pulseaudio: process 1/4 buffer max at once
[qemu/mdroth.git] / kvm-all.c
blob255b6fad9c76b6d10b828a39837a10a774bc2102
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
58 typedef struct kvm_dirty_log KVMDirtyLog;
60 struct KVMState
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 #ifdef KVM_CAP_COALESCED_MMIO
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 #endif
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
83 static KVMState *kvm_state;
85 static KVMSlot *kvm_alloc_slot(KVMState *s)
87 int i;
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
90 /* KVM private memory slots */
91 if (i >= 8 && i < 12)
92 continue;
93 if (s->slots[i].memory_size == 0)
94 return &s->slots[i];
97 fprintf(stderr, "%s: no free slot available\n", __func__);
98 abort();
101 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
102 target_phys_addr_t start_addr,
103 target_phys_addr_t end_addr)
105 int i;
107 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
108 KVMSlot *mem = &s->slots[i];
110 if (start_addr == mem->start_addr &&
111 end_addr == mem->start_addr + mem->memory_size) {
112 return mem;
116 return NULL;
120 * Find overlapping slot with lowest start address
122 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
123 target_phys_addr_t start_addr,
124 target_phys_addr_t end_addr)
126 KVMSlot *found = NULL;
127 int i;
129 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
130 KVMSlot *mem = &s->slots[i];
132 if (mem->memory_size == 0 ||
133 (found && found->start_addr < mem->start_addr)) {
134 continue;
137 if (end_addr > mem->start_addr &&
138 start_addr < mem->start_addr + mem->memory_size) {
139 found = mem;
143 return found;
146 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
147 target_phys_addr_t *phys_addr)
149 int i;
151 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
152 KVMSlot *mem = &s->slots[i];
154 if (ram_addr >= mem->phys_offset &&
155 ram_addr < mem->phys_offset + mem->memory_size) {
156 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
157 return 1;
161 return 0;
164 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
166 struct kvm_userspace_memory_region mem;
168 mem.slot = slot->slot;
169 mem.guest_phys_addr = slot->start_addr;
170 mem.memory_size = slot->memory_size;
171 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
172 mem.flags = slot->flags;
173 if (s->migration_log) {
174 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
176 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179 static void kvm_reset_vcpu(void *opaque)
181 CPUState *env = opaque;
183 kvm_arch_reset_vcpu(env);
186 int kvm_irqchip_in_kernel(void)
188 return kvm_state->irqchip_in_kernel;
191 int kvm_pit_in_kernel(void)
193 return kvm_state->pit_in_kernel;
197 int kvm_init_vcpu(CPUState *env)
199 KVMState *s = kvm_state;
200 long mmap_size;
201 int ret;
203 DPRINTF("kvm_init_vcpu\n");
205 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
206 if (ret < 0) {
207 DPRINTF("kvm_create_vcpu failed\n");
208 goto err;
211 env->kvm_fd = ret;
212 env->kvm_state = s;
214 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
215 if (mmap_size < 0) {
216 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
217 goto err;
220 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
221 env->kvm_fd, 0);
222 if (env->kvm_run == MAP_FAILED) {
223 ret = -errno;
224 DPRINTF("mmap'ing vcpu state failed\n");
225 goto err;
228 #ifdef KVM_CAP_COALESCED_MMIO
229 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
230 s->coalesced_mmio_ring = (void *) env->kvm_run +
231 s->coalesced_mmio * PAGE_SIZE;
232 #endif
234 ret = kvm_arch_init_vcpu(env);
235 if (ret == 0) {
236 qemu_register_reset(kvm_reset_vcpu, env);
237 kvm_arch_reset_vcpu(env);
239 err:
240 return ret;
244 * dirty pages logging control
246 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
247 ram_addr_t size, int flags, int mask)
249 KVMState *s = kvm_state;
250 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
251 int old_flags;
253 if (mem == NULL) {
254 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
255 TARGET_FMT_plx "\n", __func__, phys_addr,
256 (target_phys_addr_t)(phys_addr + size - 1));
257 return -EINVAL;
260 old_flags = mem->flags;
