2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <machine/profile.h>
56 //#define DEBUG_TB_INVALIDATE
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock
*tbs
;
76 static int code_gen_max_blocks
;
77 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
94 #define code_gen_section \
95 __attribute__((aligned (32)))
98 uint8_t code_gen_prologue
[1024] code_gen_section
;
99 static uint8_t *code_gen_buffer
;
100 static unsigned long code_gen_buffer_size
;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size
;
103 static uint8_t *code_gen_ptr
;
105 #if !defined(CONFIG_USER_ONLY)
107 static int in_migration
;
109 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
) };
113 /* current CPU in the current thread. It is only valid inside
115 CPUState
*cpu_single_env
;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
124 typedef struct PageDesc
{
125 /* list of TBs intersecting this ram page */
126 TranslationBlock
*first_tb
;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count
;
130 uint8_t *code_bitmap
;
131 #if defined(CONFIG_USER_ONLY)
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 /* Size of the L2 (and L3, etc) page tables. */
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
162 #define P_L1_BITS P_L1_BITS_REM
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
168 #define V_L1_BITS V_L1_BITS_REM
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size
;
178 unsigned long qemu_host_page_bits
;
179 unsigned long qemu_host_page_size
;
180 unsigned long qemu_host_page_mask
;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map
[V_L1_SIZE
];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc
{
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset
;
190 ram_addr_t region_offset
;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map
[P_L1_SIZE
];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
201 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
202 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
203 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
204 static int io_mem_watch
;
209 static const char *logfilename
= "qemu.log";
211 static const char *logfilename
= "/tmp/qemu.log";
215 static int log_append
= 0;
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count
;
221 static int tb_flush_count
;
222 static int tb_phys_invalidate_count
;
225 static void map_exec(void *addr
, long size
)
228 VirtualProtect(addr
, size
,
229 PAGE_EXECUTE_READWRITE
, &old_protect
);
233 static void map_exec(void *addr
, long size
)
235 unsigned long start
, end
, page_size
;
237 page_size
= getpagesize();
238 start
= (unsigned long)addr
;
239 start
&= ~(page_size
- 1);
241 end
= (unsigned long)addr
+ size
;
242 end
+= page_size
- 1;
243 end
&= ~(page_size
- 1);
245 mprotect((void *)start
, end
- start
,
246 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
256 SYSTEM_INFO system_info
;
258 GetSystemInfo(&system_info
);
259 qemu_real_host_page_size
= system_info
.dwPageSize
;
262 qemu_real_host_page_size
= getpagesize();
264 if (qemu_host_page_size
== 0)
265 qemu_host_page_size
= qemu_real_host_page_size
;
266 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
267 qemu_host_page_size
= TARGET_PAGE_SIZE
;
268 qemu_host_page_bits
= 0;
269 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
270 qemu_host_page_bits
++;
271 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry
*freep
;
279 freep
= kinfo_getvmmap(getpid(), &cnt
);
282 for (i
= 0; i
< cnt
; i
++) {
283 unsigned long startaddr
, endaddr
;
285 startaddr
= freep
[i
].kve_start
;
286 endaddr
= freep
[i
].kve_end
;
287 if (h2g_valid(startaddr
)) {
288 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
290 if (h2g_valid(endaddr
)) {
291 endaddr
= h2g(endaddr
);
292 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
296 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
307 last_brk
= (unsigned long)sbrk(0);
309 f
= fopen("/compat/linux/proc/self/maps", "r");
314 unsigned long startaddr
, endaddr
;
317 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
319 if (n
== 2 && h2g_valid(startaddr
)) {
320 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
322 if (h2g_valid(endaddr
)) {
323 endaddr
= h2g(endaddr
);
327 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
339 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
357 /* Level 1. Always allocated. */
358 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
361 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
368 ALLOC(p
, sizeof(void *) * L2_SIZE
);
372 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
380 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
386 return pd
+ (index
& (L2_SIZE
- 1));
389 static inline PageDesc
*page_find(tb_page_addr_t index
)
391 return page_find_alloc(index
, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
401 /* Level 1. Always allocated. */
402 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
405 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
411 *lp
= p
= qemu_mallocz(sizeof(void *) * L2_SIZE
);
413 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
424 *lp
= pd
= qemu_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
426 for (i
= 0; i
< L2_SIZE
; i
++) {
427 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
428 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
432 return pd
+ (index
& (L2_SIZE
- 1));
435 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
437 return phys_page_find_alloc(index
, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr
);
441 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
457 __attribute__((aligned (CODE_GEN_ALIGN
)));
460 static void code_gen_alloc(unsigned long tb_size
)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer
= static_code_gen_buffer
;
464 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
465 map_exec(code_gen_buffer
, code_gen_buffer_size
);
467 code_gen_buffer_size
= tb_size
;
468 if (code_gen_buffer_size
== 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
473 /* XXX: needs adjustments */
474 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
477 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
478 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
486 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
487 #if defined(__x86_64__)
489 /* Cannot map more than that */
490 if (code_gen_buffer_size
> (800 * 1024 * 1024))
491 code_gen_buffer_size
= (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
495 start
= (void *) 0x60000000UL
;
496 if (code_gen_buffer_size
> (512 * 1024 * 1024))
497 code_gen_buffer_size
= (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
501 start
= (void *) 0x01000000UL
;
502 if (code_gen_buffer_size
> 16 * 1024 * 1024)
503 code_gen_buffer_size
= 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
510 start
= (void *)0x90000000UL
;
512 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
513 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
515 if (code_gen_buffer
== MAP_FAILED
) {
516 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
525 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
530 addr
= (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size
> (800 * 1024 * 1024))
533 code_gen_buffer_size
= (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
537 addr
= (void *) 0x60000000UL
;
538 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
539 code_gen_buffer_size
= (512 * 1024 * 1024);
542 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
543 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
545 if (code_gen_buffer
== MAP_FAILED
) {
546 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
551 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
552 map_exec(code_gen_buffer
, code_gen_buffer_size
);
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
556 code_gen_buffer_max_size
= code_gen_buffer_size
-
557 (TCG_MAX_OP_SIZE
* OPC_MAX_SIZE
);
558 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
559 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
565 void cpu_exec_init_all(unsigned long tb_size
)
568 code_gen_alloc(tb_size
);
569 code_gen_ptr
= code_gen_buffer
;
571 #if !defined(CONFIG_USER_ONLY)
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx
);
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
583 static int cpu_common_post_load(void *opaque
, int version_id
)
585 CPUState
*env
= opaque
;
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env
->interrupt_request
&= ~0x01;
595 static const VMStateDescription vmstate_cpu_common
= {
596 .name
= "cpu_common",
598 .minimum_version_id
= 1,
599 .minimum_version_id_old
= 1,
600 .post_load
= cpu_common_post_load
,
601 .fields
= (VMStateField
[]) {
602 VMSTATE_UINT32(halted
, CPUState
),
603 VMSTATE_UINT32(interrupt_request
, CPUState
),
604 VMSTATE_END_OF_LIST()
609 CPUState
*qemu_get_cpu(int cpu
)
611 CPUState
*env
= first_cpu
;
614 if (env
->cpu_index
== cpu
)
622 void cpu_exec_init(CPUState
*env
)
627 #if defined(CONFIG_USER_ONLY)
630 env
->next_cpu
= NULL
;
633 while (*penv
!= NULL
) {
634 penv
= &(*penv
)->next_cpu
;
637 env
->cpu_index
= cpu_index
;
639 QTAILQ_INIT(&env
->breakpoints
);
640 QTAILQ_INIT(&env
->watchpoints
);
641 #ifndef CONFIG_USER_ONLY
642 env
->thread_id
= qemu_get_thread_id();
645 #if defined(CONFIG_USER_ONLY)
648 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
649 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
650 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
651 cpu_save
, cpu_load
, env
);
655 /* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657 static TranslationBlock
*tb_alloc(target_ulong pc
)
659 TranslationBlock
*tb
;
661 if (nb_tbs
>= code_gen_max_blocks
||
662 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
670 void tb_free(TranslationBlock
*tb
)
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
676 code_gen_ptr
= tb
->tc_ptr
;
681 static inline void invalidate_page_bitmap(PageDesc
*p
)
683 if (p
->code_bitmap
) {
684 qemu_free(p
->code_bitmap
);
685 p
->code_bitmap
= NULL
;
687 p
->code_write_count
= 0;
690 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
692 static void page_flush_tb_1 (int level
, void **lp
)
701 for (i
= 0; i
< L2_SIZE
; ++i
) {
702 pd
[i
].first_tb
= NULL
;
703 invalidate_page_bitmap(pd
+ i
);
707 for (i
= 0; i
< L2_SIZE
; ++i
) {
708 page_flush_tb_1 (level
- 1, pp
+ i
);
713 static void page_flush_tb(void)
716 for (i
= 0; i
< V_L1_SIZE
; i
++) {
717 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
721 /* flush all the translation blocks */
722 /* XXX: tb_flush is currently not thread safe */
723 void tb_flush(CPUState
*env1
)
726 #if defined(DEBUG_FLUSH)
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
730 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
732 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
733 cpu_abort(env1
, "Internal error: code buffer overflow\n");
737 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
738 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
741 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
744 code_gen_ptr
= code_gen_buffer
;
745 /* XXX: flush processor icache at this point if cache flush is
750 #ifdef DEBUG_TB_CHECK
752 static void tb_invalidate_check(target_ulong address
)
754 TranslationBlock
*tb
;
756 address
&= TARGET_PAGE_MASK
;
757 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
758 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
759 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
760 address
>= tb
->pc
+ tb
->size
)) {
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
763 address
, (long)tb
->pc
, tb
->size
);
769 /* verify that all the pages have correct rights for code */
770 static void tb_page_check(void)
