 16;
237 switch (reg - nregs) {
238 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
239 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
240 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
242 return 0;
245 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
247 int nregs;
249 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
250 if (reg < nregs) {
251 env->vfp.regs[reg] = ldfq_le_p(buf);
252 return 8;
254 if (arm_feature(env, ARM_FEATURE_NEON)) {
255 nregs += 16;
256 if (reg < nregs) {
257 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
258 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
259 return 16;
262 switch (reg - nregs) {
263 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
264 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
265 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
267 return 0;
270 CPUARMState *cpu_arm_init(const char *cpu_model)
272 CPUARMState *env;
273 uint32_t id;
274 static int inited = 0;
276 id = cpu_arm_find_by_name(cpu_model);
277 if (id == 0)
278 return NULL;
279 env = qemu_mallocz(sizeof(CPUARMState));
280 cpu_exec_init(env);
281 if (!inited) {
282 inited = 1;
283 arm_translate_init();
286 env->cpu_model_str = cpu_model;
287 env->cp15.c0_cpuid = id;
288 cpu_reset(env);
289 if (arm_feature(env, ARM_FEATURE_NEON)) {
290 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
291 51, "arm-neon.xml", 0);
292 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
293 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
294 35, "arm-vfp3.xml", 0);
295 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
296 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
297 19, "arm-vfp.xml", 0);
299 qemu_init_vcpu(env);
300 return env;
303 struct arm_cpu_t {
304 uint32_t id;
305 const char *name;
308 static const struct arm_cpu_t arm_cpu_names[] = {
309 { ARM_CPUID_ARM926, "arm926"},
310 { ARM_CPUID_ARM946, "arm946"},
311 { ARM_CPUID_ARM1026, "arm1026"},
312 { ARM_CPUID_ARM1136, "arm1136"},
313 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
314 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
315 { ARM_CPUID_CORTEXM3, "cortex-m3"},
316 { ARM_CPUID_CORTEXA8, "cortex-a8"},
317 { ARM_CPUID_CORTEXA9, "cortex-a9"},
318 { ARM_CPUID_TI925T, "ti925t" },
319 { ARM_CPUID_PXA250, "pxa250" },
320 { ARM_CPUID_PXA255, "pxa255" },
321 { ARM_CPUID_PXA260, "pxa260" },
322 { ARM_CPUID_PXA261, "pxa261" },
323 { ARM_CPUID_PXA262, "pxa262" },
324 { ARM_CPUID_PXA270, "pxa270" },
325 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
326 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
327 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
328 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
329 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
330 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
331 { ARM_CPUID_ANY, "any"},
332 { 0, NULL}
335 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
337 int i;
339 (*cpu_fprintf)(f, "Available CPUs:\n");
340 for (i = 0; arm_cpu_names[i].name; i++) {
341 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
345 /* return 0 if not found */
346 static uint32_t cpu_arm_find_by_name(const char *name)
348 int i;
349 uint32_t id;
351 id = 0;
352 for (i = 0; arm_cpu_names[i].name; i++) {
353 if (strcmp(name, arm_cpu_names[i].name) == 0) {
354 id = arm_cpu_names[i].id;
355 break;
358 return id;
361 void cpu_arm_close(CPUARMState *env)
363 free(env);
366 uint32_t cpsr_read(CPUARMState *env)
368 int ZF;
369 ZF = (env->ZF == 0);
370 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
371 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
372 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
373 | ((env->condexec_bits & 0xfc) << 8)
374 | (env->GE << 16);
377 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
379 if (mask & CPSR_NZCV) {
380 env->ZF = (~val) & CPSR_Z;
381 env->NF = val;
382 env->CF = (val >> 29) & 1;
383 env->VF = (val << 3) & 0x80000000;
385 if (mask & CPSR_Q)
386 env->QF = ((val & CPSR_Q) != 0);
387 if (mask & CPSR_T)
388 env->thumb = ((val & CPSR_T) != 0);
389 if (mask & CPSR_IT_0_1) {
390 env->condexec_bits &= ~3;
391 env->condexec_bits |= (val >> 25) & 3;
393 if (mask & CPSR_IT_2_7) {
394 env->condexec_bits &= 3;
395 env->condexec_bits |= (val >> 8) & 0xfc;
397 if (mask & CPSR_GE) {
398 env->GE = (val >> 16) & 0xf;
401 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
402 switch_mode(env, val & CPSR_M);
404 mask &= ~CACHED_CPSR_BITS;
405 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
408 /* Sign/zero extend */
409 uint32_t HELPER(sxtb16)(uint32_t x)
411 uint32_t res;
412 res = (uint16_t)(int8_t)x;
413 res |= (uint32_t)(int8_t)(x >> 16) << 16;
414 return res;
417 uint32_t HELPER(uxtb16)(uint32_t x)
419 uint32_t res;
420 res = (uint16_t)(uint8_t)x;
421 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
422 return res;
425 uint32_t HELPER(clz)(uint32_t x)
427 return clz32(x);
430 int32_t HELPER(sdiv)(int32_t num, int32_t den)
432 if (den == 0)
433 return 0;
434 if (num == INT_MIN && den == -1)
435 return INT_MIN;
436 return num / den;
439 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
441 if (den == 0)
442 return 0;
443 return num / den;
446 uint32_t HELPER(rbit)(uint32_t x)
448 x = ((x & 0xff000000) >> 24)
449 | ((x & 0x00ff0000) >> 8)
450 | ((x & 0x0000ff00) << 8)
451 | ((x & 0x000000ff) << 24);
452 x = ((x & 0xf0f0f0f0) >> 4)
453 | ((x & 0x0f0f0f0f) << 4);
454 x = ((x & 0x88888888) >> 3)
455 | ((x & 0x44444444) >> 1)
456 | ((x & 0x22222222) << 1)
457 | ((x & 0x11111111) << 3);
458 return x;
461 uint32_t HELPER(abs)(uint32_t x)
463 return ((int32_t)x < 0) ? -x : x;
466 #if defined(CONFIG_USER_ONLY)
468 void do_interrupt (CPUState *env)
470 env->exception_index = -1;
473 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
474 int mmu_idx, int is_softmmu)
476 if (rw == 2) {
477 env->exception_index = EXCP_PREFETCH_ABORT;
478 env->cp15.c6_insn = address;
479 } else {
480 env->exception_index = EXCP_DATA_ABORT;
481 env->cp15.c6_data = address;
483 return 1;
486 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
488 return addr;
491 /* These should probably raise undefined insn exceptions. */
492 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
494 int op1 = (insn >> 8) & 0xf;
495 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
496 return;
499 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
501 int op1 = (insn >> 8) & 0xf;
502 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
503 return 0;
506 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
508 cpu_abort(env, "cp15 insn %08x\n", insn);
511 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
513 cpu_abort(env, "cp15 insn %08x\n", insn);
514 return 0;
517 /* These should probably raise undefined insn exceptions. */
518 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
520 cpu_abort(env, "v7m_mrs %d\n", reg);
523 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
525 cpu_abort(env, "v7m_mrs %d\n", reg);
526 return 0;
529 void switch_mode(CPUState *env, int mode)
531 if (mode != ARM_CPU_MODE_USR)
532 cpu_abort(env, "Tried to switch out of user mode\n");
535 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
537 cpu_abort(env, "banked r13 write\n");
540 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
542 cpu_abort(env, "banked r13 read\n");
543 return 0;
546 #else
548 extern int semihosting_enabled;
550 /* Map CPU modes onto saved register banks. */
551 static inline int bank_number (int mode)
553 switch (mode) {