262 flags = (mem->flags & ~mask) | flags;
263 mem->flags = flags;
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s->migration_log) {
267 flags |= KVM_MEM_LOG_DIRTY_PAGES;
269 if (flags == old_flags) {
270 return 0;
273 return kvm_set_user_memory_region(s, mem);
276 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
278 return kvm_dirty_pages_log_change(phys_addr, size,
279 KVM_MEM_LOG_DIRTY_PAGES,
280 KVM_MEM_LOG_DIRTY_PAGES);
283 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
285 return kvm_dirty_pages_log_change(phys_addr, size,
287 KVM_MEM_LOG_DIRTY_PAGES);
290 static int kvm_set_migration_log(int enable)
292 KVMState *s = kvm_state;
293 KVMSlot *mem;
294 int i, err;
296 s->migration_log = enable;
298 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
299 mem = &s->slots[i];
301 if (!mem->memory_size) {
302 continue;
304 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
305 continue;
307 err = kvm_set_user_memory_region(s, mem);
308 if (err) {
309 return err;
312 return 0;
315 /* get kvm's dirty pages bitmap and update qemu's */
316 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
317 unsigned long *bitmap,
318 unsigned long offset,
319 unsigned long mem_size)
321 unsigned int i, j;
322 unsigned long page_number, addr, addr1, c;
323 ram_addr_t ram_addr;
324 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
325 HOST_LONG_BITS;
328 * bitmap-traveling is faster than memory-traveling (for addr...)
329 * especially when most of the memory is not dirty.
331 for (i = 0; i < len; i++) {
332 if (bitmap[i] != 0) {
333 c = leul_to_cpu(bitmap[i]);
334 do {
335 j = ffsl(c) - 1;
336 c &= ~(1ul << j);
337 page_number = i * HOST_LONG_BITS + j;
338 addr1 = page_number * TARGET_PAGE_SIZE;
339 addr = offset + addr1;
340 ram_addr = cpu_get_physical_page_desc(addr);
341 cpu_physical_memory_set_dirty(ram_addr);
342 } while (c != 0);
345 return 0;
348 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
351 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
352 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
353 * This means all bits are set to dirty.
355 * @start_add: start of logged region.
356 * @end_addr: end of logged region.
358 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
359 target_phys_addr_t end_addr)
361 KVMState *s = kvm_state;
362 unsigned long size, allocated_size = 0;
363 KVMDirtyLog d;
364 KVMSlot *mem;
365 int ret = 0;
367 d.dirty_bitmap = NULL;
368 while (start_addr < end_addr) {
369 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
370 if (mem == NULL) {
371 break;
374 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
375 if (!d.dirty_bitmap) {
376 d.dirty_bitmap = qemu_malloc(size);
377 } else if (size > allocated_size) {
378 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
380 allocated_size = size;
381 memset(d.dirty_bitmap, 0, allocated_size);
383 d.slot = mem->slot;
385 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
386 DPRINTF("ioctl failed %d\n", errno);
387 ret = -1;
388 break;
391 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
392 mem->start_addr, mem->memory_size);
393 start_addr = mem->start_addr + mem->memory_size;
395 qemu_free(d.dirty_bitmap);
397 return ret;
400 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
402 int ret = -ENOSYS;
403 #ifdef KVM_CAP_COALESCED_MMIO
404 KVMState *s = kvm_state;
406 if (s->coalesced_mmio) {
407 struct kvm_coalesced_mmio_zone zone;
409 zone.addr = start;
410 zone.size = size;
412 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
414 #endif
416 return ret;
419 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
421 int ret = -ENOSYS;
422 #ifdef KVM_CAP_COALESCED_MMIO
423 KVMState *s = kvm_state;
425 if (s->coalesced_mmio) {
426 struct kvm_coalesced_mmio_zone zone;
428 zone.addr = start;
429 zone.size = size;
431 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
433 #endif
435 return ret;
438 int kvm_check_extension(KVMState *s, unsigned int extension)
440 int ret;
442 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
443 if (ret < 0) {
444 ret = 0;
447 return ret;
450 static int kvm_check_many_ioeventfds(void)
452 /* Older kernels have a 6 device limit on the KVM io bus. Find out so we
453 * can avoid creating too many ioeventfds.