772 TranslationBlock
*tb
;
773 int i
, flags1
, flags2
;
775 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
776 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
777 flags1
= page_get_flags(tb
->pc
);
778 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
779 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
781 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
789 /* invalidate one TB */
790 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
793 TranslationBlock
*tb1
;
797 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
800 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
804 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
806 TranslationBlock
*tb1
;
812 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
814 *ptb
= tb1
->page_next
[n1
];
817 ptb
= &tb1
->page_next
[n1
];
821 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
823 TranslationBlock
*tb1
, **ptb
;
826 ptb
= &tb
->jmp_next
[n
];
829 /* find tb(n) in circular list */
833 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
834 if (n1
== n
&& tb1
== tb
)
837 ptb
= &tb1
->jmp_first
;
839 ptb
= &tb1
->jmp_next
[n1
];
842 /* now we can suppress tb(n) from the list */
843 *ptb
= tb
->jmp_next
[n
];
845 tb
->jmp_next
[n
] = NULL
;
849 /* reset the jump entry 'n' of a TB so that it is not chained to
851 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
853 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
856 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
861 tb_page_addr_t phys_pc
;
862 TranslationBlock
*tb1
, *tb2
;
864 /* remove the TB from the hash list */
865 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
866 h
= tb_phys_hash_func(phys_pc
);
867 tb_remove(&tb_phys_hash
[h
], tb
,
868 offsetof(TranslationBlock
, phys_hash_next
));
870 /* remove the TB from the page list */
871 if (tb
->page_addr
[0] != page_addr
) {
872 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
873 tb_page_remove(&p
->first_tb
, tb
);
874 invalidate_page_bitmap(p
);
876 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
877 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
878 tb_page_remove(&p
->first_tb
, tb
);
879 invalidate_page_bitmap(p
);
882 tb_invalidated_flag
= 1;
884 /* remove the TB from the hash list */
885 h
= tb_jmp_cache_hash_func(tb
->pc
);
886 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
887 if (env
->tb_jmp_cache
[h
] == tb
)
888 env
->tb_jmp_cache
[h
] = NULL
;
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb
, 0);
893 tb_jmp_remove(tb
, 1);
895 /* suppress any remaining jumps to this TB */
901 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
902 tb2
= tb1
->jmp_next
[n1
];
903 tb_reset_jump(tb1
, n1
);
904 tb1
->jmp_next
[n1
] = NULL
;
907 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
909 tb_phys_invalidate_count
++;
912 static inline void set_bits(uint8_t *tab
, int start
, int len
)
918 mask
= 0xff << (start
& 7);
919 if ((start
& ~7) == (end
& ~7)) {
921 mask
&= ~(0xff << (end
& 7));
926 start
= (start
+ 8) & ~7;
928 while (start
< end1
) {
933 mask
= ~(0xff << (end
& 7));
939 static void build_page_bitmap(PageDesc
*p
)
941 int n
, tb_start
, tb_end
;
942 TranslationBlock
*tb
;
944 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
949 tb
= (TranslationBlock
*)((long)tb
& ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
955 tb_end
= tb_start
+ tb
->size
;
956 if (tb_end
> TARGET_PAGE_SIZE
)
957 tb_end
= TARGET_PAGE_SIZE
;
960 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
962 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
963 tb
= tb
->page_next
[n
];
967 TranslationBlock
*tb_gen_code(CPUState
*env
,
968 target_ulong pc
, target_ulong cs_base
,
969 int flags
, int cflags
)
971 TranslationBlock
*tb
;
973 tb_page_addr_t phys_pc
, phys_page2
;
974 target_ulong virt_page2
;
977 phys_pc
= get_page_addr_code(env
, pc
);
980 /* flush must be done */
982 /* cannot fail at this point */
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag
= 1;
987 tc_ptr
= code_gen_ptr
;
989 tb
->cs_base
= cs_base
;
992 cpu_gen_code(env
, tb
, &code_gen_size
);
993 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
995 /* check next page if needed */
996 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
998 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
999 phys_page2
= get_page_addr_code(env
, virt_page2
);
1001 tb_link_page(tb
, phys_pc
, phys_page2
);
1005 /* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
1010 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1011 int is_cpu_write_access
)
1013 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1014 CPUState
*env
= cpu_single_env
;
1015 tb_page_addr_t tb_start
, tb_end
;
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found
= is_cpu_write_access
;
1020 TranslationBlock
*current_tb
= NULL
;
1021 int current_tb_modified
= 0;
1022 target_ulong current_pc
= 0;
1023 target_ulong current_cs_base
= 0;
1024 int current_flags
= 0;
1025 #endif /* TARGET_HAS_PRECISE_SMC */
1027 p
= page_find(start
>> TARGET_PAGE_BITS
);
1030 if (!p
->code_bitmap
&&
1031 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1032 is_cpu_write_access
) {
1033 /* build code bitmap */
1034 build_page_bitmap(p
);
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1040 while (tb
!= NULL
) {
1042 tb
= (TranslationBlock
*)((long)tb
& ~3);
1043 tb_next
= tb
->page_next
[n
];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1049 tb_end
= tb_start
+ tb
->size
;
1051 tb_start
= tb
->page_addr
[1];
1052 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1054 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1055 #ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found
) {
1057 current_tb_not_found
= 0;
1059 if (env
->mem_io_pc
) {
1060 /* now we have a real cpu fault */
1061 current_tb
= tb_find_pc(env
->mem_io_pc
);
1064 if (current_tb
== tb
&&
1065 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
1072 current_tb_modified
= 1;
1073 cpu_restore_state(current_tb
, env
,
1074 env
->mem_io_pc
, NULL
);
1075 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1078 #endif /* TARGET_HAS_PRECISE_SMC */
1079 /* we need to do that to handle the case where a signal
1080 occurs while doing tb_phys_invalidate() */
1083 saved_tb
= env
->current_tb
;
1084 env
->current_tb
= NULL
;
1086 tb_phys_invalidate(tb
, -1);
1088 env
->current_tb
= saved_tb
;
1089 if (env
->interrupt_request
&& env
->current_tb
)
1090 cpu_interrupt(env
, env
->interrupt_request
);
1095 #if !defined(CONFIG_USER_ONLY)
1096 /* if no code remaining, no need to continue to use slow writes */
1098 invalidate_page_bitmap(p
);
1099 if (is_cpu_write_access
) {
1100 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1104 #ifdef TARGET_HAS_PRECISE_SMC
1105 if (current_tb_modified
) {
1106 /* we generate a block containing just the instruction
1107 modifying the memory. It will ensure that it cannot modify
1109 env
->current_tb
= NULL
;
1110 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1111 cpu_resume_from_signal(env
, NULL
);
1116 /* len must be <= 8 and start must be a multiple of len */
1117 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1123 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1124 cpu_single_env
->mem_io_vaddr
, len
,
1125 cpu_single_env
->eip
,
1126 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1129 p
= page_find(start
>> TARGET_PAGE_BITS
);
1132 if (p
->code_bitmap
) {
1133 offset
= start
& ~TARGET_PAGE_MASK
;
1134 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1135 if (b
& ((1 << len
) - 1))
1139 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1143 #if !defined(CONFIG_SOFTMMU)
1144 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1145 unsigned long pc
, void *puc
)
1147 TranslationBlock
*tb
;
1150 #ifdef TARGET_HAS_PRECISE_SMC
1151 TranslationBlock
*current_tb
= NULL
;
1152 CPUState
*env
= cpu_single_env
;
1153 int current_tb_modified
= 0;
1154 target_ulong current_pc
= 0;
1155 target_ulong current_cs_base
= 0;
1156 int current_flags
= 0;
1159 addr
&= TARGET_PAGE_MASK
;
1160 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1164 #ifdef TARGET_HAS_PRECISE_SMC
1165 if (tb
&& pc
!= 0) {
1166 current_tb
= tb_find_pc(pc
);
1169 while (tb
!= NULL
) {
1171 tb
= (TranslationBlock
*)((long)tb
& ~3);
1172 #ifdef TARGET_HAS_PRECISE_SMC
1173 if (current_tb
== tb
&&
1174 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1175 /* If we are modifying the current TB, we must stop
1176 its execution. We could be more precise by checking
1177 that the modification is after the current PC, but it
1178 would require a specialized function to partially
1179 restore the CPU state */
1181 current_tb_modified
= 1;
1182 cpu_restore_state(current_tb
, env
, pc
, puc
);
1183 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1186 #endif /* TARGET_HAS_PRECISE_SMC */
1187 tb_phys_invalidate(tb
, addr
);
1188 tb
= tb
->page_next
[n
];
1191 #ifdef TARGET_HAS_PRECISE_SMC
1192 if (current_tb_modified
) {
1193 /* we generate a block containing just the instruction
1194 modifying the memory. It will ensure that it cannot modify
1196 env
->current_tb
= NULL
;
1197 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1198 cpu_resume_from_signal(env
, puc
);
1204 /* add the tb in the target page and protect it if necessary */
1205 static inline void tb_alloc_page(TranslationBlock
*tb
,
1206 unsigned int n
, tb_page_addr_t page_addr
)
1209 TranslationBlock
*last_first_tb
;
1211 tb
->page_addr
[n
] = page_addr
;
1212 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1213 tb
->page_next
[n
] = p
->first_tb
;
1214 last_first_tb
= p
->first_tb
;
1215 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1216 invalidate_page_bitmap(p
);
1218 #if defined(TARGET_HAS_SMC) || 1
1220 #if defined(CONFIG_USER_ONLY)
1221 if (p
->flags
& PAGE_WRITE
) {
1226 /* force the host page as non writable (writes will have a
1227 page fault + mprotect overhead) */
1228 page_addr
&= qemu_host_page_mask
;
1230 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1231 addr
+= TARGET_PAGE_SIZE
) {
1233 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1237 p2
->flags
&= ~PAGE_WRITE
;
1239 mprotect(g2h(page_addr
), qemu_host_page_size
,
1240 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1241 #ifdef DEBUG_TB_INVALIDATE
1242 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1247 /* if some code is already present, then the pages are already
1248 protected. So we handle the case where only the first TB is
1249 allocated in a physical page */
1250 if (!last_first_tb
) {
1251 tlb_protect_code(page_addr
);
1255 #endif /* TARGET_HAS_SMC */
1258 /* add a new TB and link it to the physical page tables. phys_page2 is
1259 (-1) to indicate that only one page contains the TB. */
1260 void tb_link_page(TranslationBlock
*tb
,
1261 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1264 TranslationBlock
**ptb
;
1266 /* Grab the mmap lock to stop another thread invalidating this TB
1267 before we are done. */
1269 /* add in the physical hash table */
1270 h
= tb_phys_hash_func(phys_pc
);
1271 ptb
= &tb_phys_hash
[h
];
1272 tb
->phys_hash_next
= *ptb
;
1275 /* add in the page list */
1276 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1277 if (phys_page2
!= -1)
1278 tb_alloc_page(tb
, 1, phys_page2
);
1280 tb
->page_addr
[1] = -1;
1282 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1283 tb
->jmp_next
[0] = NULL
;
1284 tb
->jmp_next
[1] = NULL
;
1286 /* init original jump addresses */
1287 if (tb
->tb_next_offset
[0] != 0xffff)
1288 tb_reset_jump(tb
, 0);
1289 if (tb
->tb_next_offset
[1] != 0xffff)
1290 tb_reset_jump(tb
, 1);
1292 #ifdef DEBUG_TB_CHECK
1298 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1299 tb[1].tc_ptr. Return NULL if not found */
