Merge branch 'master' of git://git.qemu.org/qemu
[qemu/mdroth.git] / cpu-exec.c
blobde0d716da0615a7293b69a949133255848c78414
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
25 int tb_invalidated_flag;
27 //#define CONFIG_DEBUG_EXEC
29 bool qemu_cpu_has_work(CPUState *env)
31 return cpu_has_work(env);
34 void cpu_loop_exit(CPUState *env)
36 env->current_tb = NULL;
37 longjmp(env->jmp_env, 1);
40 /* exit the current TB from a signal handler. The host registers are
41 restored in a state compatible with the CPU emulator
43 #if defined(CONFIG_SOFTMMU)
44 void cpu_resume_from_signal(CPUState *env, void *puc)
46 /* XXX: restore cpu registers saved in host registers */
48 env->exception_index = -1;
49 longjmp(env->jmp_env, 1);
51 #endif
53 /* Execute the code without caching the generated code. An interpreter
54 could be used if available. */
55 static void cpu_exec_nocache(CPUState *env, int max_cycles,
56 TranslationBlock *orig_tb)
58 unsigned long next_tb;
59 TranslationBlock *tb;
61 /* Should never happen.
62 We only end up here when an existing TB is too long. */
63 if (max_cycles > CF_COUNT_MASK)
64 max_cycles = CF_COUNT_MASK;
66 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
67 max_cycles);
68 env->current_tb = tb;
69 /* execute the generated code */
70 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
71 env->current_tb = NULL;
73 if ((next_tb & 3) == 2) {
74 /* Restore PC. This may happen if async event occurs before
75 the TB starts executing. */
76 cpu_pc_from_tb(env, tb);
78 tb_phys_invalidate(tb, -1);
79 tb_free(tb);
82 static TranslationBlock *tb_find_slow(CPUState *env,
83 target_ulong pc,
84 target_ulong cs_base,
85 uint64_t flags)
87 TranslationBlock *tb, **ptb1;
88 unsigned int h;
89 tb_page_addr_t phys_pc, phys_page1, phys_page2;
90 target_ulong virt_page2;
92 tb_invalidated_flag = 0;
94 /* find translated block using physical mappings */
95 phys_pc = get_page_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_page_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
119 ptb1 = &tb->phys_hash_next;
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_gen_code(env, pc, cs_base, flags, 0);
125 found:
126 /* Move the last found TB to the head of the list */
127 if (likely(*ptb1)) {
128 *ptb1 = tb->phys_hash_next;
129 tb->phys_hash_next = tb_phys_hash[h];
130 tb_phys_hash[h] = tb;
132 /* we add the TB in the virtual pc hash table */
133 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
134 return tb;
137 static inline TranslationBlock *tb_find_fast(CPUState *env)
139 TranslationBlock *tb;
140 target_ulong cs_base, pc;
141 int flags;
143 /* we record a subset of the CPU state. It will
144 always be the same before a given translated block
145 is executed. */
146 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
147 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
148 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
149 tb->flags != flags)) {
150 tb = tb_find_slow(env, pc, cs_base, flags);
152 return tb;
155 static CPUDebugExcpHandler *debug_excp_handler;
157 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
159 CPUDebugExcpHandler *old_handler = debug_excp_handler;
161 debug_excp_handler = handler;
162 return old_handler;
165 static void cpu_handle_debug_exception(CPUState *env)
167 CPUWatchpoint *wp;
169 if (!env->watchpoint_hit) {
170 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
171 wp->flags &= ~BP_WATCHPOINT_HIT;
174 if (debug_excp_handler) {
175 debug_excp_handler(env);
179 /* main execution loop */
181 volatile sig_atomic_t exit_request;
183 int cpu_exec(CPUState *env)
185 int ret, interrupt_request;
186 TranslationBlock *tb;
187 uint8_t *tc_ptr;
188 unsigned long next_tb;
190 if (env->halted) {
191 if (!cpu_has_work(env)) {
192 return EXCP_HALTED;
195 env->halted = 0;
198 cpu_single_env = env;
200 if (unlikely(exit_request)) {
201 env->exit_request = 1;
204 #if defined(TARGET_I386)
205 /* put eflags in CPU temporary format */
206 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
207 DF = 1 - (2 * ((env->eflags >> 10) & 1));
208 CC_OP = CC_OP_EFLAGS;
209 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
210 #elif defined(TARGET_SPARC)
211 #elif defined(TARGET_M68K)
212 env->cc_op = CC_OP_FLAGS;
213 env->cc_dest = env->sr & 0xf;
214 env->cc_x = (env->sr >> 4) & 1;
215 #elif defined(TARGET_ALPHA)
216 #elif defined(TARGET_ARM)
217 #elif defined(TARGET_UNICORE32)
218 #elif defined(TARGET_PPC)
219 #elif defined(TARGET_LM32)
220 #elif defined(TARGET_MICROBLAZE)
221 #elif defined(TARGET_MIPS)
222 #elif defined(TARGET_SH4)
223 #elif defined(TARGET_CRIS)
224 #elif defined(TARGET_S390X)
225 /* XXXXX */
226 #else
227 #error unsupported target CPU
228 #endif
229 env->exception_index = -1;
231 /* prepare setjmp context for exception handling */
232 for(;;) {
233 if (setjmp(env->jmp_env) == 0) {
234 /* if an exception is pending, we execute it here */
235 if (env->exception_index >= 0) {
236 if (env->exception_index >= EXCP_INTERRUPT) {
237 /* exit request from the cpu execution loop */
238 ret = env->exception_index;
239 if (ret == EXCP_DEBUG) {
240 cpu_handle_debug_exception(env);
242 break;
243 } else {
244 #if defined(CONFIG_USER_ONLY)
245 /* if user mode only, we simulate a fake exception
246 which will be handled outside the cpu execution
247 loop */
248 #if defined(TARGET_I386)
249 do_interrupt(env);
250 #endif
251 ret = env->exception_index;
252 break;
253 #else
254 do_interrupt(env);
255 env->exception_index = -1;
256 #endif
260 next_tb = 0; /* force lookup of first TB */