455 #ifdef CONFIG_EVENTFD
456 int ioeventfds[7];
457 int i, ret = 0;
458 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
459 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
460 if (ioeventfds[i] < 0) {
461 break;
463 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
464 if (ret < 0) {
465 close(ioeventfds[i]);
466 break;
470 /* Decide whether many devices are supported or not */
471 ret = i == ARRAY_SIZE(ioeventfds);
473 while (i-- > 0) {
474 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
475 close(ioeventfds[i]);
477 return ret;
478 #else
479 return 0;
480 #endif
483 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
484 ram_addr_t size,
485 ram_addr_t phys_offset)
487 KVMState *s = kvm_state;
488 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
489 KVMSlot *mem, old;
490 int err;
492 /* kvm works in page size chunks, but the function may be called
493 with sub-page size and unaligned start address. */
494 size = TARGET_PAGE_ALIGN(size);
495 start_addr = TARGET_PAGE_ALIGN(start_addr);
497 /* KVM does not support read-only slots */
498 phys_offset &= ~IO_MEM_ROM;
500 while (1) {
501 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
502 if (!mem) {
503 break;
506 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
507 (start_addr + size <= mem->start_addr + mem->memory_size) &&
508 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
509 /* The new slot fits into the existing one and comes with
510 * identical parameters - nothing to be done. */
511 return;
514 old = *mem;
516 /* unregister the overlapping slot */
517 mem->memory_size = 0;
518 err = kvm_set_user_memory_region(s, mem);
519 if (err) {
520 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
521 __func__, strerror(-err));
522 abort();
525 /* Workaround for older KVM versions: we can't join slots, even not by
526 * unregistering the previous ones and then registering the larger
527 * slot. We have to maintain the existing fragmentation. Sigh.
529 * This workaround assumes that the new slot starts at the same
530 * address as the first existing one. If not or if some overlapping
531 * slot comes around later, we will fail (not seen in practice so far)
532 * - and actually require a recent KVM version. */
533 if (s->broken_set_mem_region &&
534 old.start_addr == start_addr && old.memory_size < size &&
535 flags < IO_MEM_UNASSIGNED) {
536 mem = kvm_alloc_slot(s);
537 mem->memory_size = old.memory_size;
538 mem->start_addr = old.start_addr;
539 mem->phys_offset = old.phys_offset;
540 mem->flags = 0;
542 err = kvm_set_user_memory_region(s, mem);
543 if (err) {
544 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
545 strerror(-err));
546 abort();
549 start_addr += old.memory_size;
550 phys_offset += old.memory_size;
551 size -= old.memory_size;
552 continue;
555 /* register prefix slot */
556 if (old.start_addr < start_addr) {
557 mem = kvm_alloc_slot(s);
558 mem->memory_size = start_addr - old.start_addr;
559 mem->start_addr = old.start_addr;
560 mem->phys_offset = old.phys_offset;
561 mem->flags = 0;
563 err = kvm_set_user_memory_region(s, mem);
564 if (err) {
565 fprintf(stderr, "%s: error registering prefix slot: %s\n",
566 __func__, strerror(-err));
567 abort();
571 /* register suffix slot */
572 if (old.start_addr + old.memory_size > start_addr + size) {
573 ram_addr_t size_delta;
575 mem = kvm_alloc_slot(s);
576 mem->start_addr = start_addr + size;
577 size_delta = mem->start_addr - old.start_addr;
578 mem->memory_size = old.memory_size - size_delta;
579 mem->phys_offset = old.phys_offset + size_delta;
580 mem->flags = 0;
582 err = kvm_set_user_memory_region(s, mem);
583 if (err) {
584 fprintf(stderr, "%s: error registering suffix slot: %s\n",
585 __func__, strerror(-err));
586 abort();
591 /* in case the KVM bug workaround already "consumed" the new slot */
592 if (!size)
593 return;
595 /* KVM does not need to know about this memory */
596 if (flags >= IO_MEM_UNASSIGNED)
597 return;
599 mem = kvm_alloc_slot(s);
600 mem->memory_size = size;
601 mem->start_addr = start_addr;
602 mem->phys_offset = phys_offset;
603 mem->flags = 0;
605 err = kvm_set_user_memory_region(s, mem);
606 if (err) {
607 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
608 strerror(-err));
609 abort();
613 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
614 target_phys_addr_t start_addr,
615 ram_addr_t size,
616 ram_addr_t phys_offset)
618 kvm_set_phys_mem(start_addr, size, phys_offset);
621 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
622 target_phys_addr_t start_addr,
623 target_phys_addr_t end_addr)
625 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
628 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
629 int enable)
631 return kvm_set_migration_log(enable);