1300 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1302 int m_min
, m_max
, m
;
1304 TranslationBlock
*tb
;
1308 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1309 tc_ptr
>= (unsigned long)code_gen_ptr
)
1311 /* binary search (cf Knuth) */
1314 while (m_min
<= m_max
) {
1315 m
= (m_min
+ m_max
) >> 1;
1317 v
= (unsigned long)tb
->tc_ptr
;
1320 else if (tc_ptr
< v
) {
1329 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1331 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1333 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1336 tb1
= tb
->jmp_next
[n
];
1338 /* find head of list */
1341 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1344 tb1
= tb1
->jmp_next
[n1
];
1346 /* we are now sure now that tb jumps to tb1 */
1349 /* remove tb from the jmp_first list */
1350 ptb
= &tb_next
->jmp_first
;
1354 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1355 if (n1
== n
&& tb1
== tb
)
1357 ptb
= &tb1
->jmp_next
[n1
];
1359 *ptb
= tb
->jmp_next
[n
];
1360 tb
->jmp_next
[n
] = NULL
;
1362 /* suppress the jump to next tb in generated code */
1363 tb_reset_jump(tb
, n
);
1365 /* suppress jumps in the tb on which we could have jumped */
1366 tb_reset_jump_recursive(tb_next
);
1370 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1372 tb_reset_jump_recursive2(tb
, 0);
1373 tb_reset_jump_recursive2(tb
, 1);
1376 #if defined(TARGET_HAS_ICE)
1377 #if defined(CONFIG_USER_ONLY)
1378 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1380 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1383 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1385 target_phys_addr_t addr
;
1387 ram_addr_t ram_addr
;
1390 addr
= cpu_get_phys_page_debug(env
, pc
);
1391 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1393 pd
= IO_MEM_UNASSIGNED
;
1395 pd
= p
->phys_offset
;
1397 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1398 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1401 #endif /* TARGET_HAS_ICE */
1403 #if defined(CONFIG_USER_ONLY)
1404 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1409 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1410 int flags
, CPUWatchpoint
**watchpoint
)
1415 /* Add a watchpoint. */
1416 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1417 int flags
, CPUWatchpoint
**watchpoint
)
1419 target_ulong len_mask
= ~(len
- 1);
1422 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1423 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1424 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1425 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1428 wp
= qemu_malloc(sizeof(*wp
));
1431 wp
->len_mask
= len_mask
;
1434 /* keep all GDB-injected watchpoints in front */
1436 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1438 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1440 tlb_flush_page(env
, addr
);
1447 /* Remove a specific watchpoint. */
1448 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1451 target_ulong len_mask
= ~(len
- 1);
1454 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1455 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1456 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1457 cpu_watchpoint_remove_by_ref(env
, wp
);
1464 /* Remove a specific watchpoint by reference. */
1465 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1467 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1469 tlb_flush_page(env
, watchpoint
->vaddr
);
1471 qemu_free(watchpoint
);
1474 /* Remove all matching watchpoints. */
1475 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1477 CPUWatchpoint
*wp
, *next
;
1479 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1480 if (wp
->flags
& mask
)
1481 cpu_watchpoint_remove_by_ref(env
, wp
);
1486 /* Add a breakpoint. */
1487 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1488 CPUBreakpoint
**breakpoint
)
1490 #if defined(TARGET_HAS_ICE)
1493 bp
= qemu_malloc(sizeof(*bp
));
1498 /* keep all GDB-injected breakpoints in front */
1500 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1502 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1504 breakpoint_invalidate(env
, pc
);
1514 /* Remove a specific breakpoint. */
1515 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1517 #if defined(TARGET_HAS_ICE)
1520 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1521 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1522 cpu_breakpoint_remove_by_ref(env
, bp
);
1532 /* Remove a specific breakpoint by reference. */
1533 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1535 #if defined(TARGET_HAS_ICE)
1536 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1538 breakpoint_invalidate(env
, breakpoint
->pc
);
1540 qemu_free(breakpoint
);
1544 /* Remove all matching breakpoints. */
1545 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1547 #if defined(TARGET_HAS_ICE)
1548 CPUBreakpoint
*bp
, *next
;
1550 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1551 if (bp
->flags
& mask
)
1552 cpu_breakpoint_remove_by_ref(env
, bp
);
1557 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1558 CPU loop after each instruction */
1559 void cpu_single_step(CPUState
*env
, int enabled
)
1561 #if defined(TARGET_HAS_ICE)
1562 if (env
->singlestep_enabled
!= enabled
) {
1563 env
->singlestep_enabled
= enabled
;
1565 kvm_update_guest_debug(env
, 0);
1567 /* must flush all the translated code to avoid inconsistencies */
1568 /* XXX: only flush what is necessary */
1575 /* enable or disable low levels log */
1576 void cpu_set_log(int log_flags
)
1578 loglevel
= log_flags
;
1579 if (loglevel
&& !logfile
) {
1580 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1582 perror(logfilename
);
1585 #if !defined(CONFIG_SOFTMMU)
1586 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1588 static char logfile_buf
[4096];
1589 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1591 #elif !defined(_WIN32)
1592 /* Win32 doesn't support line-buffering and requires size >= 2 */
1593 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1597 if (!loglevel
&& logfile
) {
1603 void cpu_set_log_filename(const char *filename
)
1605 logfilename
= strdup(filename
);
1610 cpu_set_log(loglevel
);
1613 static void cpu_unlink_tb(CPUState
*env
)
1615 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1616 problem and hope the cpu will stop of its own accord. For userspace
1617 emulation this often isn't actually as bad as it sounds. Often
1618 signals are used primarily to interrupt blocking syscalls. */
1619 TranslationBlock
*tb
;
1620 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1622 spin_lock(&interrupt_lock
);
1623 tb
= env
->current_tb
;
1624 /* if the cpu is currently executing code, we must unlink it and
1625 all the potentially executing TB */
1627 env
->current_tb
= NULL
;
1628 tb_reset_jump_recursive(tb
);
1630 spin_unlock(&interrupt_lock
);
1633 /* mask must never be zero, except for A20 change call */
1634 void cpu_interrupt(CPUState
*env
, int mask
)
1638 old_mask
= env
->interrupt_request
;
1639 env
->interrupt_request
|= mask
;
1641 #ifndef CONFIG_USER_ONLY
1643 * If called from iothread context, wake the target cpu in
1646 if (!qemu_cpu_is_self(env
)) {
1653 env
->icount_decr
.u16
.high
= 0xffff;
1654 #ifndef CONFIG_USER_ONLY
1656 && (mask
& ~old_mask
) != 0) {
1657 cpu_abort(env
, "Raised interrupt while not in I/O function");
1665 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1667 env
->interrupt_request
&= ~mask
;
1670 void cpu_exit(CPUState
*env
)
1672 env
->exit_request
= 1;
1676 const CPULogItem cpu_log_items
[] = {
1677 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1678 "show generated host assembly code for each compiled TB" },
1679 { CPU_LOG_TB_IN_ASM
, "in_asm",
1680 "show target assembly code for each compiled TB" },
1681 { CPU_LOG_TB_OP
, "op",
1682 "show micro ops for each compiled TB" },
1683 { CPU_LOG_TB_OP_OPT
, "op_opt",
1686 "before eflags optimization and "
1688 "after liveness analysis" },
1689 { CPU_LOG_INT
, "int",
1690 "show interrupts/exceptions in short format" },
1691 { CPU_LOG_EXEC
, "exec",
1692 "show trace before each executed TB (lots of logs)" },
1693 { CPU_LOG_TB_CPU
, "cpu",
1694 "show CPU state before block translation" },
1696 { CPU_LOG_PCALL
, "pcall",
1697 "show protected mode far calls/returns/exceptions" },
1698 { CPU_LOG_RESET
, "cpu_reset",
1699 "show CPU state before CPU resets" },
1702 { CPU_LOG_IOPORT
, "ioport",
1703 "show all i/o ports accesses" },
1708 #ifndef CONFIG_USER_ONLY
1709 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1710 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1712 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1714 ram_addr_t phys_offset
)
1716 CPUPhysMemoryClient
*client
;
1717 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1718 client
->set_memory(client
, start_addr
, size
, phys_offset
);
1722 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1723 target_phys_addr_t end
)
1725 CPUPhysMemoryClient
*client
;
1726 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1727 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1734 static int cpu_notify_migration_log(int enable
)
1736 CPUPhysMemoryClient
*client
;
1737 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1738 int r
= client
->migration_log(client
, enable
);
1745 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
,
1746 int level
, void **lp
)
1754 PhysPageDesc
*pd
= *lp
;
1755 for (i
= 0; i
< L2_SIZE
; ++i
) {
1756 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1757 client
->set_memory(client
, pd
[i
].region_offset
,
1758 TARGET_PAGE_SIZE
, pd
[i
].phys_offset
);
1763 for (i
= 0; i
< L2_SIZE
; ++i
) {
1764 phys_page_for_each_1(client
, level
- 1, pp
+ i
);
1769 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1772 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1773 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1778 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1780 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1781 phys_page_for_each(client
);
1784 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1786 QLIST_REMOVE(client
, list
);
1790 static int cmp1(const char *s1
, int n
, const char *s2
)
1792 if (strlen(s2
) != n
)
1794 return memcmp(s1
, s2
, n
) == 0;
1797 /* takes a comma separated list of log masks. Return 0 if error. */
1798 int cpu_str_to_log_mask(const char *str
)
1800 const CPULogItem
*item
;
1807 p1
= strchr(p
, ',');
1810 if(cmp1(p
,p1
-p
,"all")) {
1811 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1815 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1816 if (cmp1(p
, p1
- p
, item
->name
))
1830 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1837 fprintf(stderr
, "qemu: fatal: ");
1838 vfprintf(stderr
, fmt
, ap
);
1839 fprintf(stderr
, "\n");
1841 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1843 cpu_dump_state(env
, stderr
, fprintf
, 0);
1845 if (qemu_log_enabled()) {
1846 qemu_log("qemu: fatal: ");
1847 qemu_log_vprintf(fmt
, ap2
);
1850 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1852 log_cpu_state(env
, 0);
1859 #if defined(CONFIG_USER_ONLY)
1861 struct sigaction act
;
1862 sigfillset(&act
.sa_mask
);
1863 act
.sa_handler
= SIG_DFL
;
1864 sigaction(SIGABRT
, &act
, NULL
);
1870 CPUState
*cpu_copy(CPUState
*env
)
1872 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1873 CPUState
*next_cpu
= new_env
->next_cpu
;
1874 int cpu_index
= new_env
->cpu_index
;
1875 #if defined(TARGET_HAS_ICE)
1880 memcpy(new_env
, env
, sizeof(CPUState
));
1882 /* Preserve chaining and index. */
1883 new_env
->next_cpu
= next_cpu
;
1884 new_env
->cpu_index
= cpu_index
;
1886 /* Clone all break/watchpoints.