554 case ARM_CPU_MODE_USR:
555 case ARM_CPU_MODE_SYS:
556 return 0;
557 case ARM_CPU_MODE_SVC:
558 return 1;
559 case ARM_CPU_MODE_ABT:
560 return 2;
561 case ARM_CPU_MODE_UND:
562 return 3;
563 case ARM_CPU_MODE_IRQ:
564 return 4;
565 case ARM_CPU_MODE_FIQ:
566 return 5;
568 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
569 return -1;
572 void switch_mode(CPUState *env, int mode)
574 int old_mode;
575 int i;
577 old_mode = env->uncached_cpsr & CPSR_M;
578 if (mode == old_mode)
579 return;
581 if (old_mode == ARM_CPU_MODE_FIQ) {
582 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
583 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
584 } else if (mode == ARM_CPU_MODE_FIQ) {
585 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
586 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
589 i = bank_number(old_mode);
590 env->banked_r13[i] = env->regs[13];
591 env->banked_r14[i] = env->regs[14];
592 env->banked_spsr[i] = env->spsr;
594 i = bank_number(mode);
595 env->regs[13] = env->banked_r13[i];
596 env->regs[14] = env->banked_r14[i];
597 env->spsr = env->banked_spsr[i];
600 static void v7m_push(CPUARMState *env, uint32_t val)
602 env->regs[13] -= 4;
603 stl_phys(env->regs[13], val);
606 static uint32_t v7m_pop(CPUARMState *env)
608 uint32_t val;
609 val = ldl_phys(env->regs[13]);
610 env->regs[13] += 4;
611 return val;
614 /* Switch to V7M main or process stack pointer. */
615 static void switch_v7m_sp(CPUARMState *env, int process)
617 uint32_t tmp;
618 if (env->v7m.current_sp != process) {
619 tmp = env->v7m.other_sp;
620 env->v7m.other_sp = env->regs[13];
621 env->regs[13] = tmp;
622 env->v7m.current_sp = process;
626 static void do_v7m_exception_exit(CPUARMState *env)
628 uint32_t type;
629 uint32_t xpsr;
631 type = env->regs[15];
632 if (env->v7m.exception != 0)
633 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
635 /* Switch to the target stack. */
636 switch_v7m_sp(env, (type & 4) != 0);
637 /* Pop registers. */
638 env->regs[0] = v7m_pop(env);
639 env->regs[1] = v7m_pop(env);
640 env->regs[2] = v7m_pop(env);
641 env->regs[3] = v7m_pop(env);
642 env->regs[12] = v7m_pop(env);
643 env->regs[14] = v7m_pop(env);
644 env->regs[15] = v7m_pop(env);
645 xpsr = v7m_pop(env);
646 xpsr_write(env, xpsr, 0xfffffdff);
647 /* Undo stack alignment. */
648 if (xpsr & 0x200)
649 env->regs[13] |= 4;
650 /* ??? The exception return type specifies Thread/Handler mode. However
651 this is also implied by the xPSR value. Not sure what to do
652 if there is a mismatch. */
653 /* ??? Likewise for mismatches between the CONTROL register and the stack
654 pointer. */
657 static void do_interrupt_v7m(CPUARMState *env)
659 uint32_t xpsr = xpsr_read(env);
660 uint32_t lr;
661 uint32_t addr;
663 lr = 0xfffffff1;
664 if (env->v7m.current_sp)
665 lr |= 4;
666 if (env->v7m.exception == 0)
667 lr |= 8;
669 /* For exceptions we just mark as pending on the NVIC, and let that
670 handle it. */
671 /* TODO: Need to escalate if the current priority is higher than the
672 one we're raising. */
673 switch (env->exception_index) {
674 case EXCP_UDEF:
675 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
676 return;
677 case EXCP_SWI:
678 env->regs[15] += 2;
679 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
680 return;
681 case EXCP_PREFETCH_ABORT:
682 case EXCP_DATA_ABORT:
683 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
684 return;
685 case EXCP_BKPT:
686 if (semihosting_enabled) {
687 int nr;
688 nr = lduw_code(env->regs[15]) & 0xff;
689 if (nr == 0xab) {
690 env->regs[15] += 2;
691 env->regs[0] = do_arm_semihosting(env);
692 return;
695 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
696 return;
697 case EXCP_IRQ:
698 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
699 break;
700 case EXCP_EXCEPTION_EXIT:
701 do_v7m_exception_exit(env);
702 return;
703 default:
704 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
705 return; /* Never happens. Keep compiler happy. */
708 /* Align stack pointer. */
709 /* ??? Should only do this if Configuration Control Register
710 STACKALIGN bit is set. */
711 if (env->regs[13] & 4) {
712 env->regs[13] -= 4;
713 xpsr |= 0x200;
715 /* Switch to the handler mode. */
716 v7m_push(env, xpsr);
717 v7m_push(env, env->regs[15]);
718 v7m_push(env, env->regs[14]);
719 v7m_push(env, env->regs[12]);
720 v7m_push(env, env->regs[3]);
721 v7m_push(env, env->regs[2]);
722 v7m_push(env, env->regs[1]);
723 v7m_push(env, env->regs[0]);
724 switch_v7m_sp(env, 0);
725 env->uncached_cpsr &= ~CPSR_IT;
726 env->regs[14] = lr;
727 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
728 env->regs[15] = addr & 0xfffffffe;
729 env->thumb = addr & 1;
732 /* Handle a CPU exception. */
733 void do_interrupt(CPUARMState *env)
735 uint32_t addr;
736 uint32_t mask;
737 int new_mode;
738 uint32_t offset;
740 if (IS_M(env)) {
741 do_interrupt_v7m(env);
742 return;
744 /* TODO: Vectored interrupt controller. */
745 switch (env->exception_index) {
746 case EXCP_UDEF:
747 new_mode = ARM_CPU_MODE_UND;
748 addr = 0x04;
749 mask = CPSR_I;
750 if (env->thumb)
751 offset = 2;
752 else
753 offset = 4;
754 break;
755 case EXCP_SWI:
756 if (semihosting_enabled) {
757 /* Check for semihosting interrupt. */
758 if (env->thumb) {
759 mask = lduw_code(env->regs[15] - 2) & 0xff;
760 } else {
761 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
763 /* Only intercept calls from privileged modes, to provide some
764 semblance of security. */
765 if (((mask == 0x123456 && !env->thumb)
766 || (mask == 0xab && env->thumb))
767 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
768 env->regs[0] = do_arm_semihosting(env);
769 return;
772 new_mode = ARM_CPU_MODE_SVC;
773 addr = 0x08;
774 mask = CPSR_I;
775 /* The PC already points to the next instruction. */
776 offset = 0;
777 break;
778 case EXCP_BKPT:
779 /* See if this is a semihosting syscall. */
780 if (env->thumb && semihosting_enabled) {
781 mask = lduw_code(env->regs[15]) & 0xff;
782 if (mask == 0xab
783 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
784 env->regs[15] += 2;
785 env->regs[0] = do_arm_semihosting(env);
786 return;
789 /* Fall through to prefetch abort. */
790 case EXCP_PREFETCH_ABORT:
791 new_mode = ARM_CPU_MODE_ABT;
792 addr = 0x0c;
793 mask = CPSR_A | CPSR_I;
794 offset = 4;
795 break;
796 case EXCP_DATA_ABORT:
797 new_mode = ARM_CPU_MODE_ABT;
798 addr = 0x10;
799 mask = CPSR_A | CPSR_I;
800 offset = 8;
801 break;
802 case EXCP_IRQ:
803 new_mode = ARM_CPU_MODE_IRQ;
804 addr = 0x18;
805 /* Disable IRQ and imprecise data aborts. */
806 mask = CPSR_A | CPSR_I;
807 offset = 4;
808 break;
809 case EXCP_FIQ:
810 new_mode = ARM_CPU_MODE_FIQ;
811 addr = 0x1c;
812 /* Disable FIQ, IRQ and imprecise data aborts. */
813 mask = CPSR_A | CPSR_I | CPSR_F;
814 offset = 4;
815 break;
816 default:
817 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
818 return; /* Never happens. Keep compiler happy. */
820 /* High vectors. */
821 if (env->cp15.c1_sys & (1 << 13)) {
822 addr += 0xffff0000;
824 switch_mode (env, new_mode);
825 env->spsr = cpsr_read(env);
826 /* Clear IT bits. */
827 env->condexec_bits = 0;
828 /* Switch to the new mode, and switch to Arm mode. */
829 /* ??? Thumb interrupt handlers not implemented. */
830 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
831 env->uncached_cpsr |= mask;
832 env->thumb = 0;
833 env->regs[14] = env->regs[15] + offset;
834 env->regs[15] = addr;
835 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
838 /* Check section/page access permissions.