634 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
635 .set_memory = kvm_client_set_memory,
636 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
637 .migration_log = kvm_client_migration_log,
640 int kvm_init(int smp_cpus)
642 static const char upgrade_note[] =
643 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
644 "(see http://sourceforge.net/projects/kvm).\n";
645 KVMState *s;
646 int ret;
647 int i;
649 s = qemu_mallocz(sizeof(KVMState));
651 #ifdef KVM_CAP_SET_GUEST_DEBUG
652 QTAILQ_INIT(&s->kvm_sw_breakpoints);
653 #endif
654 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
655 s->slots[i].slot = i;
657 s->vmfd = -1;
658 s->fd = qemu_open("/dev/kvm", O_RDWR);
659 if (s->fd == -1) {
660 fprintf(stderr, "Could not access KVM kernel module: %m\n");
661 ret = -errno;
662 goto err;
665 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
666 if (ret < KVM_API_VERSION) {
667 if (ret > 0)
668 ret = -EINVAL;
669 fprintf(stderr, "kvm version too old\n");
670 goto err;
673 if (ret > KVM_API_VERSION) {
674 ret = -EINVAL;
675 fprintf(stderr, "kvm version not supported\n");
676 goto err;
679 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
680 if (s->vmfd < 0) {
681 #ifdef TARGET_S390X
682 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
683 "your host kernel command line\n");
684 #endif
685 goto err;
688 /* initially, KVM allocated its own memory and we had to jump through
689 * hooks to make phys_ram_base point to this. Modern versions of KVM
690 * just use a user allocated buffer so we can use regular pages
691 * unmodified. Make sure we have a sufficiently modern version of KVM.
693 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
694 ret = -EINVAL;
695 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
696 upgrade_note);
697 goto err;
700 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
701 * destroyed properly. Since we rely on this capability, refuse to work
702 * with any kernel without this capability. */
703 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
704 ret = -EINVAL;
706 fprintf(stderr,
707 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
708 upgrade_note);
709 goto err;
712 s->coalesced_mmio = 0;
713 #ifdef KVM_CAP_COALESCED_MMIO
714 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
715 s->coalesced_mmio_ring = NULL;
716 #endif
718 s->broken_set_mem_region = 1;
719 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
720 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
721 if (ret > 0) {
722 s->broken_set_mem_region = 0;
724 #endif
726 s->vcpu_events = 0;
727 #ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
729 #endif
731 s->robust_singlestep = 0;
732 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
735 #endif
737 s->debugregs = 0;
738 #ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
740 #endif
742 s->xsave = 0;
743 #ifdef KVM_CAP_XSAVE
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
745 #endif
747 s->xcrs = 0;
748 #ifdef KVM_CAP_XCRS
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
750 #endif
752 ret = kvm_arch_init(s, smp_cpus);
753 if (ret < 0)
754 goto err;
756 kvm_state = s;
757 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
759 s->many_ioeventfds = kvm_check_many_ioeventfds();
761 return 0;
763 err:
764 if (s) {
765 if (s->vmfd != -1)
766 close(s->vmfd);
767 if (s->fd != -1)
768 close(s->fd);
770 qemu_free(s);
772 return ret;
775 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
776 uint32_t count)
778 int i;
779 uint8_t *ptr = data;
781 for (i = 0; i < count; i++) {
782 if (direction == KVM_EXIT_IO_IN) {
783 switch (size) {
784 case 1:
785 stb_p(ptr, cpu_inb(port));
786 break;
787 case 2:
788 stw_p(ptr, cpu_inw(port));
789 break;
790 case 4:
791 stl_p(ptr, cpu_inl(port));
792 break;
794 } else {
795 switch (size) {
796 case 1:
797 cpu_outb(port, ldub_p(ptr));
798 break;
799 case 2:
800 cpu_outw(port, lduw_p(ptr));
801 break;
802 case 4:
803 cpu_outl(port, ldl_p(ptr));
804 break;
808 ptr += size;
811 return 1;
814 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
815 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
818 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
819 int i;
821 fprintf(stderr, "KVM internal error. Suberror: %d\n",
822 run->internal.suberror);
824 for (i = 0; i < run->internal.ndata; ++i) {
825 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
826 i, (uint64_t)run->internal.data[i]);
829 cpu_dump_state(env, stderr, fprintf, 0);
830 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
831 fprintf(stderr, "emulation failure\n");
832 if (!kvm_arch_stop_on_emulation_error(env))
833 return;
835 /* FIXME: Should trigger a qmp message to let management know
836 * something went wrong.