1887 Note: Once we support ptrace with hw-debug register access, make sure
1888 BP_CPU break/watchpoints are handled correctly on clone. */
1889 QTAILQ_INIT(&env
->breakpoints
);
1890 QTAILQ_INIT(&env
->watchpoints
);
1891 #if defined(TARGET_HAS_ICE)
1892 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1893 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1895 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1896 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1904 #if !defined(CONFIG_USER_ONLY)
1906 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1910 /* Discard jump cache entries for any tb which might potentially
1911 overlap the flushed page. */
1912 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1913 memset (&env
->tb_jmp_cache
[i
], 0,
1914 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1916 i
= tb_jmp_cache_hash_page(addr
);
1917 memset (&env
->tb_jmp_cache
[i
], 0,
1918 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1921 static CPUTLBEntry s_cputlb_empty_entry
= {
1928 /* NOTE: if flush_global is true, also flush global entries (not
1930 void tlb_flush(CPUState
*env
, int flush_global
)
1934 #if defined(DEBUG_TLB)
1935 printf("tlb_flush:\n");
1937 /* must reset current TB so that interrupts cannot modify the
1938 links while we are modifying them */
1939 env
->current_tb
= NULL
;
1941 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1943 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1944 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1948 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1950 env
->tlb_flush_addr
= -1;
1951 env
->tlb_flush_mask
= 0;
1955 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1957 if (addr
== (tlb_entry
->addr_read
&
1958 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1959 addr
== (tlb_entry
->addr_write
&
1960 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1961 addr
== (tlb_entry
->addr_code
&
1962 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1963 *tlb_entry
= s_cputlb_empty_entry
;
1967 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1972 #if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1975 /* Check if we need to flush due to large pages. */
1976 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
1977 #if defined(DEBUG_TLB)
1978 printf("tlb_flush_page: forced full flush ("
1979 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
1980 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
1985 /* must reset current TB so that interrupts cannot modify the
1986 links while we are modifying them */
1987 env
->current_tb
= NULL
;
1989 addr
&= TARGET_PAGE_MASK
;
1990 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1991 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1992 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1994 tlb_flush_jmp_cache(env
, addr
);
1997 /* update the TLBs so that writes to code in the virtual page 'addr'
1999 static void tlb_protect_code(ram_addr_t ram_addr
)
2001 cpu_physical_memory_reset_dirty(ram_addr
,
2002 ram_addr
+ TARGET_PAGE_SIZE
,
2006 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2007 tested for self modifying code */
2008 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2011 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2014 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2015 unsigned long start
, unsigned long length
)
2018 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2019 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2020 if ((addr
- start
) < length
) {
2021 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2026 /* Note: start and end must be within the same ram block. */
2027 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2031 unsigned long length
, start1
;
2034 start
&= TARGET_PAGE_MASK
;
2035 end
= TARGET_PAGE_ALIGN(end
);
2037 length
= end
- start
;
2040 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2042 /* we modify the TLB cache so that the dirty bit will be set again
2043 when accessing the range */
2044 start1
= (unsigned long)qemu_safe_ram_ptr(start
);
2045 /* Chek that we don't span multiple blocks - this breaks the
2046 address comparisons below. */
2047 if ((unsigned long)qemu_safe_ram_ptr(end
- 1) - start1
2048 != (end
- 1) - start
) {
2052 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2054 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2055 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2056 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2062 int cpu_physical_memory_set_dirty_tracking(int enable
)
2065 in_migration
= enable
;
2066 ret
= cpu_notify_migration_log(!!enable
);
2070 int cpu_physical_memory_get_dirty_tracking(void)
2072 return in_migration
;
2075 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2076 target_phys_addr_t end_addr
)
2080 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2084 int cpu_physical_log_start(target_phys_addr_t start_addr
,
2087 CPUPhysMemoryClient
*client
;
2088 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2089 if (client
->log_start
) {
2090 int r
= client
->log_start(client
, start_addr
, size
);
2099 int cpu_physical_log_stop(target_phys_addr_t start_addr
,
2102 CPUPhysMemoryClient
*client
;
2103 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2104 if (client
->log_stop
) {
2105 int r
= client
->log_stop(client
, start_addr
, size
);
2114 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2116 ram_addr_t ram_addr
;
2119 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2120 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2121 + tlb_entry
->addend
);
2122 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
2123 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2124 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2129 /* update the TLB according to the current state of the dirty bits */
2130 void cpu_tlb_update_dirty(CPUState
*env
)
2134 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2135 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2136 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2140 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2142 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2143 tlb_entry
->addr_write
= vaddr
;
2146 /* update the TLB corresponding to virtual page vaddr
2147 so that it is no longer dirty */
2148 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2153 vaddr
&= TARGET_PAGE_MASK
;
2154 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2155 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2156 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2159 /* Our TLB does not support large pages, so remember the area covered by
2160 large pages and trigger a full TLB flush if these are invalidated. */
2161 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2164 target_ulong mask
= ~(size
- 1);
2166 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2167 env
->tlb_flush_addr
= vaddr
& mask
;
2168 env
->tlb_flush_mask
= mask
;
2171 /* Extend the existing region to include the new page.
2172 This is a compromise between unnecessary flushes and the cost
2173 of maintaining a full variable size TLB. */
2174 mask
&= env
->tlb_flush_mask
;
2175 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2178 env
->tlb_flush_addr
&= mask
;
2179 env
->tlb_flush_mask
= mask
;
2182 /* Add a new TLB entry. At most one entry for a given virtual address
2183 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2184 supplied size is only used by tlb_flush_page. */
2185 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2186 target_phys_addr_t paddr
, int prot
,
2187 int mmu_idx
, target_ulong size
)
2192 target_ulong address
;
2193 target_ulong code_address
;
2194 unsigned long addend
;
2197 target_phys_addr_t iotlb
;
2199 assert(size
>= TARGET_PAGE_SIZE
);
2200 if (size
!= TARGET_PAGE_SIZE
) {
2201 tlb_add_large_page(env
, vaddr
, size
);
2203 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2205 pd
= IO_MEM_UNASSIGNED
;
2207 pd
= p
->phys_offset
;
2209 #if defined(DEBUG_TLB)
2210 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
2211 " prot=%x idx=%d pd=0x%08lx\n",
2212 vaddr
, paddr
, prot
, mmu_idx
, pd
);
2216 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2217 /* IO memory case (romd handled later) */
2218 address
|= TLB_MMIO
;
2220 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2221 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2223 iotlb
= pd
& TARGET_PAGE_MASK
;
2224 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2225 iotlb
|= IO_MEM_NOTDIRTY
;
2227 iotlb
|= IO_MEM_ROM
;
2229 /* IO handlers are currently passed a physical address.
2230 It would be nice to pass an offset from the base address
2231 of that region. This would avoid having to special case RAM,
2232 and avoid full address decoding in every device.
2233 We can't use the high bits of pd for this because
2234 IO_MEM_ROMD uses these as a ram address. */
2235 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2237 iotlb
+= p
->region_offset
;
2243 code_address
= address
;
2244 /* Make accesses to pages with watchpoints go via the
2245 watchpoint trap routines. */
2246 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2247 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2248 /* Avoid trapping reads of pages with a write breakpoint. */
2249 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2250 iotlb
= io_mem_watch
+ paddr
;
2251 address
|= TLB_MMIO
;
2257 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2258 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2259 te
= &env
->tlb_table
[mmu_idx
][index
];
2260 te
->addend
= addend
- vaddr
;
2261 if (prot
& PAGE_READ
) {
2262 te
->addr_read
= address
;
2267 if (prot
& PAGE_EXEC
) {
2268 te
->addr_code
= code_address
;
2272 if (prot
& PAGE_WRITE
) {
2273 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2274 (pd
& IO_MEM_ROMD
)) {
2275 /* Write access calls the I/O callback. */
2276 te
->addr_write
= address
| TLB_MMIO
;
2277 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2278 !cpu_physical_memory_is_dirty(pd
)) {
2279 te
->addr_write
= address
| TLB_NOTDIRTY
;
2281 te
->addr_write
= address
;
2284 te
->addr_write
= -1;
2290 void tlb_flush(CPUState
*env
, int flush_global
)
2294 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2299 * Walks guest process memory "regions" one by one
2300 * and calls callback function 'fn' for each region.