839 Returns the page protection flags, or zero if the access is not
840 permitted. */
841 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
842 int is_user)
844 int prot_ro;
846 if (domain == 3)
847 return PAGE_READ | PAGE_WRITE;
849 if (access_type == 1)
850 prot_ro = 0;
851 else
852 prot_ro = PAGE_READ;
854 switch (ap) {
855 case 0:
856 if (access_type == 1)
857 return 0;
858 switch ((env->cp15.c1_sys >> 8) & 3) {
859 case 1:
860 return is_user ? 0 : PAGE_READ;
861 case 2:
862 return PAGE_READ;
863 default:
864 return 0;
866 case 1:
867 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
868 case 2:
869 if (is_user)
870 return prot_ro;
871 else
872 return PAGE_READ | PAGE_WRITE;
873 case 3:
874 return PAGE_READ | PAGE_WRITE;
875 case 4: /* Reserved. */
876 return 0;
877 case 5:
878 return is_user ? 0 : prot_ro;
879 case 6:
880 return prot_ro;
881 case 7:
882 if (!arm_feature (env, ARM_FEATURE_V7))
883 return 0;
884 return prot_ro;
885 default:
886 abort();
890 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
892 uint32_t table;
894 if (address & env->cp15.c2_mask)
895 table = env->cp15.c2_base1 & 0xffffc000;
896 else
897 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
899 table |= (address >> 18) & 0x3ffc;
900 return table;
903 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
904 int is_user, uint32_t *phys_ptr, int *prot)
906 int code;
907 uint32_t table;
908 uint32_t desc;
909 int type;
910 int ap;
911 int domain;
912 uint32_t phys_addr;
914 /* Pagetable walk. */
915 /* Lookup l1 descriptor. */
916 table = get_level1_table_address(env, address);
917 desc = ldl_phys(table);
918 type = (desc & 3);
919 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
920 if (type == 0) {
921 /* Section translation fault. */
922 code = 5;
923 goto do_fault;
925 if (domain == 0 || domain == 2) {
926 if (type == 2)
927 code = 9; /* Section domain fault. */
928 else
929 code = 11; /* Page domain fault. */
930 goto do_fault;
932 if (type == 2) {
933 /* 1Mb section. */
934 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
935 ap = (desc >> 10) & 3;
936 code = 13;
937 } else {
938 /* Lookup l2 entry. */
939 if (type == 1) {
940 /* Coarse pagetable. */
941 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
942 } else {
943 /* Fine pagetable. */
944 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
946 desc = ldl_phys(table);
947 switch (desc & 3) {
948 case 0: /* Page translation fault. */
949 code = 7;
950 goto do_fault;
951 case 1: /* 64k page. */
952 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
953 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
954 break;
955 case 2: /* 4k page. */
956 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
957 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
958 break;
959 case 3: /* 1k page. */
960 if (type == 1) {
961 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
962 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
963 } else {
964 /* Page translation fault. */
965 code = 7;
966 goto do_fault;
968 } else {
969 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
971 ap = (desc >> 4) & 3;
972 break;
973 default:
974 /* Never happens, but compiler isn't smart enough to tell. */
975 abort();
977 code = 15;
979 *prot = check_ap(env, ap, domain, access_type, is_user);
980 if (!*prot) {
981 /* Access permission fault. */
982 goto do_fault;
984 *phys_ptr = phys_addr;
985 return 0;
986 do_fault:
987 return code | (domain << 4);
990 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
991 int is_user, uint32_t *phys_ptr, int *prot)
993 int code;
994 uint32_t table;
995 uint32_t desc;
996 uint32_t xn;
997 int type;
998 int ap;
999 int domain;
1000 uint32_t phys_addr;
1002 /* Pagetable walk. */
1003 /* Lookup l1 descriptor. */
1004 table = get_level1_table_address(env, address);
1005 desc = ldl_phys(table);
1006 type = (desc & 3);
1007 if (type == 0) {
1008 /* Section translation fault. */
1009 code = 5;
1010 domain = 0;
1011 goto do_fault;
1012 } else if (type == 2 && (desc & (1 << 18))) {
1013 /* Supersection. */
1014 domain = 0;
1015 } else {
1016 /* Section or page. */
1017 domain = (desc >> 4) & 0x1e;
1019 domain = (env->cp15.c3 >> domain) & 3;
1020 if (domain == 0 || domain == 2) {
1021 if (type == 2)
1022 code = 9; /* Section domain fault. */
1023 else
1024 code = 11; /* Page domain fault. */
1025 goto do_fault;
1027 if (type == 2) {
1028 if (desc & (1 << 18)) {
1029 /* Supersection. */
1030 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1031 } else {
1032 /* Section. */
1033 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1035 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1036 xn = desc & (1 << 4);
1037 code = 13;
1038 } else {
1039 /* Lookup l2 entry. */
1040 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1041 desc = ldl_phys(table);
1042 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1043 switch (desc & 3) {
1044 case 0: /* Page translation fault. */
1045 code = 7;
1046 goto do_fault;
1047 case 1: /* 64k page. */
1048 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1049 xn = desc & (1 << 15);
1050 break;
1051 case 2: case 3: /* 4k page. */
1052 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1053 xn = desc & 1;
1054 break;
1055 default:
1056 /* Never happens, but compiler isn't smart enough to tell. */
1057 abort();
1059 code = 15;
1061 if (xn && access_type == 2)
1062 goto do_fault;
1064 /* The simplified model uses AP[0] as an access control bit. */
1065 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1066 /* Access flag fault. */
1067 code = (code == 15) ? 6 : 3;
1068 goto do_fault;
1070 *prot = check_ap(env, ap, domain, access_type, is_user);
1071 if (!*prot) {
1072 /* Access permission fault. */
1073 goto do_fault;
1075 *phys_ptr = phys_addr;
1076 return 0;
1077 do_fault:
1078 return code | (domain << 4);
1081 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1082 int is_user, uint32_t *phys_ptr, int *prot)
1084 int n;
1085 uint32_t mask;
1086 uint32_t base;
1088 *phys_ptr = address;
1089 for (n = 7; n >= 0; n--) {
1090 base = env->cp15.c6_region[n];
1091 if ((base & 1) == 0)
1092 continue;
1093 mask = 1 << ((base >> 1) & 0x1f);
1094 /* Keep this shift separate from the above to avoid an
1095 (undefined) << 32. */
1096 mask = (mask << 1) - 1;
1097 if (((base ^ address) & ~mask) == 0)
1098 break;
1100 if (n < 0)
1101 return 2;
1103 if (access_type == 2) {
1104 mask = env->cp15.c5_insn;
1105 } else {
1106 mask = env->cp15.c5_data;
1108 mask = (mask >> (n * 4)) & 0xf;
1109 switch (mask) {
1110 case 0:
1111 return 1;
1112 case 1:
1113 if (is_user)
1114 return 1;
1115 *prot = PAGE_READ | PAGE_WRITE;
1116 break;
1117 case 2:
1118 *prot = PAGE_READ;
1119 if (!is_user)
1120 *prot |= PAGE_WRITE;
1121 break;
1122 case 3:
1123 *prot = PAGE_READ | PAGE_WRITE;
1124 break;
1125 case 5:
1126 if (is_user)
1127 return 1;
1128 *prot = PAGE_READ;
1129 break;
1130 case 6:
1131 *prot = PAGE_READ;
1132 break;
1133 default:
1134 /* Bad permission. */
1135 return 1;
1137 return 0;
1140 static inline int get_phys_addr(CPUState *env, uint32_t address,
1141 int access_type, int is_user,
1142 uint32_t *phys_ptr, int *prot)
1144 /* Fast Context Switch Extension. */
1145 if (address < 0x02000000)
1146 address += env->cp15.c13_fcse;
1148 if ((env->cp15.c1_sys & 1) == 0) {
1149 /* MMU/MPU disabled. */
1150 *phys_ptr = address;
1151 *prot = PAGE_READ | PAGE_WRITE;
1152 return 0;
1153 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1154 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1155 prot);
1156 } else if (env->cp15.c1_sys & (1 << 23)) {
1157 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1158 prot);
1159 } else {
1160 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1161 prot);
1165 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1166 int access_type, int mmu_idx, int is_softmmu)
1168 uint32_t phys_addr;
1169 int prot;
1170 int ret, is_user;
1172 is_user = mmu_idx == MMU_USER_IDX;
1173 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1174 if (ret == 0) {
1175 /* Map a single [sub]page. */
1176 phys_addr &= ~(uint32_t)0x3ff;
1177 address &= ~(uint32_t)0x3ff;
1178 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1179 is_softmmu);
1182 if (access_type == 2) {
1183 env->cp15.c5_insn = ret;
1184 env->cp15.c6_insn = address;
1185 env->exception_index = EXCP_PREFETCH_ABORT;
1186 } else {
1187 env->cp15.c5_data = ret;
1188 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1189 env->cp15.c5_data |= (1 << 11);
1190 env->cp15.c6_data = address;
1191 env->exception_index = EXCP_DATA_ABORT;
1193 return 1;
1196 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1198 uint32_t phys_addr;
1199 int prot;
1200 int ret;
1202 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1204 if (ret != 0)
1205 return -1;
1207 return phys_addr;
1210 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1212 int cp_num = (insn >> 8) & 0xf;
1213 int cp_info = (insn >> 5) & 7;
1214 int src = (insn >> 16) & 0xf;
1215 int operand = insn & 0xf;
1217 if (env->cp[cp_num].cp_write)
1218 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1219 cp_info, src, operand, val);
1222 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1224 int cp_num = (insn >> 8) & 0xf;
1225 int cp_info = (insn >> 5) & 7;
1226 int dest = (insn >> 16) & 0xf;
1227 int operand = insn & 0xf;
1229 if (env->cp[cp_num].cp_read)
1230 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1231 cp_info, dest, operand);
1232 return 0;
1235 /* Return basic MPU access permission bits. */
1236 static uint32_t simple_mpu_ap_bits(uint32_t val)
1238 uint32_t ret;
1239 uint32_t mask;
1240 int i;
1241 ret = 0;
1242 mask = 3;
1243 for (i = 0; i < 16; i += 2) {
1244 ret |= (val >> i) & mask;
1245 mask <<= 2;
1247 return ret;
1250 /* Pad basic MPU access permission bits to extended format. */
1251 static uint32_t extended_mpu_ap_bits(uint32_t val)
1253 uint32_t ret;
1254 uint32_t mask;
1255 int i;
1256 ret = 0;
1257 mask = 3;
1258 for (i = 0; i < 16; i += 2) {
1259 ret |= (val & mask) << i;
1260 mask <<= 2;
1262 return ret;
1265 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1267 int op1;
1268 int op2;
1269 int crm;
1271 op1 = (insn >> 21) & 7;
1272 op2 = (insn >> 5) & 7;
1273 crm = insn & 0xf;
1274 switch ((insn >> 16) & 0xf) {
1275 case 0:
1276 /* ID codes. */
1277 if (arm_feature(env, ARM_FEATURE_XSCALE))
1278 break;
1279 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1280 break;
1281 if (arm_feature(env, ARM_FEATURE_V7)
1282 && op1 == 2 && crm == 0 && op2 == 0) {
1283 env->cp15.c0_cssel = val & 0xf;
1284 break;
1286 goto bad_reg;
1287 case 1: /* System configuration. */
1288 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1289 op2 = 0;
1290 switch (op2) {
1291 case 0:
1292 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1293 env->cp15.c1_sys = val;
1294 /* ??? Lots of these bits are not implemented. */
1295 /* This may enable/disable the MMU, so do a TLB flush. */
1296 tlb_flush(env, 1);
1297 break;
1298 case 1: /* Auxiliary cotrol register. */
1299 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1300 env->cp15.c1_xscaleauxcr = val;
1301 break;
1303 /* Not implemented. */
1304 break;
1305 case 2:
1306 if (arm_feature(env, ARM_FEATURE_XSCALE))
1307 goto bad_reg;
1308 if (env->cp15.c1_coproc != val) {
1309 env->cp15.c1_coproc = val;
1310 /* ??? Is this safe when called from within a TB? */
1311 tb_flush(env);
1313 break;
1314 default:
1315 goto bad_reg;
1317 break;
1318 case 2: /* MMU Page table control / MPU cache control. */
1319 if (arm_feature(env, ARM_FEATURE_MPU)) {
1320 switch (op2) {
1321 case 0:
1322 env->cp15.c2_data = val;
1323 break;
1324 case 1:
1325 env->cp15.c2_insn = val;
1326 break;
1327 default:
1328 goto bad_reg;
1330 } else {
1331 switch (op2) {
1332 case 0:
1333 env->cp15.c2_base0 = val;
1334 break;
1335 case 1:
1336 env->cp15.c2_base1 = val;
1337 break;
1338 case 2:
1339 val &= 7;
1340 env->cp15.c2_control = val;
1341 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1342 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1343 break;
1344 default:
1345 goto bad_reg;
1348 break;
1349 case 3: /* MMU Domain access control / MPU write buffer control. */
1350 env->cp15.c3 = val;
1351 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1352 break;
1353 case 4: /* Reserved. */
1354 goto bad_reg;
1355 case 5: /* MMU Fault status / MPU access permission. */
1356 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1357 op2 = 0;
1358 switch (op2) {
1359 case 0:
1360 if (arm_feature(env, ARM_FEATURE_MPU))
1361 val = extended_mpu_ap_bits(val);
1362 env->cp15.c5_data = val;
1363 break;
1364 case 1:
1365 if (arm_feature(env, ARM_FEATURE_MPU))
1366 val = extended_mpu_ap_bits(val);
1367 env->cp15.c5_insn = val;
1368 break;
1369 case 2:
1370 if (!arm_feature(env, ARM_FEATURE_MPU))
1371 goto bad_reg;
1372 env->cp15.c5_data = val;
1373 break;
1374 case 3:
1375 if (!arm_feature(env, ARM_FEATURE_MPU))
1376 goto bad_reg;
1377 env->cp15.c5_insn = val;
1378 break;
1379 default:
1380 goto bad_reg;
1382 break;
1383 case 6: /* MMU Fault address / MPU base/size. */
1384 if (arm_feature(env, ARM_FEATURE_MPU)) {
1385 if (crm >= 8)
1386 goto bad_reg;
1387 env->cp15.c6_region[crm] = val;
1388 } else {
1389 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1390 op2 = 0;
1391 switch (op2) {
1392 case 0:
1393 env->cp15.c6_data = val;
1394 break;
1395 case 1: /* ??? This is WFAR on armv6 */
1396 case 2:
1397 env->cp15.c6_insn = val;
1398 break;
1399 default:
1400 goto bad_reg;
1403 break;
1404 case 7: /* Cache control. */
1405 env->cp15.c15_i_max = 0x000;
1406 env->cp15.c15_i_min = 0xff0;
1407 /* No cache, so nothing to do. */
1408 /* ??? MPCore has VA to PA translation functions. */
1409 break;
1410 case 8: /* MMU TLB control. */
1411 switch (op2) {
1412 case 0: /* Invalidate all. */
1413 tlb_flush(env, 0);
1414 break;
1415 case 1: /* Invalidate single TLB entry. */
1416 #if 0