838 vm_stop(0);
840 #endif
842 void kvm_flush_coalesced_mmio_buffer(void)
844 #ifdef KVM_CAP_COALESCED_MMIO
845 KVMState *s = kvm_state;
846 if (s->coalesced_mmio_ring) {
847 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
848 while (ring->first != ring->last) {
849 struct kvm_coalesced_mmio *ent;
851 ent = &ring->coalesced_mmio[ring->first];
853 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
854 smp_wmb();
855 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
858 #endif
861 static void do_kvm_cpu_synchronize_state(void *_env)
863 CPUState *env = _env;
865 if (!env->kvm_vcpu_dirty) {
866 kvm_arch_get_registers(env);
867 env->kvm_vcpu_dirty = 1;
871 void kvm_cpu_synchronize_state(CPUState *env)
873 if (!env->kvm_vcpu_dirty)
874 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
877 void kvm_cpu_synchronize_post_reset(CPUState *env)
879 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
880 env->kvm_vcpu_dirty = 0;
883 void kvm_cpu_synchronize_post_init(CPUState *env)
885 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
886 env->kvm_vcpu_dirty = 0;
889 int kvm_cpu_exec(CPUState *env)
891 struct kvm_run *run = env->kvm_run;
892 int ret;
894 DPRINTF("kvm_cpu_exec()\n");
896 do {
897 #ifndef CONFIG_IOTHREAD
898 if (env->exit_request) {
899 DPRINTF("interrupt exit requested\n");
900 ret = 0;
901 break;
903 #endif
905 if (kvm_arch_process_irqchip_events(env)) {
906 ret = 0;
907 break;
910 if (env->kvm_vcpu_dirty) {
911 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
912 env->kvm_vcpu_dirty = 0;
915 kvm_arch_pre_run(env, run);
916 cpu_single_env = NULL;
917 qemu_mutex_unlock_iothread();
918 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
919 qemu_mutex_lock_iothread();
920 cpu_single_env = env;
921 kvm_arch_post_run(env, run);
923 if (ret == -EINTR || ret == -EAGAIN) {
924 cpu_exit(env);
925 DPRINTF("io window exit\n");
926 ret = 0;
927 break;
930 if (ret < 0) {
931 DPRINTF("kvm run failed %s\n", strerror(-ret));
932 abort();
935 kvm_flush_coalesced_mmio_buffer();
937 ret = 0; /* exit loop */
938 switch (run->exit_reason) {
939 case KVM_EXIT_IO:
940 DPRINTF("handle_io\n");
941 ret = kvm_handle_io(run->io.port,
942 (uint8_t *)run + run->io.data_offset,
943 run->io.direction,
944 run->io.size,
945 run->io.count);
946 break;
947 case KVM_EXIT_MMIO:
948 DPRINTF("handle_mmio\n");
949 cpu_physical_memory_rw(run->mmio.phys_addr,
950 run->mmio.data,
951 run->mmio.len,
952 run->mmio.is_write);
953 ret = 1;
954 break;
955 case KVM_EXIT_IRQ_WINDOW_OPEN:
956 DPRINTF("irq_window_open\n");
957 break;
958 case KVM_EXIT_SHUTDOWN:
959 DPRINTF("shutdown\n");
960 qemu_system_reset_request();
961 ret = 1;
962 break;
963 case KVM_EXIT_UNKNOWN:
964 DPRINTF("kvm_exit_unknown\n");
965 break;
966 case KVM_EXIT_FAIL_ENTRY:
967 DPRINTF("kvm_exit_fail_entry\n");
968 break;
969 case KVM_EXIT_EXCEPTION:
970 DPRINTF("kvm_exit_exception\n");
971 break;
972 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
973 case KVM_EXIT_INTERNAL_ERROR:
974 kvm_handle_internal_error(env, run);
975 break;
976 #endif
977 case KVM_EXIT_DEBUG:
978 DPRINTF("kvm_exit_debug\n");
979 #ifdef KVM_CAP_SET_GUEST_DEBUG
980 if (kvm_arch_debug(&run->debug.arch)) {
981 env->exception_index = EXCP_DEBUG;
982 return 0;
984 /* re-enter, this exception was guest-internal */
985 ret = 1;
986 #endif /* KVM_CAP_SET_GUEST_DEBUG */
987 break;
988 default:
989 DPRINTF("kvm_arch_handle_exit\n");
990 ret = kvm_arch_handle_exit(env, run);
991 break;
993 } while (ret > 0);
995 if (env->exit_request) {
996 env->exit_request = 0;