2303 struct walk_memory_regions_data
2305 walk_memory_regions_fn fn
;
2307 unsigned long start
;
2311 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2312 abi_ulong end
, int new_prot
)
2314 if (data
->start
!= -1ul) {
2315 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2321 data
->start
= (new_prot
? end
: -1ul);
2322 data
->prot
= new_prot
;
2327 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2328 abi_ulong base
, int level
, void **lp
)
2334 return walk_memory_regions_end(data
, base
, 0);
2339 for (i
= 0; i
< L2_SIZE
; ++i
) {
2340 int prot
= pd
[i
].flags
;
2342 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2343 if (prot
!= data
->prot
) {
2344 rc
= walk_memory_regions_end(data
, pa
, prot
);
2352 for (i
= 0; i
< L2_SIZE
; ++i
) {
2353 pa
= base
| ((abi_ulong
)i
<<
2354 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2355 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2365 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2367 struct walk_memory_regions_data data
;
2375 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2376 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2377 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2383 return walk_memory_regions_end(&data
, 0, 0);
2386 static int dump_region(void *priv
, abi_ulong start
,
2387 abi_ulong end
, unsigned long prot
)
2389 FILE *f
= (FILE *)priv
;
2391 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2392 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2393 start
, end
, end
- start
,
2394 ((prot
& PAGE_READ
) ? 'r' : '-'),
2395 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2396 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2401 /* dump memory mappings */
2402 void page_dump(FILE *f
)
2404 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2405 "start", "end", "size", "prot");
2406 walk_memory_regions(f
, dump_region
);
2409 int page_get_flags(target_ulong address
)
2413 p
= page_find(address
>> TARGET_PAGE_BITS
);
2419 /* Modify the flags of a page and invalidate the code if necessary.
2420 The flag PAGE_WRITE_ORG is positioned automatically depending
2421 on PAGE_WRITE. The mmap_lock should already be held. */
2422 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2424 target_ulong addr
, len
;
2426 /* This function should never be called with addresses outside the
2427 guest address space. If this assert fires, it probably indicates
2428 a missing call to h2g_valid. */
2429 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2430 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2432 assert(start
< end
);
2434 start
= start
& TARGET_PAGE_MASK
;
2435 end
= TARGET_PAGE_ALIGN(end
);
2437 if (flags
& PAGE_WRITE
) {
2438 flags
|= PAGE_WRITE_ORG
;
2441 for (addr
= start
, len
= end
- start
;
2443 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2444 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2446 /* If the write protection bit is set, then we invalidate
2448 if (!(p
->flags
& PAGE_WRITE
) &&
2449 (flags
& PAGE_WRITE
) &&
2451 tb_invalidate_phys_page(addr
, 0, NULL
);
2457 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2463 /* This function should never be called with addresses outside the
2464 guest address space. If this assert fires, it probably indicates
2465 a missing call to h2g_valid. */
2466 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2467 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2473 if (start
+ len
- 1 < start
) {
2474 /* We've wrapped around. */
2478 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2479 start
= start
& TARGET_PAGE_MASK
;
2481 for (addr
= start
, len
= end
- start
;
2483 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2484 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2487 if( !(p
->flags
& PAGE_VALID
) )
2490 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2492 if (flags
& PAGE_WRITE
) {
2493 if (!(p
->flags
& PAGE_WRITE_ORG
))
2495 /* unprotect the page if it was put read-only because it
2496 contains translated code */
2497 if (!(p
->flags
& PAGE_WRITE
)) {
2498 if (!page_unprotect(addr
, 0, NULL
))
2507 /* called from signal handler: invalidate the code and unprotect the
2508 page. Return TRUE if the fault was successfully handled. */
2509 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2513 target_ulong host_start
, host_end
, addr
;
2515 /* Technically this isn't safe inside a signal handler. However we
2516 know this only ever happens in a synchronous SEGV handler, so in
2517 practice it seems to be ok. */
2520 p
= page_find(address
>> TARGET_PAGE_BITS
);
2526 /* if the page was really writable, then we change its
2527 protection back to writable */
2528 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2529 host_start
= address
& qemu_host_page_mask
;
2530 host_end
= host_start
+ qemu_host_page_size
;
2533 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2534 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2535 p
->flags
|= PAGE_WRITE
;
2538 /* and since the content will be modified, we must invalidate
2539 the corresponding translated code. */
2540 tb_invalidate_phys_page(addr
, pc
, puc
);
2541 #ifdef DEBUG_TB_CHECK
2542 tb_invalidate_check(addr
);
2545 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2555 static inline void tlb_set_dirty(CPUState
*env
,
2556 unsigned long addr
, target_ulong vaddr
)
2559 #endif /* defined(CONFIG_USER_ONLY) */
2561 #if !defined(CONFIG_USER_ONLY)
2563 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2564 typedef struct subpage_t
{
2565 target_phys_addr_t base
;
2566 ram_addr_t sub_io_index
[TARGET_PAGE_SIZE
];
2567 ram_addr_t region_offset
[TARGET_PAGE_SIZE
];
2570 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2571 ram_addr_t memory
, ram_addr_t region_offset
);
2572 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2573 ram_addr_t orig_memory
,
2574 ram_addr_t region_offset
);
2575 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2578 if (addr > start_addr) \
2581 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2582 if (start_addr2 > 0) \
2586 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2587 end_addr2 = TARGET_PAGE_SIZE - 1; \
2589 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2590 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2595 /* register physical memory.
2596 For RAM, 'size' must be a multiple of the target page size.
2597 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2598 io memory page. The address used when calling the IO function is
2599 the offset from the start of the region, plus region_offset. Both
2600 start_addr and region_offset are rounded down to a page boundary
2601 before calculating this offset. This should not be a problem unless
2602 the low bits of start_addr and region_offset differ. */
2603 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2605 ram_addr_t phys_offset
,
2606 ram_addr_t region_offset
)
2608 target_phys_addr_t addr
, end_addr
;
2611 ram_addr_t orig_size
= size
;
2615 cpu_notify_set_memory(start_addr
, size
, phys_offset
);
2617 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2618 region_offset
= start_addr
;
2620 region_offset
&= TARGET_PAGE_MASK
;
2621 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2622 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2626 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2627 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2628 ram_addr_t orig_memory
= p
->phys_offset
;
2629 target_phys_addr_t start_addr2
, end_addr2
;
2630 int need_subpage
= 0;
2632 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2635 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2636 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2637 &p
->phys_offset
, orig_memory
,
2640 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2643 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2645 p
->region_offset
= 0;
2647 p
->phys_offset
= phys_offset
;
2648 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2649 (phys_offset
& IO_MEM_ROMD
))
2650 phys_offset
+= TARGET_PAGE_SIZE
;
2653 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2654 p
->phys_offset
= phys_offset
;
2655 p
->region_offset
= region_offset
;
2656 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2657 (phys_offset
& IO_MEM_ROMD
)) {
2658 phys_offset
+= TARGET_PAGE_SIZE
;
2660 target_phys_addr_t start_addr2
, end_addr2
;
2661 int need_subpage
= 0;
2663 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2664 end_addr2
, need_subpage
);
2667 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2668 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2669 addr
& TARGET_PAGE_MASK
);
2670 subpage_register(subpage
, start_addr2
, end_addr2
,
2671 phys_offset
, region_offset
);
2672 p
->region_offset
= 0;
2676 region_offset
+= TARGET_PAGE_SIZE
;
2677 addr
+= TARGET_PAGE_SIZE
;
2678 } while (addr
!= end_addr
);
2680 /* since each CPU stores ram addresses in its TLB cache, we must
2681 reset the modified entries */
2683 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2688 /* XXX: temporary until new memory mapping API */
2689 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2693 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2695 return IO_MEM_UNASSIGNED
;
2696 return p
->phys_offset
;
2699 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2702 kvm_coalesce_mmio_region(addr
, size
);
2705 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2708 kvm_uncoalesce_mmio_region(addr
, size
);
2711 void qemu_flush_coalesced_mmio_buffer(void)
2714 kvm_flush_coalesced_mmio_buffer();
2717 #if defined(__linux__) && !defined(TARGET_S390X)
2719 #include <sys/vfs.h>
2721 #define HUGETLBFS_MAGIC 0x958458f6
2723 static long gethugepagesize(const char *path
)
2729 ret
= statfs(path
, &fs
);
2730 } while (ret
!= 0 && errno
== EINTR
);
2737 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2738 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2743 static void *file_ram_alloc(RAMBlock
*block
,
2753 unsigned long hpagesize
;
2755 hpagesize
= gethugepagesize(path
);
2760 if (memory
< hpagesize
) {
2764 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2765 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2769 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2773 fd
= mkstemp(filename
);
2775 perror("unable to create backing store for hugepages");
2782 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2785 * ftruncate is not supported by hugetlbfs in older
2786 * hosts, so don't bother bailing out on errors.
2787 * If anything goes wrong with it under other filesystems,
2790 if (ftruncate(fd
, memory
))
2791 perror("ftruncate");
2794 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2795 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2796 * to sidestep this quirk.