1417 /* ??? This is wrong for large pages and sections. */
1418 /* As an ugly hack to make linux work we always flush a 4K
1419 pages. */
1420 val &= 0xfffff000;
1421 tlb_flush_page(env, val);
1422 tlb_flush_page(env, val + 0x400);
1423 tlb_flush_page(env, val + 0x800);
1424 tlb_flush_page(env, val + 0xc00);
1425 #else
1426 tlb_flush(env, 1);
1427 #endif
1428 break;
1429 case 2: /* Invalidate on ASID. */
1430 tlb_flush(env, val == 0);
1431 break;
1432 case 3: /* Invalidate single entry on MVA. */
1433 /* ??? This is like case 1, but ignores ASID. */
1434 tlb_flush(env, 1);
1435 break;
1436 default:
1437 goto bad_reg;
1439 break;
1440 case 9:
1441 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1442 break;
1443 switch (crm) {
1444 case 0: /* Cache lockdown. */
1445 switch (op1) {
1446 case 0: /* L1 cache. */
1447 switch (op2) {
1448 case 0:
1449 env->cp15.c9_data = val;
1450 break;
1451 case 1:
1452 env->cp15.c9_insn = val;
1453 break;
1454 default:
1455 goto bad_reg;
1457 break;
1458 case 1: /* L2 cache. */
1459 /* Ignore writes to L2 lockdown/auxiliary registers. */
1460 break;
1461 default:
1462 goto bad_reg;
1464 break;
1465 case 1: /* TCM memory region registers. */
1466 /* Not implemented. */
1467 goto bad_reg;
1468 default:
1469 goto bad_reg;
1471 break;
1472 case 10: /* MMU TLB lockdown. */
1473 /* ??? TLB lockdown not implemented. */
1474 break;
1475 case 12: /* Reserved. */
1476 goto bad_reg;
1477 case 13: /* Process ID. */
1478 switch (op2) {
1479 case 0:
1480 /* Unlike real hardware the qemu TLB uses virtual addresses,
1481 not modified virtual addresses, so this causes a TLB flush.
1483 if (env->cp15.c13_fcse != val)
1484 tlb_flush(env, 1);
1485 env->cp15.c13_fcse = val;
1486 break;
1487 case 1:
1488 /* This changes the ASID, so do a TLB flush. */
1489 if (env->cp15.c13_context != val
1490 && !arm_feature(env, ARM_FEATURE_MPU))
1491 tlb_flush(env, 0);
1492 env->cp15.c13_context = val;
1493 break;
1494 case 2:
1495 env->cp15.c13_tls1 = val;
1496 break;
1497 case 3:
1498 env->cp15.c13_tls2 = val;
1499 break;
1500 case 4:
1501 env->cp15.c13_tls3 = val;
1502 break;
1503 default:
1504 goto bad_reg;
1506 break;
1507 case 14: /* Reserved. */
1508 goto bad_reg;
1509 case 15: /* Implementation specific. */
1510 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1511 if (op2 == 0 && crm == 1) {
1512 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1513 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1514 tb_flush(env);
1515 env->cp15.c15_cpar = val & 0x3fff;
1517 break;
1519 goto bad_reg;
1521 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1522 switch (crm) {
1523 case 0:
1524 break;
1525 case 1: /* Set TI925T configuration. */
1526 env->cp15.c15_ticonfig = val & 0xe7;
1527 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1528 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1529 break;
1530 case 2: /* Set I_max. */
1531 env->cp15.c15_i_max = val;
1532 break;
1533 case 3: /* Set I_min. */
1534 env->cp15.c15_i_min = val;
1535 break;
1536 case 4: /* Set thread-ID. */
1537 env->cp15.c15_threadid = val & 0xffff;
1538 break;
1539 case 8: /* Wait-for-interrupt (deprecated). */
1540 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1541 break;
1542 default:
1543 goto bad_reg;
1546 break;
1548 return;
1549 bad_reg:
1550 /* ??? For debugging only. Should raise illegal instruction exception. */
1551 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1552 (insn >> 16) & 0xf, crm, op1, op2);
1555 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1557 int op1;
1558 int op2;
1559 int crm;
1561 op1 = (insn >> 21) & 7;
1562 op2 = (insn >> 5) & 7;
1563 crm = insn & 0xf;
1564 switch ((insn >> 16) & 0xf) {
1565 case 0: /* ID codes. */
1566 switch (op1) {
1567 case 0:
1568 switch (crm) {
1569 case 0:
1570 switch (op2) {
1571 case 0: /* Device ID. */
1572 return env->cp15.c0_cpuid;
1573 case 1: /* Cache Type. */
1574 return env->cp15.c0_cachetype;
1575 case 2: /* TCM status. */
1576 return 0;
1577 case 3: /* TLB type register. */
1578 return 0; /* No lockable TLB entries. */
1579 case 5: /* CPU ID */
1580 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1581 return env->cpu_index | 0x80000900;
1582 } else {
1583 return env->cpu_index;
1585 default:
1586 goto bad_reg;
1588 case 1:
1589 if (!arm_feature(env, ARM_FEATURE_V6))
1590 goto bad_reg;
1591 return env->cp15.c0_c1[op2];
1592 case 2:
1593 if (!arm_feature(env, ARM_FEATURE_V6))
1594 goto bad_reg;
1595 return env->cp15.c0_c2[op2];
1596 case 3: case 4: case 5: case 6: case 7:
1597 return 0;
1598 default:
1599 goto bad_reg;
1601 case 1:
1602 /* These registers aren't documented on arm11 cores. However
1603 Linux looks at them anyway. */
1604 if (!arm_feature(env, ARM_FEATURE_V6))
1605 goto bad_reg;
1606 if (crm != 0)
1607 goto bad_reg;
1608 if (!arm_feature(env, ARM_FEATURE_V7))
1609 return 0;
1611 switch (op2) {
1612 case 0:
1613 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1614 case 1:
1615 return env->cp15.c0_clid;
1616 case 7:
1617 return 0;
1619 goto bad_reg;
1620 case 2:
1621 if (op2 != 0 || crm != 0)
1622 goto bad_reg;
1623 return env->cp15.c0_cssel;
1624 default:
1625 goto bad_reg;
1627 case 1: /* System configuration. */
1628 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1629 op2 = 0;
1630 switch (op2) {
1631 case 0: /* Control register. */
1632 return env->cp15.c1_sys;
1633 case 1: /* Auxiliary control register. */
1634 if (arm_feature(env, ARM_FEATURE_XSCALE))
1635 return env->cp15.c1_xscaleauxcr;
1636 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1637 goto bad_reg;
1638 switch (ARM_CPUID(env)) {
1639 case ARM_CPUID_ARM1026:
1640 return 1;
1641 case ARM_CPUID_ARM1136:
1642 case ARM_CPUID_ARM1136_R2:
1643 return 7;
1644 case ARM_CPUID_ARM11MPCORE:
1645 return 1;
1646 case ARM_CPUID_CORTEXA8:
1647 return 2;
1648 case ARM_CPUID_CORTEXA9:
1649 return 0;
1650 default:
1651 goto bad_reg;
1653 case 2: /* Coprocessor access register. */
1654 if (arm_feature(env, ARM_FEATURE_XSCALE))
1655 goto bad_reg;
1656 return env->cp15.c1_coproc;
1657 default:
1658 goto bad_reg;
1660 case 2: /* MMU Page table control / MPU cache control. */
1661 if (arm_feature(env, ARM_FEATURE_MPU)) {
1662 switch (op2) {
1663 case 0:
1664 return env->cp15.c2_data;
1665 break;
1666 case 1:
1667 return env->cp15.c2_insn;
1668 break;
1669 default:
1670 goto bad_reg;
1672 } else {
1673 switch (op2) {
1674 case 0:
1675 return env->cp15.c2_base0;
1676 case 1:
1677 return env->cp15.c2_base1;
1678 case 2:
1679 return env->cp15.c2_control;
1680 default:
1681 goto bad_reg;
1684 case 3: /* MMU Domain access control / MPU write buffer control. */
1685 return env->cp15.c3;
1686 case 4: /* Reserved. */
1687 goto bad_reg;
1688 case 5: /* MMU Fault status / MPU access permission. */
1689 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1690 op2 = 0;
1691 switch (op2) {
1692 case 0:
1693 if (arm_feature(env, ARM_FEATURE_MPU))
1694 return simple_mpu_ap_bits(env->cp15.c5_data);