997 env->exception_index = EXCP_INTERRUPT;
1000 return ret;
1003 int kvm_ioctl(KVMState *s, int type, ...)
1005 int ret;
1006 void *arg;
1007 va_list ap;
1009 va_start(ap, type);
1010 arg = va_arg(ap, void *);
1011 va_end(ap);
1013 ret = ioctl(s->fd, type, arg);
1014 if (ret == -1)
1015 ret = -errno;
1017 return ret;
1020 int kvm_vm_ioctl(KVMState *s, int type, ...)
1022 int ret;
1023 void *arg;
1024 va_list ap;
1026 va_start(ap, type);
1027 arg = va_arg(ap, void *);
1028 va_end(ap);
1030 ret = ioctl(s->vmfd, type, arg);
1031 if (ret == -1)
1032 ret = -errno;
1034 return ret;
1037 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1039 int ret;
1040 void *arg;
1041 va_list ap;
1043 va_start(ap, type);
1044 arg = va_arg(ap, void *);
1045 va_end(ap);
1047 ret = ioctl(env->kvm_fd, type, arg);
1048 if (ret == -1)
1049 ret = -errno;
1051 return ret;
1054 int kvm_has_sync_mmu(void)
1056 #ifdef KVM_CAP_SYNC_MMU
1057 KVMState *s = kvm_state;
1059 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1060 #else
1061 return 0;
1062 #endif
1065 int kvm_has_vcpu_events(void)
1067 return kvm_state->vcpu_events;
1070 int kvm_has_robust_singlestep(void)
1072 return kvm_state->robust_singlestep;
1075 int kvm_has_debugregs(void)
1077 return kvm_state->debugregs;
1080 int kvm_has_xsave(void)
1082 return kvm_state->xsave;
1085 int kvm_has_xcrs(void)
1087 return kvm_state->xcrs;
1090 int kvm_has_many_ioeventfds(void)
1092 if (!kvm_enabled()) {
1093 return 0;
1095 return kvm_state->many_ioeventfds;
1098 void kvm_setup_guest_memory(void *start, size_t size)
1100 if (!kvm_has_sync_mmu()) {
1101 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1103 if (ret) {
1104 perror("qemu_madvise");
1105 fprintf(stderr,
1106 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1107 exit(1);
1112 #ifdef KVM_CAP_SET_GUEST_DEBUG
1113 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1114 target_ulong pc)
1116 struct kvm_sw_breakpoint *bp;
1118 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1119 if (bp->pc == pc)
1120 return bp;
1122 return NULL;
1125 int kvm_sw_breakpoints_active(CPUState *env)
1127 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1130 struct kvm_set_guest_debug_data {
1131 struct kvm_guest_debug dbg;
1132 CPUState *env;
1133 int err;
1136 static void kvm_invoke_set_guest_debug(void *data)
1138 struct kvm_set_guest_debug_data *dbg_data = data;
1139 CPUState *env = dbg_data->env;
1141 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1144 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1146 struct kvm_set_guest_debug_data data;
1148 data.dbg.control = reinject_trap;
1150 if (env->singlestep_enabled) {
1151 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1153 kvm_arch_update_guest_debug(env, &data.dbg);
1154 data.env = env;
1156 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1157 return data.err;
1160 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1161 target_ulong len, int type)
1163 struct kvm_sw_breakpoint *bp;
1164 CPUState *env;
1165 int err;
1167 if (type == GDB_BREAKPOINT_SW) {
1168 bp = kvm_find_sw_breakpoint(current_env, addr);
1169 if (bp) {
1170 bp->use_count++;
1171 return 0;
1174 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1175 if (!bp)
1176 return -ENOMEM;
1178 bp->pc = addr;
1179 bp->use_count = 1;
1180 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1181 if (err) {
1182 free(bp);
1183 return err;
1186 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1187 bp, entry);
1188 } else {
1189 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1190 if (err)