2798 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2799 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2801 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2803 if (area
== MAP_FAILED
) {
2804 perror("file_ram_alloc: can't mmap RAM pages");
2813 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2815 RAMBlock
*block
, *next_block
;
2816 ram_addr_t offset
= 0, mingap
= ULONG_MAX
;
2818 if (QLIST_EMPTY(&ram_list
.blocks
))
2821 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2822 ram_addr_t end
, next
= ULONG_MAX
;
2824 end
= block
->offset
+ block
->length
;
2826 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2827 if (next_block
->offset
>= end
) {
2828 next
= MIN(next
, next_block
->offset
);
2831 if (next
- end
>= size
&& next
- end
< mingap
) {
2833 mingap
= next
- end
;
2839 static ram_addr_t
last_ram_offset(void)
2842 ram_addr_t last
= 0;
2844 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2845 last
= MAX(last
, block
->offset
+ block
->length
);
2850 ram_addr_t
qemu_ram_alloc_from_ptr(DeviceState
*dev
, const char *name
,
2851 ram_addr_t size
, void *host
)
2853 RAMBlock
*new_block
, *block
;
2855 size
= TARGET_PAGE_ALIGN(size
);
2856 new_block
= qemu_mallocz(sizeof(*new_block
));
2858 if (dev
&& dev
->parent_bus
&& dev
->parent_bus
->info
->get_dev_path
) {
2859 char *id
= dev
->parent_bus
->info
->get_dev_path(dev
);
2861 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2865 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2867 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2868 if (!strcmp(block
->idstr
, new_block
->idstr
)) {
2869 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2876 new_block
->host
= host
;
2877 new_block
->flags
|= RAM_PREALLOC_MASK
;
2880 #if defined (__linux__) && !defined(TARGET_S390X)
2881 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2882 if (!new_block
->host
) {
2883 new_block
->host
= qemu_vmalloc(size
);
2884 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2887 fprintf(stderr
, "-mem-path option unsupported\n");
2891 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2892 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2893 new_block
->host
= mmap((void*)0x1000000, size
,
2894 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2895 MAP_SHARED
| MAP_ANONYMOUS
, -1, 0);
2897 new_block
->host
= qemu_vmalloc(size
);
2899 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2903 new_block
->offset
= find_ram_offset(size
);
2904 new_block
->length
= size
;
2906 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2908 ram_list
.phys_dirty
= qemu_realloc(ram_list
.phys_dirty
,
2909 last_ram_offset() >> TARGET_PAGE_BITS
);
2910 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2911 0xff, size
>> TARGET_PAGE_BITS
);
2914 kvm_setup_guest_memory(new_block
->host
, size
);
2916 return new_block
->offset
;
2919 ram_addr_t
qemu_ram_alloc(DeviceState
*dev
, const char *name
, ram_addr_t size
)
2921 return qemu_ram_alloc_from_ptr(dev
, name
, size
, NULL
);
2924 void qemu_ram_free(ram_addr_t addr
)
2928 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2929 if (addr
== block
->offset
) {
2930 QLIST_REMOVE(block
, next
);
2931 if (block
->flags
& RAM_PREALLOC_MASK
) {
2933 } else if (mem_path
) {
2934 #if defined (__linux__) && !defined(TARGET_S390X)
2936 munmap(block
->host
, block
->length
);
2939 qemu_vfree(block
->host
);
2945 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2946 munmap(block
->host
, block
->length
);
2948 qemu_vfree(block
->host
);
2959 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2966 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2967 offset
= addr
- block
->offset
;
2968 if (offset
< block
->length
) {
2969 vaddr
= block
->host
+ offset
;
2970 if (block
->flags
& RAM_PREALLOC_MASK
) {
2974 munmap(vaddr
, length
);
2976 #if defined(__linux__) && !defined(TARGET_S390X)
2979 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
2982 flags
|= MAP_PRIVATE
;
2984 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2985 flags
, block
->fd
, offset
);
2987 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2988 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2995 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2996 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
2997 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
3000 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3001 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3005 if (area
!= vaddr
) {
3006 fprintf(stderr
, "Could not remap addr: %lx@%lx\n",
3010 qemu_madvise(vaddr
, length
, QEMU_MADV_MERGEABLE
);
3016 #endif /* !_WIN32 */
3018 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3019 With the exception of the softmmu code in this file, this should
3020 only be used for local memory (e.g. video ram) that the device owns,
3021 and knows it isn't going to access beyond the end of the block.
3023 It should not be used for general purpose DMA.
3024 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3026 void *qemu_get_ram_ptr(ram_addr_t addr
)
3030 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3031 if (addr
- block
->offset
< block
->length
) {
3032 /* Move this entry to to start of the list. */
3033 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
3034 QLIST_REMOVE(block
, next
);
3035 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
3037 return block
->host
+ (addr
- block
->offset
);
3041 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3047 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3048 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3050 void *qemu_safe_ram_ptr(ram_addr_t addr
)
3054 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3055 if (addr
- block
->offset
< block
->length
) {
3056 return block
->host
+ (addr
- block
->offset
);
3060 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3066 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
3069 uint8_t *host
= ptr
;
3071 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3072 if (host
- block
->host
< block
->length
) {
3073 *ram_addr
= block
->offset
+ (host
- block
->host
);
3080 /* Some of the softmmu routines need to translate from a host pointer
3081 (typically a TLB entry) back to a ram offset. */
3082 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
3084 ram_addr_t ram_addr
;
3086 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
3087 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
3093 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
3095 #ifdef DEBUG_UNASSIGNED
3096 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3098 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3099 do_unassigned_access(addr
, 0, 0, 0, 1);
3104 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
3106 #ifdef DEBUG_UNASSIGNED
3107 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3109 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3110 do_unassigned_access(addr
, 0, 0, 0, 2);
3115 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
3117 #ifdef DEBUG_UNASSIGNED
3118 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3120 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3121 do_unassigned_access(addr
, 0, 0, 0, 4);
3126 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3128 #ifdef DEBUG_UNASSIGNED
3129 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3131 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3132 do_unassigned_access(addr
, 1, 0, 0, 1);
3136 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3138 #ifdef DEBUG_UNASSIGNED
3139 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3141 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3142 do_unassigned_access(addr
, 1, 0, 0, 2);
3146 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3148 #ifdef DEBUG_UNASSIGNED
3149 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3151 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3152 do_unassigned_access(addr
, 1, 0, 0, 4);
3156 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
3157 unassigned_mem_readb
,
3158 unassigned_mem_readw
,
3159 unassigned_mem_readl
,
3162 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
3163 unassigned_mem_writeb
,
3164 unassigned_mem_writew
,
3165 unassigned_mem_writel
,
3168 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
3172 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3173 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3174 #if !defined(CONFIG_USER_ONLY)
3175 tb_invalidate_phys_page_fast(ram_addr
, 1);
3176 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3179 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
3180 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3181 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3182 /* we remove the notdirty callback only if the code has been
3184 if (dirty_flags
== 0xff)
3185 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3188 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
3192 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3193 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3194 #if !defined(CONFIG_USER_ONLY)
3195 tb_invalidate_phys_page_fast(ram_addr
, 2);
3196 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3199 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3200 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3201 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3202 /* we remove the notdirty callback only if the code has been
3204 if (dirty_flags
== 0xff)
3205 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3208 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
3212 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3213 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3214 #if !defined(CONFIG_USER_ONLY)
3215 tb_invalidate_phys_page_fast(ram_addr
, 4);
3216 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3219 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3220 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3221 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3222 /* we remove the notdirty callback only if the code has been
3224 if (dirty_flags
== 0xff)
3225 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3228 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3229 NULL
, /* never used */
3230 NULL
, /* never used */
3231 NULL
, /* never used */
3234 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3235 notdirty_mem_writeb
,
3236 notdirty_mem_writew
,
3237 notdirty_mem_writel
,
3240 /* Generate a debug exception if a watchpoint has been hit. */
3241 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3243 CPUState
*env
= cpu_single_env
;
3244 target_ulong pc
, cs_base
;
3245 TranslationBlock
*tb
;
3250 if (env
->watchpoint_hit
) {
3251 /* We re-entered the check after replacing the TB. Now raise
3252 * the debug interrupt so that is will trigger after the
3253 * current instruction. */
3254 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3257 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3258 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3259 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3260 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3261 wp
->flags
|= BP_WATCHPOINT_HIT
;
3262 if (!env
->watchpoint_hit
) {
3263 env
->watchpoint_hit
= wp
;
3264 tb
= tb_find_pc(env
->mem_io_pc
);
3266 cpu_abort(env
, "check_watchpoint: could not find TB for "
3267 "pc=%p", (void *)env
->mem_io_pc
);
3269 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
3270 tb_phys_invalidate(tb
, -1);
3271 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3272 env
->exception_index
= EXCP_DEBUG
;
3274 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3275 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3277 cpu_resume_from_signal(env
, NULL
);
3280 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3285 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3286 so these check for a hit then pass through to the normal out-of-line
3288 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3290 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3291 return ldub_phys(addr
);
3294 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3296 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3297 return lduw_phys(addr
);
3300 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3302 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3303 return ldl_phys(addr
);
3306 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3309 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3310 stb_phys(addr
, val
);
3313 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3316 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3317 stw_phys(addr
, val
);
3320 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3323 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3324 stl_phys(addr
, val
);
3327 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3333 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3339 static inline uint32_t subpage_readlen (subpage_t
*mmio
,
3340 target_phys_addr_t addr
,
3343 unsigned int idx
= SUBPAGE_IDX(addr
);
3344 #if defined(DEBUG_SUBPAGE)
3345 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3346 mmio
, len
, addr
, idx
);
3349 addr
+= mmio
->region_offset
[idx
];
3350 idx
= mmio
->sub_io_index
[idx
];
3351 return io_mem_read
[idx
][len
](io_mem_opaque
[idx
], addr
);
3354 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3355 uint32_t value
, unsigned int len
)
3357 unsigned int idx
= SUBPAGE_IDX(addr
);
3358 #if defined(DEBUG_SUBPAGE)
3359 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n",
3360 __func__
, mmio
, len
, addr
, idx
, value
);
3363 addr
+= mmio
->region_offset
[idx
];
3364 idx
= mmio
->sub_io_index
[idx
];
3365 io_mem_write
[idx
][len
](io_mem_opaque
[idx
], addr
, value
);
3368 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3370 return subpage_readlen(opaque
, addr
, 0);
3373 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3376 subpage_writelen(opaque
, addr
, value
, 0);
3379 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3381 return subpage_readlen(opaque
, addr
, 1);
3384 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3387 subpage_writelen(opaque
, addr
, value
, 1);
3390 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3392 return subpage_readlen(opaque
, addr
, 2);
3395 static void subpage_writel (void *opaque
, target_phys_addr_t addr
,
3398 subpage_writelen(opaque
, addr
, value
, 2);
3401 static CPUReadMemoryFunc
* const subpage_read
[] = {
3407 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3413 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3414 ram_addr_t memory
, ram_addr_t region_offset
)
3418 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3420 idx
= SUBPAGE_IDX(start
);
3421 eidx
= SUBPAGE_IDX(end
);
3422 #if defined(DEBUG_SUBPAGE)
3423 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3424 mmio
, start
, end
, idx
, eidx
, memory
);
3426 if ((memory
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
3427 memory
= IO_MEM_UNASSIGNED
;
3428 memory
= (memory
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3429 for (; idx
<= eidx
; idx
++) {
3430 mmio
->sub_io_index
[idx
] = memory
;
3431 mmio
->region_offset
[idx
] = region_offset
;
3437 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3438 ram_addr_t orig_memory
,
3439 ram_addr_t region_offset
)
3444 mmio
= qemu_mallocz(sizeof(subpage_t
));
3447 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
,
3448 DEVICE_NATIVE_ENDIAN
);
3449 #if defined(DEBUG_SUBPAGE)
3450 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3451 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3453 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3454 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, orig_memory
, region_offset
);
3459 static int get_free_io_mem_idx(void)
3463 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3464 if (!io_mem_used
[i
]) {
3468 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3473 * Usually, devices operate in little endian mode. There are devices out
3474 * there that operate in big endian too. Each device gets byte swapped
3475 * mmio if plugged onto a CPU that does the other endianness.