1695 return env->cp15.c5_data;
1696 case 1:
1697 if (arm_feature(env, ARM_FEATURE_MPU))
1698 return simple_mpu_ap_bits(env->cp15.c5_data);
1699 return env->cp15.c5_insn;
1700 case 2:
1701 if (!arm_feature(env, ARM_FEATURE_MPU))
1702 goto bad_reg;
1703 return env->cp15.c5_data;
1704 case 3:
1705 if (!arm_feature(env, ARM_FEATURE_MPU))
1706 goto bad_reg;
1707 return env->cp15.c5_insn;
1708 default:
1709 goto bad_reg;
1711 case 6: /* MMU Fault address. */
1712 if (arm_feature(env, ARM_FEATURE_MPU)) {
1713 if (crm >= 8)
1714 goto bad_reg;
1715 return env->cp15.c6_region[crm];
1716 } else {
1717 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1718 op2 = 0;
1719 switch (op2) {
1720 case 0:
1721 return env->cp15.c6_data;
1722 case 1:
1723 if (arm_feature(env, ARM_FEATURE_V6)) {
1724 /* Watchpoint Fault Adrress. */
1725 return 0; /* Not implemented. */
1726 } else {
1727 /* Instruction Fault Adrress. */
1728 /* Arm9 doesn't have an IFAR, but implementing it anyway
1729 shouldn't do any harm. */
1730 return env->cp15.c6_insn;
1732 case 2:
1733 if (arm_feature(env, ARM_FEATURE_V6)) {
1734 /* Instruction Fault Adrress. */
1735 return env->cp15.c6_insn;
1736 } else {
1737 goto bad_reg;
1739 default:
1740 goto bad_reg;
1743 case 7: /* Cache control. */
1744 /* FIXME: Should only clear Z flag if destination is r15. */
1745 env->ZF = 0;
1746 return 0;
1747 case 8: /* MMU TLB control. */
1748 goto bad_reg;
1749 case 9: /* Cache lockdown. */
1750 switch (op1) {
1751 case 0: /* L1 cache. */
1752 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1753 return 0;
1754 switch (op2) {
1755 case 0:
1756 return env->cp15.c9_data;
1757 case 1:
1758 return env->cp15.c9_insn;
1759 default:
1760 goto bad_reg;
1762 case 1: /* L2 cache */
1763 if (crm != 0)
1764 goto bad_reg;
1765 /* L2 Lockdown and Auxiliary control. */
1766 return 0;
1767 default:
1768 goto bad_reg;
1770 case 10: /* MMU TLB lockdown. */
1771 /* ??? TLB lockdown not implemented. */
1772 return 0;
1773 case 11: /* TCM DMA control. */
1774 case 12: /* Reserved. */
1775 goto bad_reg;
1776 case 13: /* Process ID. */
1777 switch (op2) {
1778 case 0:
1779 return env->cp15.c13_fcse;
1780 case 1:
1781 return env->cp15.c13_context;
1782 case 2:
1783 return env->cp15.c13_tls1;
1784 case 3:
1785 return env->cp15.c13_tls2;
1786 case 4:
1787 return env->cp15.c13_tls3;
1788 default:
1789 goto bad_reg;
1791 case 14: /* Reserved. */
1792 goto bad_reg;
1793 case 15: /* Implementation specific. */
1794 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1795 if (op2 == 0 && crm == 1)
1796 return env->cp15.c15_cpar;
1798 goto bad_reg;
1800 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1801 switch (crm) {
1802 case 0:
1803 return 0;
1804 case 1: /* Read TI925T configuration. */
1805 return env->cp15.c15_ticonfig;
1806 case 2: /* Read I_max. */
1807 return env->cp15.c15_i_max;
1808 case 3: /* Read I_min. */
1809 return env->cp15.c15_i_min;
1810 case 4: /* Read thread-ID. */
1811 return env->cp15.c15_threadid;
1812 case 8: /* TI925T_status */
1813 return 0;
1815 /* TODO: Peripheral port remap register:
1816 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1817 * controller base address at $rn & ~0xfff and map size of
1818 * 0x200 << ($rn & 0xfff), when MMU is off. */
1819 goto bad_reg;
1821 return 0;
1823 bad_reg:
1824 /* ??? For debugging only. Should raise illegal instruction exception. */
1825 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1826 (insn >> 16) & 0xf, crm, op1, op2);
1827 return 0;
1830 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1832 env->banked_r13[bank_number(mode)] = val;
1835 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1837 return env->banked_r13[bank_number(mode)];
1840 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1842 switch (reg) {
1843 case 0: /* APSR */
1844 return xpsr_read(env) & 0xf8000000;
1845 case 1: /* IAPSR */
1846 return xpsr_read(env) & 0xf80001ff;
1847 case 2: /* EAPSR */
1848 return xpsr_read(env) & 0xff00fc00;
1849 case 3: /* xPSR */
1850 return xpsr_read(env) & 0xff00fdff;
1851 case 5: /* IPSR */
1852 return xpsr_read(env) & 0x000001ff;
1853 case 6: /* EPSR */
1854 return xpsr_read(env) & 0x0700fc00;
1855 case 7: /* IEPSR */
1856 return xpsr_read(env) & 0x0700edff;
1857 case 8: /* MSP */
1858 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1859 case 9: /* PSP */
1860 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1861 case 16: /* PRIMASK */
1862 return (env->uncached_cpsr & CPSR_I) != 0;
1863 case 17: /* FAULTMASK */
1864 return (env->uncached_cpsr & CPSR_F) != 0;
1865 case 18: /* BASEPRI */
1866 case 19: /* BASEPRI_MAX */
1867 return env->v7m.basepri;
1868 case 20: /* CONTROL */
1869 return env->v7m.control;
1870 default:
1871 /* ??? For debugging only. */
1872 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1873 return 0;
1877 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1879 switch (reg) {
1880 case 0: /* APSR */
1881 xpsr_write(env, val, 0xf8000000);
1882 break;
1883 case 1: /* IAPSR */
1884 xpsr_write(env, val, 0xf8000000);
1885 break;
1886 case 2: /* EAPSR */
1887 xpsr_write(env, val, 0xfe00fc00);
1888 break;
1889 case 3: /* xPSR */
1890 xpsr_write(env, val, 0xfe00fc00);
1891 break;
1892 case 5: /* IPSR */
1893 /* IPSR bits are readonly. */
1894 break;
1895 case 6: /* EPSR */
1896 xpsr_write(env, val, 0x0600fc00);
1897 break;
1898 case 7: /* IEPSR */
1899 xpsr_write(env, val, 0x0600fc00);
1900 break;
1901 case 8: /* MSP */
1902 if (env->v7m.current_sp)
1903 env->v7m.other_sp = val;
1904 else
1905 env->regs[13] = val;
1906 break;
1907 case 9: /* PSP */
1908 if (env->v7m.current_sp)
1909 env->regs[13] = val;
1910 else
1911 env->v7m.other_sp = val;
1912 break;
1913 case 16: /* PRIMASK */
1914 if (val & 1)
1915 env->uncached_cpsr |= CPSR_I;
1916 else
1917 env->uncached_cpsr &= ~CPSR_I;
1918 break;
1919 case 17: /* FAULTMASK */
1920 if (val & 1)
1921 env->uncached_cpsr |= CPSR_F;
1922 else
1923 env->uncached_cpsr &= ~CPSR_F;
1924 break;
1925 case 18: /* BASEPRI */
1926 env->v7m.basepri = val & 0xff;
1927 break;
1928 case 19: /* BASEPRI_MAX */
1929 val &= 0xff;
1930 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1931 env->v7m.basepri = val;
1932 break;
1933 case 20: /* CONTROL */
1934 env->v7m.control = val & 3;
1935 switch_v7m_sp(env, (val & 2) != 0);
1936 break;
1937 default:
1938 /* ??? For debugging only. */
1939 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1940 return;
1944 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1945 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1946 void *opaque)
1948 if (cpnum < 0 || cpnum > 14) {
1949 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1950 return;
1953 env->cp[cpnum].cp_read = cp_read;
1954 env->cp[cpnum].cp_write = cp_write;
1955 env->cp[cpnum].opaque = opaque;
1958 #endif
1960 /* Note that signed overflow is undefined in C. The following routines are
1961 careful to use unsigned types where modulo arithmetic is required.