1191 return err;
1194 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1195 err = kvm_update_guest_debug(env, 0);
1196 if (err)
1197 return err;
1199 return 0;
1202 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1203 target_ulong len, int type)
1205 struct kvm_sw_breakpoint *bp;
1206 CPUState *env;
1207 int err;
1209 if (type == GDB_BREAKPOINT_SW) {
1210 bp = kvm_find_sw_breakpoint(current_env, addr);
1211 if (!bp)
1212 return -ENOENT;
1214 if (bp->use_count > 1) {
1215 bp->use_count--;
1216 return 0;
1219 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1220 if (err)
1221 return err;
1223 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1224 qemu_free(bp);
1225 } else {
1226 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1227 if (err)
1228 return err;
1231 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1232 err = kvm_update_guest_debug(env, 0);
1233 if (err)
1234 return err;
1236 return 0;
1239 void kvm_remove_all_breakpoints(CPUState *current_env)
1241 struct kvm_sw_breakpoint *bp, *next;
1242 KVMState *s = current_env->kvm_state;
1243 CPUState *env;
1245 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1246 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1247 /* Try harder to find a CPU that currently sees the breakpoint. */
1248 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1249 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1250 break;
1254 kvm_arch_remove_all_hw_breakpoints();
1256 for (env = first_cpu; env != NULL; env = env->next_cpu)
1257 kvm_update_guest_debug(env, 0);
1260 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1262 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1264 return -EINVAL;
1267 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1268 target_ulong len, int type)
1270 return -EINVAL;
1273 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1274 target_ulong len, int type)
1276 return -EINVAL;
1279 void kvm_remove_all_breakpoints(CPUState *current_env)
1282 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1284 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1286 struct kvm_signal_mask *sigmask;
1287 int r;
1289 if (!sigset)
1290 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1292 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1294 sigmask->len = 8;
1295 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1296 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1297 free(sigmask);
1299 return r;
1302 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1304 #ifdef KVM_IOEVENTFD
1305 int ret;
1306 struct kvm_ioeventfd iofd;
1308 iofd.datamatch = val;
1309 iofd.addr = addr;
1310 iofd.len = 4;
1311 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1312 iofd.fd = fd;
1314 if (!kvm_enabled()) {
1315 return -ENOSYS;
1318 if (!assign) {
1319 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1322 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1324 if (ret < 0) {
1325 return -errno;
1328 return 0;
1329 #else
1330 return -ENOSYS;
1331 #endif
1334 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1336 #ifdef KVM_IOEVENTFD
1337 struct kvm_ioeventfd kick = {
1338 .datamatch = val,
1339 .addr = addr,
1340 .len = 2,
1341 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1342 .fd = fd,
1344 int r;
1345 if (!kvm_enabled())
1346 return -ENOSYS;
1347 if (!assign)
1348 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1349 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1350 if (r < 0)
1351 return r;
1352 return 0;
1353 #else
1354 return -ENOSYS;
1355 #endif