3485 typedef struct SwapEndianContainer
{
3486 CPUReadMemoryFunc
*read
[3];
3487 CPUWriteMemoryFunc
*write
[3];
3489 } SwapEndianContainer
;
3491 static uint32_t swapendian_mem_readb (void *opaque
, target_phys_addr_t addr
)
3494 SwapEndianContainer
*c
= opaque
;
3495 val
= c
->read
[0](c
->opaque
, addr
);
3499 static uint32_t swapendian_mem_readw(void *opaque
, target_phys_addr_t addr
)
3502 SwapEndianContainer
*c
= opaque
;
3503 val
= bswap16(c
->read
[1](c
->opaque
, addr
));
3507 static uint32_t swapendian_mem_readl(void *opaque
, target_phys_addr_t addr
)
3510 SwapEndianContainer
*c
= opaque
;
3511 val
= bswap32(c
->read
[2](c
->opaque
, addr
));
3515 static CPUReadMemoryFunc
* const swapendian_readfn
[3]={
3516 swapendian_mem_readb
,
3517 swapendian_mem_readw
,
3518 swapendian_mem_readl
3521 static void swapendian_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3524 SwapEndianContainer
*c
= opaque
;
3525 c
->write
[0](c
->opaque
, addr
, val
);
3528 static void swapendian_mem_writew(void *opaque
, target_phys_addr_t addr
,
3531 SwapEndianContainer
*c
= opaque
;
3532 c
->write
[1](c
->opaque
, addr
, bswap16(val
));
3535 static void swapendian_mem_writel(void *opaque
, target_phys_addr_t addr
,
3538 SwapEndianContainer
*c
= opaque
;
3539 c
->write
[2](c
->opaque
, addr
, bswap32(val
));
3542 static CPUWriteMemoryFunc
* const swapendian_writefn
[3]={
3543 swapendian_mem_writeb
,
3544 swapendian_mem_writew
,
3545 swapendian_mem_writel
3548 static void swapendian_init(int io_index
)
3550 SwapEndianContainer
*c
= qemu_malloc(sizeof(SwapEndianContainer
));
3553 /* Swap mmio for big endian targets */
3554 c
->opaque
= io_mem_opaque
[io_index
];
3555 for (i
= 0; i
< 3; i
++) {
3556 c
->read
[i
] = io_mem_read
[io_index
][i
];
3557 c
->write
[i
] = io_mem_write
[io_index
][i
];
3559 io_mem_read
[io_index
][i
] = swapendian_readfn
[i
];
3560 io_mem_write
[io_index
][i
] = swapendian_writefn
[i
];
3562 io_mem_opaque
[io_index
] = c
;
3565 static void swapendian_del(int io_index
)
3567 if (io_mem_read
[io_index
][0] == swapendian_readfn
[0]) {
3568 qemu_free(io_mem_opaque
[io_index
]);
3572 /* mem_read and mem_write are arrays of functions containing the
3573 function to access byte (index 0), word (index 1) and dword (index
3574 2). Functions can be omitted with a NULL function pointer.
3575 If io_index is non zero, the corresponding io zone is
3576 modified. If it is zero, a new io zone is allocated. The return
3577 value can be used with cpu_register_physical_memory(). (-1) is
3578 returned if error. */
3579 static int cpu_register_io_memory_fixed(int io_index
,
3580 CPUReadMemoryFunc
* const *mem_read
,
3581 CPUWriteMemoryFunc
* const *mem_write
,
3582 void *opaque
, enum device_endian endian
)
3586 if (io_index
<= 0) {
3587 io_index
= get_free_io_mem_idx();
3591 io_index
>>= IO_MEM_SHIFT
;
3592 if (io_index
>= IO_MEM_NB_ENTRIES
)
3596 for (i
= 0; i
< 3; ++i
) {
3597 io_mem_read
[io_index
][i
]
3598 = (mem_read
[i
] ? mem_read
[i
] : unassigned_mem_read
[i
]);
3600 for (i
= 0; i
< 3; ++i
) {
3601 io_mem_write
[io_index
][i
]
3602 = (mem_write
[i
] ? mem_write
[i
] : unassigned_mem_write
[i
]);
3604 io_mem_opaque
[io_index
] = opaque
;
3607 case DEVICE_BIG_ENDIAN
:
3608 #ifndef TARGET_WORDS_BIGENDIAN
3609 swapendian_init(io_index
);
3612 case DEVICE_LITTLE_ENDIAN
:
3613 #ifdef TARGET_WORDS_BIGENDIAN
3614 swapendian_init(io_index
);
3617 case DEVICE_NATIVE_ENDIAN
:
3622 return (io_index
<< IO_MEM_SHIFT
);
3625 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3626 CPUWriteMemoryFunc
* const *mem_write
,
3627 void *opaque
, enum device_endian endian
)
3629 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
, endian
);
3632 void cpu_unregister_io_memory(int io_table_address
)
3635 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3637 swapendian_del(io_index
);
3639 for (i
=0;i
< 3; i
++) {
3640 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3641 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3643 io_mem_opaque
[io_index
] = NULL
;
3644 io_mem_used
[io_index
] = 0;
3647 static void io_mem_init(void)
3651 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
,
3652 unassigned_mem_write
, NULL
,
3653 DEVICE_NATIVE_ENDIAN
);
3654 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
,
3655 unassigned_mem_write
, NULL
,
3656 DEVICE_NATIVE_ENDIAN
);
3657 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
,
3658 notdirty_mem_write
, NULL
,
3659 DEVICE_NATIVE_ENDIAN
);
3663 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3664 watch_mem_write
, NULL
,
3665 DEVICE_NATIVE_ENDIAN
);
3668 #endif /* !defined(CONFIG_USER_ONLY) */
3670 /* physical memory access (slow version, mainly for debug) */
3671 #if defined(CONFIG_USER_ONLY)
3672 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3673 uint8_t *buf
, int len
, int is_write
)
3680 page
= addr
& TARGET_PAGE_MASK
;
3681 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3684 flags
= page_get_flags(page
);
3685 if (!(flags
& PAGE_VALID
))
3688 if (!(flags
& PAGE_WRITE
))
3690 /* XXX: this code should not depend on lock_user */
3691 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3694 unlock_user(p
, addr
, l
);
3696 if (!(flags
& PAGE_READ
))
3698 /* XXX: this code should not depend on lock_user */
3699 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3702 unlock_user(p
, addr
, 0);
3712 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3713 int len
, int is_write
)
3718 target_phys_addr_t page
;
3723 page
= addr
& TARGET_PAGE_MASK
;
3724 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3727 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3729 pd
= IO_MEM_UNASSIGNED
;
3731 pd
= p
->phys_offset
;
3735 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3736 target_phys_addr_t addr1
= addr
;
3737 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3739 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3740 /* XXX: could force cpu_single_env to NULL to avoid
3742 if (l
>= 4 && ((addr1
& 3) == 0)) {
3743 /* 32 bit write access */
3745 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3747 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3748 /* 16 bit write access */
3750 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3753 /* 8 bit write access */
3755 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3759 unsigned long addr1
;
3760 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3762 ptr
= qemu_get_ram_ptr(addr1
);
3763 memcpy(ptr
, buf
, l
);
3764 if (!cpu_physical_memory_is_dirty(addr1
)) {
3765 /* invalidate code */
3766 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3768 cpu_physical_memory_set_dirty_flags(
3769 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3773 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3774 !(pd
& IO_MEM_ROMD
)) {
3775 target_phys_addr_t addr1
= addr
;
3777 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3779 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3780 if (l
>= 4 && ((addr1
& 3) == 0)) {
3781 /* 32 bit read access */
3782 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3785 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3786 /* 16 bit read access */
3787 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3791 /* 8 bit read access */
3792 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3798 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3799 (addr
& ~TARGET_PAGE_MASK
);
3800 memcpy(buf
, ptr
, l
);
3809 /* used for ROM loading : can write in RAM and ROM */
3810 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3811 const uint8_t *buf
, int len
)
3815 target_phys_addr_t page
;
3820 page
= addr
& TARGET_PAGE_MASK
;
3821 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3824 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3826 pd
= IO_MEM_UNASSIGNED
;
3828 pd
= p
->phys_offset
;
3831 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3832 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3833 !(pd
& IO_MEM_ROMD
)) {
3836 unsigned long addr1
;
3837 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3839 ptr
= qemu_get_ram_ptr(addr1
);
3840 memcpy(ptr
, buf
, l
);
3850 target_phys_addr_t addr
;
3851 target_phys_addr_t len
;
3854 static BounceBuffer bounce
;
3856 typedef struct MapClient
{
3858 void (*callback
)(void *opaque
);
3859 QLIST_ENTRY(MapClient
) link
;
3862 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3863 = QLIST_HEAD_INITIALIZER(map_client_list
);
3865 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3867 MapClient
*client
= qemu_malloc(sizeof(*client
));
3869 client
->opaque
= opaque
;
3870 client
->callback
= callback
;
3871 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3875 void cpu_unregister_map_client(void *_client
)
3877 MapClient
*client
= (MapClient
*)_client
;
3879 QLIST_REMOVE(client
, link
);
3883 static void cpu_notify_map_clients(void)
3887 while (!QLIST_EMPTY(&map_client_list
)) {
3888 client
= QLIST_FIRST(&map_client_list
);
3889 client
->callback(client
->opaque
);
3890 cpu_unregister_map_client(client
);
3894 /* Map a physical memory region into a host virtual address.