1962 Failure to do so _will_ break on newer gcc. */
1964 /* Signed saturating arithmetic. */
1966 /* Perform 16-bit signed saturating addition. */
1967 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1969 uint16_t res;
1971 res = a + b;
1972 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1973 if (a & 0x8000)
1974 res = 0x8000;
1975 else
1976 res = 0x7fff;
1978 return res;
1981 /* Perform 8-bit signed saturating addition. */
1982 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1984 uint8_t res;
1986 res = a + b;
1987 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1988 if (a & 0x80)
1989 res = 0x80;
1990 else
1991 res = 0x7f;
1993 return res;
1996 /* Perform 16-bit signed saturating subtraction. */
1997 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1999 uint16_t res;
2001 res = a - b;
2002 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2003 if (a & 0x8000)
2004 res = 0x8000;
2005 else
2006 res = 0x7fff;
2008 return res;
2011 /* Perform 8-bit signed saturating subtraction. */
2012 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2014 uint8_t res;
2016 res = a - b;
2017 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2018 if (a & 0x80)
2019 res = 0x80;
2020 else
2021 res = 0x7f;
2023 return res;
2026 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2027 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2028 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2029 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2030 #define PFX q
2032 #include "op_addsub.h"
2034 /* Unsigned saturating arithmetic. */
2035 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2037 uint16_t res;
2038 res = a + b;
2039 if (res < a)
2040 res = 0xffff;
2041 return res;
2044 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2046 if (a < b)
2047 return a - b;
2048 else
2049 return 0;
2052 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2054 uint8_t res;
2055 res = a + b;
2056 if (res < a)
2057 res = 0xff;
2058 return res;
2061 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2063 if (a < b)
2064 return a - b;
2065 else
2066 return 0;
2069 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2070 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2071 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2072 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2073 #define PFX uq
2075 #include "op_addsub.h"
2077 /* Signed modulo arithmetic. */
2078 #define SARITH16(a, b, n, op) do { \
2079 int32_t sum; \
2080 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2081 RESULT(sum, n, 16); \
2082 if (sum >= 0) \
2083 ge |= 3 << (n * 2); \
2084 } while(0)
2086 #define SARITH8(a, b, n, op) do { \
2087 int32_t sum; \
2088 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2089 RESULT(sum, n, 8); \
2090 if (sum >= 0) \
2091 ge |= 1 << n; \
2092 } while(0)
2095 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2096 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2097 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2098 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2099 #define PFX s
2100 #define ARITH_GE
2102 #include "op_addsub.h"
2104 /* Unsigned modulo arithmetic. */
2105 #define ADD16(a, b, n) do { \
2106 uint32_t sum; \
2107 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2108 RESULT(sum, n, 16); \
2109 if ((sum >> 16) == 1) \
2110 ge |= 3 << (n * 2); \
2111 } while(0)
2113 #define ADD8(a, b, n) do { \
2114 uint32_t sum; \
2115 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2116 RESULT(sum, n, 8); \
2117 if ((sum >> 8) == 1) \
2118 ge |= 1 << n; \
2119 } while(0)
2121 #define SUB16(a, b, n) do { \
2122 uint32_t sum; \
2123 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2124 RESULT(sum, n, 16); \
2125 if ((sum >> 16) == 0) \
2126 ge |= 3 << (n * 2); \
2127 } while(0)
2129 #define SUB8(a, b, n) do { \
2130 uint32_t sum; \
2131 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2132 RESULT(sum, n, 8); \
2133 if ((sum >> 8) == 0) \
2134 ge |= 1 << n; \
2135 } while(0)
2137 #define PFX u
2138 #define ARITH_GE
2140 #include "op_addsub.h"
2142 /* Halved signed arithmetic. */
2143 #define ADD16(a, b, n) \
2144 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2145 #define SUB16(a, b, n) \
2146 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2147 #define ADD8(a, b, n) \
2148 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2149 #define SUB8(a, b, n) \
2150 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2151 #define PFX sh
2153 #include "op_addsub.h"
2155 /* Halved unsigned arithmetic. */
2156 #define ADD16(a, b, n) \
2157 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2158 #define SUB16(a, b, n) \
2159 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2160 #define ADD8(a, b, n) \
2161 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2162 #define SUB8(a, b, n) \
2163 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2164 #define PFX uh
2166 #include "op_addsub.h"
2168 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2170 if (a > b)
2171 return a - b;
2172 else
2173 return b - a;
2176 /* Unsigned sum of absolute byte differences. */
2177 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2179 uint32_t sum;
2180 sum = do_usad(a, b);
2181 sum += do_usad(a >> 8, b >> 8);
2182 sum += do_usad(a >> 16, b >>16);
2183 sum += do_usad(a >> 24, b >> 24);
2184 return sum;
2187 /* For ARMv6 SEL instruction. */
2188 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2190 uint32_t mask;
2192 mask = 0;
2193 if (flags & 1)
2194 mask |= 0xff;
2195 if (flags & 2)
2196 mask |= 0xff00;
2197 if (flags & 4)
2198 mask |= 0xff0000;
2199 if (flags & 8)
2200 mask |= 0xff000000;
2201 return (a & mask) | (b & ~mask);
2204 uint32_t HELPER(logicq_cc)(uint64_t val)
2206 return (val >> 32) | (val != 0);
2209 /* VFP support. We follow the convention used for VFP instrunctions:
2210 Single precition routines have a "s" suffix, double precision a
2211 "d" suffix. */
2213 /* Convert host exception flags to vfp form. */
2214 static inline int vfp_exceptbits_from_host(int host_bits)
2216 int target_bits = 0;
2218 if (host_bits & float_flag_invalid)
2219 target_bits |= 1;
2220 if (host_bits & float_flag_divbyzero)
2221 target_bits |= 2;
2222 if (host_bits & float_flag_overflow)
2223 target_bits |= 4;
2224 if (host_bits & float_flag_underflow)
2225 target_bits |= 8;
2226 if (host_bits & float_flag_inexact)
2227 target_bits |= 0x10;
2228 return target_bits;
2231 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2233 int i;
2234 uint32_t fpscr;
2236 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2237 | (env->vfp.vec_len << 16)
2238 | (env->vfp.vec_stride << 20);
2239 i = get_float_exception_flags(&env->vfp.fp_status);
2240 fpscr |= vfp_exceptbits_from_host(i);
2241 return fpscr;
2244 /* Convert vfp exception flags to target form. */
2245 static inline int vfp_exceptbits_to_host(int target_bits)
2247 int host_bits = 0;
2249 if (target_bits & 1)
2250 host_bits |= float_flag_invalid;
2251 if (target_bits & 2)
2252 host_bits |= float_flag_divbyzero;
2253 if (target_bits & 4)
2254 host_bits |= float_flag_overflow;
2255 if (target_bits & 8)
2256 host_bits |= float_flag_underflow;
2257 if (target_bits & 0x10)
2258 host_bits |= float_flag_inexact;
2259 return host_bits;
2262 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2264 int i;
2265 uint32_t changed;
2267 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2268 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2269 env->vfp.vec_len = (val >> 16) & 7;
2270 env->vfp.vec_stride = (val >> 20) & 3;
2272 changed ^= val;
2273 if (changed & (3 << 22)) {
2274 i = (val >> 22) & 3;
2275 switch (i) {
2276 case 0:
2277 i = float_round_nearest_even;
2278 break;
2279 case 1:
2280 i = float_round_up;
2281 break;
2282 case 2:
2283 i = float_round_down;
2284 break;
2285 case 3:
2286 i = float_round_to_zero;
2287 break;
2289 set_float_rounding_mode(i, &env->vfp.fp_status);
2291 if (changed & (1 << 24))
2292 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2293 if (changed & (1 << 25))
2294 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2296 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2297 set_float_exception_flags(i, &env->vfp.fp_status);
2300 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2302 #define VFP_BINOP(name) \
2303 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2305 return float32_ ## name (a, b, &env->vfp.fp_status); \
2307 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2309 return float64_ ## name (a, b, &env->vfp.fp_status); \
2311 VFP_BINOP(add)
2312 VFP_BINOP(sub)
2313 VFP_BINOP(mul)
2314 VFP_BINOP(div)
2315 #undef VFP_BINOP
2317 float32 VFP_HELPER(neg, s)(float32 a)
2319 return float32_chs(a);
2322 float64 VFP_HELPER(neg, d)(float64 a)
2324 return float64_chs(a);
2327 float32 VFP_HELPER(abs, s)(float32 a)
2329 return float32_abs(a);
2332 float64 VFP_HELPER(abs, d)(float64 a)
2334 return float64_abs(a);
2337 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2339 return float32_sqrt(a, &env->vfp.fp_status);
2342 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2344 return float64_sqrt(a, &env->vfp.fp_status);
2347 /* XXX: check quiet/signaling case */
2348 #define DO_VFP_cmp(p, type) \
2349 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2351 uint32_t flags; \
2352 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2353 case 0: flags = 0x6; break; \
2354 case -1: flags = 0x8; break; \
2355 case 1: flags = 0x2; break; \
2356 default: case 2: flags = 0x3; break; \
2358 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2359 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2361 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2363 uint32_t flags; \
2364 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2365 case 0: flags = 0x6; break; \
2366 case -1: flags = 0x8; break; \
2367 case 1: flags = 0x2; break; \
2368 default: case 2: flags = 0x3; break; \
2370 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2371 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2373 DO_VFP_cmp(s, float32)
2374 DO_VFP_cmp(d, float64)
2375 #undef DO_VFP_cmp
2377 /* Helper routines to perform bitwise copies between float and int. */
2378 static inline float32 vfp_itos(uint32_t i)
2380 union {
2381 uint32_t i;
2382 float32 s;
2383 } v;
2385 v.i = i;
2386 return v.s;
2389 static inline uint32_t vfp_stoi(float32 s)
2391 union {
2392 uint32_t i;
2393 float32 s;
2394 } v;
2396 v.s = s;
2397 return v.i;
2400 static inline float64 vfp_itod(uint64_t i)
2402 union {
2403 uint64_t i;
2404 float64 d;
2405 } v;
2407 v.i = i;
2408 return v.d;
2411 static inline uint64_t vfp_dtoi(float64 d)
2413 union {
2414 uint64_t i;
2415 float64 d;
2416 } v;
2418 v.d = d;
2419 return v.i;
2422 /* Integer to float conversion. */
2423 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2425 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2428 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2430 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2433 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2435 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2438 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2440 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2443 /* Float to integer conversion. */
2444 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2446 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2449 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2451 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2454 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2456 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2459 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2461 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2464 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2466 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2469 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2471 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2474 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2476 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2479 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2481 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2484 /* floating point conversion */
2485 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2487 return float32_to_float64(x, &env->vfp.fp_status);
2490 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2492 return float64_to_float32(x, &env->vfp.fp_status);
2495 /* VFP3 fixed point conversion. */
2496 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2497 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2499 ftype tmp; \
2500 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2501 &env->vfp.fp_status); \
2502 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2504 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2506 ftype tmp; \
2507 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2508 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2509 &env->vfp.fp_status)); \
2512 VFP_CONV_FIX(sh, d, float64, int16, )
2513 VFP_CONV_FIX(sl, d, float64, int32, )
2514 VFP_CONV_FIX(uh, d, float64, uint16, u)
2515 VFP_CONV_FIX(ul, d, float64, uint32, u)
2516 VFP_CONV_FIX(sh, s, float32, int16, )
2517 VFP_CONV_FIX(sl, s, float32, int32, )
2518 VFP_CONV_FIX(uh, s, float32, uint16, u)
2519 VFP_CONV_FIX(ul, s, float32, uint32, u)
2520 #undef VFP_CONV_FIX
2522 /* Half precision conversions. */
2523 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2525 float_status *s = &env->vfp.fp_status;
2526 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2527 return float16_to_float32(a, ieee, s);
2530 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2532 float_status *s = &env->vfp.fp_status;
2533 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2534 return float32_to_float16(a, ieee, s);
2537 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2539 float_status *s = &env->vfp.fp_status;
2540 float32 two = int32_to_float32(2, s);
2541 return float32_sub(two, float32_mul(a, b, s), s);
2544 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2546 float_status *s = &env->vfp.fp_status;
2547 float32 three = int32_to_float32(3, s);
2548 return float32_sub(three, float32_mul(a, b, s), s);
2551 /* NEON helpers. */
2553 /* TODO: The architecture specifies the value that the estimate functions
2554 should return. We return the exact reciprocal/root instead. */
2555 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2557 float_status *s = &env->vfp.fp_status;
2558 float32 one = int32_to_float32(1, s);
2559 return float32_div(one, a, s);
2562 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2564 float_status *s = &env->vfp.fp_status;
2565 float32 one = int32_to_float32(1, s);
2566 return float32_div(one, float32_sqrt(a, s), s);
2569 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2571 float_status *s = &env->vfp.fp_status;
2572 float32 tmp;
2573 tmp = int32_to_float32(a, s);
2574 tmp = float32_scalbn(tmp, -32, s);
2575 tmp = helper_recpe_f32(tmp, env);
2576 tmp = float32_scalbn(tmp, 31, s);
2577 return float32_to_int32(tmp, s);
2580 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2582 float_status *s = &env->vfp.fp_status;
2583 float32 tmp;
2584 tmp = int32_to_float32(a, s);
2585 tmp = float32_scalbn(tmp, -32, s);
2586 tmp = helper_rsqrte_f32(tmp, env);
2587 tmp = float32_scalbn(tmp, 31, s);
2588 return float32_to_int32(tmp, s);
2591 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2593 val &= 1;
2594 if (env->teecr != val) {
2595 env->teecr = val;
2596 tb_flush(env);