3895 * May map a subset of the requested range, given by and returned in *plen.
3896 * May return NULL if resources needed to perform the mapping are exhausted.
3897 * Use only for reads OR writes - not for read-modify-write operations.
3898 * Use cpu_register_map_client() to know when retrying the map operation is
3899 * likely to succeed.
3901 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3902 target_phys_addr_t
*plen
,
3905 target_phys_addr_t len
= *plen
;
3906 target_phys_addr_t done
= 0;
3908 uint8_t *ret
= NULL
;
3910 target_phys_addr_t page
;
3913 unsigned long addr1
;
3916 page
= addr
& TARGET_PAGE_MASK
;
3917 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3920 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3922 pd
= IO_MEM_UNASSIGNED
;
3924 pd
= p
->phys_offset
;
3927 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3928 if (done
|| bounce
.buffer
) {
3931 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3935 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3937 ptr
= bounce
.buffer
;
3939 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3940 ptr
= qemu_get_ram_ptr(addr1
);
3944 } else if (ret
+ done
!= ptr
) {
3956 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3957 * Will also mark the memory as dirty if is_write == 1. access_len gives
3958 * the amount of memory that was actually read or written by the caller.
3960 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3961 int is_write
, target_phys_addr_t access_len
)
3963 if (buffer
!= bounce
.buffer
) {
3965 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
3966 while (access_len
) {
3968 l
= TARGET_PAGE_SIZE
;
3971 if (!cpu_physical_memory_is_dirty(addr1
)) {
3972 /* invalidate code */
3973 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3975 cpu_physical_memory_set_dirty_flags(
3976 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3985 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3987 qemu_vfree(bounce
.buffer
);
3988 bounce
.buffer
= NULL
;
3989 cpu_notify_map_clients();
3992 /* warning: addr must be aligned */
3993 uint32_t ldl_phys(target_phys_addr_t addr
)
4001 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4003 pd
= IO_MEM_UNASSIGNED
;
4005 pd
= p
->phys_offset
;
4008 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4009 !(pd
& IO_MEM_ROMD
)) {
4011 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4013 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4014 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4017 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4018 (addr
& ~TARGET_PAGE_MASK
);
4024 /* warning: addr must be aligned */
4025 uint64_t ldq_phys(target_phys_addr_t addr
)
4033 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4035 pd
= IO_MEM_UNASSIGNED
;
4037 pd
= p
->phys_offset
;
4040 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4041 !(pd
& IO_MEM_ROMD
)) {
4043 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4045 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4046 #ifdef TARGET_WORDS_BIGENDIAN
4047 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
4048 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
4050 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4051 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
4055 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4056 (addr
& ~TARGET_PAGE_MASK
);
4063 uint32_t ldub_phys(target_phys_addr_t addr
)
4066 cpu_physical_memory_read(addr
, &val
, 1);
4070 /* warning: addr must be aligned */
4071 uint32_t lduw_phys(target_phys_addr_t addr
)
4079 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4081 pd
= IO_MEM_UNASSIGNED
;
4083 pd
= p
->phys_offset
;
4086 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4087 !(pd
& IO_MEM_ROMD
)) {
4089 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4091 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4092 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
4095 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4096 (addr
& ~TARGET_PAGE_MASK
);
4102 /* warning: addr must be aligned. The ram page is not masked as dirty
4103 and the code inside is not invalidated. It is useful if the dirty
4104 bits are used to track modified PTEs */
4105 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
4112 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4114 pd
= IO_MEM_UNASSIGNED
;
4116 pd
= p
->phys_offset
;
4119 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4120 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4122 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4123 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4125 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4126 ptr
= qemu_get_ram_ptr(addr1
);
4129 if (unlikely(in_migration
)) {
4130 if (!cpu_physical_memory_is_dirty(addr1
)) {
4131 /* invalidate code */
4132 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4134 cpu_physical_memory_set_dirty_flags(
4135 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4141 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
4148 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4150 pd
= IO_MEM_UNASSIGNED
;
4152 pd
= p
->phys_offset
;
4155 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4156 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4158 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4159 #ifdef TARGET_WORDS_BIGENDIAN
4160 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
4161 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
4163 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4164 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
4167 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4168 (addr
& ~TARGET_PAGE_MASK
);
4173 /* warning: addr must be aligned */
4174 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
4181 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4183 pd
= IO_MEM_UNASSIGNED
;
4185 pd
= p
->phys_offset
;
4188 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4189 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4191 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4192 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4194 unsigned long addr1
;
4195 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4197 ptr
= qemu_get_ram_ptr(addr1
);
4199 if (!cpu_physical_memory_is_dirty(addr1
)) {
4200 /* invalidate code */
4201 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4203 cpu_physical_memory_set_dirty_flags(addr1
,
4204 (0xff & ~CODE_DIRTY_FLAG
));
4210 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4213 cpu_physical_memory_write(addr
, &v
, 1);
4216 /* warning: addr must be aligned */
4217 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4224 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4226 pd
= IO_MEM_UNASSIGNED
;
4228 pd
= p
->phys_offset
;
4231 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4232 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4234 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4235 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
4237 unsigned long addr1
;
4238 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4240 ptr
= qemu_get_ram_ptr(addr1
);
4242 if (!cpu_physical_memory_is_dirty(addr1
)) {
4243 /* invalidate code */
4244 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4246 cpu_physical_memory_set_dirty_flags(addr1
,
4247 (0xff & ~CODE_DIRTY_FLAG
));
4253 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4256 cpu_physical_memory_write(addr
, &val
, 8);
4259 /* virtual memory access for debug (includes writing to ROM) */
4260 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
4261 uint8_t *buf
, int len
, int is_write
)
4264 target_phys_addr_t phys_addr
;
4268 page
= addr
& TARGET_PAGE_MASK
;
4269 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4270 /* if no physical page mapped, return an error */
4271 if (phys_addr
== -1)
4273 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4276 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4278 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4280 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4289 /* in deterministic execution mode, instructions doing device I/Os
4290 must be at the end of the TB */
4291 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
4293 TranslationBlock
*tb
;
4295 target_ulong pc
, cs_base
;
4298 tb
= tb_find_pc((unsigned long)retaddr
);
4300 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4303 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4304 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
4305 /* Calculate how many instructions had been executed before the fault
4307 n
= n
- env
->icount_decr
.u16
.low
;
4308 /* Generate a new TB ending on the I/O insn. */
4310 /* On MIPS and SH, delay slot instructions can only be restarted if
4311 they were already the first instruction in the TB. If this is not
4312 the first instruction in a TB then re-execute the preceding
4314 #if defined(TARGET_MIPS)
4315 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4316 env
->active_tc
.PC
-= 4;
4317 env
->icount_decr
.u16
.low
++;
4318 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4320 #elif defined(TARGET_SH4)
4321 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4324 env
->icount_decr
.u16
.low
++;
4325 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4328 /* This should never happen. */
4329 if (n
> CF_COUNT_MASK
)
4330 cpu_abort(env
, "TB too big during recompile");
4332 cflags
= n
| CF_LAST_IO
;
4334 cs_base
= tb
->cs_base
;
4336 tb_phys_invalidate(tb
, -1);
4337 /* FIXME: In theory this could raise an exception. In practice
4338 we have already translated the block once so it's probably ok. */
4339 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4340 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4341 the first in the TB) then we end up generating a whole new TB and
4342 repeating the fault, which is horribly inefficient.
4343 Better would be to execute just this insn uncached, or generate a
4345 cpu_resume_from_signal(env
, NULL
);
4348 #if !defined(CONFIG_USER_ONLY)
4350 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4352 int i
, target_code_size
, max_target_code_size
;
4353 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4354 TranslationBlock
*tb
;
4356 target_code_size
= 0;
4357 max_target_code_size
= 0;
4359 direct_jmp_count
= 0;
4360 direct_jmp2_count
= 0;
4361 for(i
= 0; i
< nb_tbs
; i
++) {
4363 target_code_size
+= tb
->size
;
4364 if (tb
->size
> max_target_code_size
)
4365 max_target_code_size
= tb
->size
;
4366 if (tb
->page_addr
[1] != -1)
4368 if (tb
->tb_next_offset
[0] != 0xffff) {
4370 if (tb
->tb_next_offset
[1] != 0xffff) {
4371 direct_jmp2_count
++;
4375 /* XXX: avoid using doubles ? */
4376 cpu_fprintf(f
, "Translation buffer state:\n");
4377 cpu_fprintf(f
, "gen code size %td/%ld\n",
4378 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4379 cpu_fprintf(f
, "TB count %d/%d\n",
4380 nb_tbs
, code_gen_max_blocks
);
4381 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4382 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4383 max_target_code_size
);
4384 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4385 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4386 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4387 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4389 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4390 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4392 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4394 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4395 cpu_fprintf(f
, "\nStatistics:\n");
4396 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4397 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4398 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4399 tcg_dump_info(f
, cpu_fprintf
);
4402 #define MMUSUFFIX _cmmu
4403 #define GETPC() NULL
4404 #define env cpu_single_env
4405 #define SOFTMMU_CODE_ACCESS
4408 #include "softmmu_template.h"
4411 #include "softmmu_template.h"
4414 #include "softmmu_template.h"
4417 #include "softmmu_template.h"