261 for(;;) {
262 interrupt_request = env->interrupt_request;
263 if (unlikely(interrupt_request)) {
264 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
265 /* Mask out external interrupts for this step. */
266 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
268 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
269 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
270 env->exception_index = EXCP_DEBUG;
271 cpu_loop_exit(env);
273 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
274 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
275 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
276 if (interrupt_request & CPU_INTERRUPT_HALT) {
277 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
278 env->halted = 1;
279 env->exception_index = EXCP_HLT;
280 cpu_loop_exit(env);
282 #endif
283 #if defined(TARGET_I386)
284 if (interrupt_request & CPU_INTERRUPT_INIT) {
285 svm_check_intercept(env, SVM_EXIT_INIT);
286 do_cpu_init(env);
287 env->exception_index = EXCP_HALTED;
288 cpu_loop_exit(env);
289 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
290 do_cpu_sipi(env);
291 } else if (env->hflags2 & HF2_GIF_MASK) {
292 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
293 !(env->hflags & HF_SMM_MASK)) {
294 svm_check_intercept(env, SVM_EXIT_SMI);
295 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
296 do_smm_enter(env);
297 next_tb = 0;
298 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
299 !(env->hflags2 & HF2_NMI_MASK)) {
300 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
301 env->hflags2 |= HF2_NMI_MASK;
302 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
303 next_tb = 0;
304 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
305 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
306 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
307 next_tb = 0;
308 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
309 (((env->hflags2 & HF2_VINTR_MASK) &&
310 (env->hflags2 & HF2_HIF_MASK)) ||
311 (!(env->hflags2 & HF2_VINTR_MASK) &&
312 (env->eflags & IF_MASK &&
313 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
314 int intno;
315 svm_check_intercept(env, SVM_EXIT_INTR);
316 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
317 intno = cpu_get_pic_interrupt(env);
318 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
319 do_interrupt_x86_hardirq(env, intno, 1);
320 /* ensure that no TB jump will be modified as
321 the program flow was changed */
322 next_tb = 0;
323 #if !defined(CONFIG_USER_ONLY)
324 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
325 (env->eflags & IF_MASK) &&
326 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
327 int intno;
328 /* FIXME: this should respect TPR */
329 svm_check_intercept(env, SVM_EXIT_VINTR);
330 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
331 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
332 do_interrupt_x86_hardirq(env, intno, 1);
333 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
334 next_tb = 0;
335 #endif
338 #elif defined(TARGET_PPC)
339 #if 0
340 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
341 cpu_reset(env);
343 #endif
344 if (interrupt_request & CPU_INTERRUPT_HARD) {
345 ppc_hw_interrupt(env);
346 if (env->pending_interrupts == 0)
347 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
348 next_tb = 0;
350 #elif defined(TARGET_LM32)
351 if ((interrupt_request & CPU_INTERRUPT_HARD)
352 && (env->ie & IE_IE)) {
353 env->exception_index = EXCP_IRQ;
354 do_interrupt(env);
355 next_tb = 0;
357 #elif defined(TARGET_MICROBLAZE)
358 if ((interrupt_request & CPU_INTERRUPT_HARD)
359 && (env->sregs[SR_MSR] & MSR_IE)
360 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
361 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
362 env->exception_index = EXCP_IRQ;
363 do_interrupt(env);
364 next_tb = 0;
366 #elif defined(TARGET_MIPS)
367 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
368 cpu_mips_hw_interrupts_pending(env)) {
369 /* Raise it */
370 env->exception_index = EXCP_EXT_INTERRUPT;
371 env->error_code = 0;
372 do_interrupt(env);
373 next_tb = 0;
375 #elif defined(TARGET_SPARC)
376 if (interrupt_request & CPU_INTERRUPT_HARD) {
377 if (cpu_interrupts_enabled(env) &&
378 env->interrupt_index > 0) {
379 int pil = env->interrupt_index & 0xf;
380 int type = env->interrupt_index & 0xf0;
382 if (((type == TT_EXTINT) &&
383 cpu_pil_allowed(env, pil)) ||
384 type != TT_EXTINT) {
385 env->exception_index = env->interrupt_index;
386 do_interrupt(env);
387 next_tb = 0;
391 #elif defined(TARGET_ARM)
392 if (interrupt_request & CPU_INTERRUPT_FIQ
393 && !(env->uncached_cpsr & CPSR_F)) {
394 env->exception_index = EXCP_FIQ;
395 do_interrupt(env);
396 next_tb = 0;
398 /* ARMv7-M interrupt return works by loading a magic value
399 into the PC. On real hardware the load causes the
400 return to occur. The qemu implementation performs the
401 jump normally, then does the exception return when the
402 CPU tries to execute code at the magic address.
403 This will cause the magic PC value to be pushed to
404 the stack if an interrupt occurred at the wrong time.
405 We avoid this by disabling interrupts when
406 pc contains a magic address. */
407 if (interrupt_request & CPU_INTERRUPT_HARD
408 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
409 || !(env->uncached_cpsr & CPSR_I))) {
410 env->exception_index = EXCP_IRQ;
411 do_interrupt(env);
412 next_tb = 0;
414 #elif defined(TARGET_UNICORE32)
415 if (interrupt_request & CPU_INTERRUPT_HARD
416 && !(env->uncached_asr & ASR_I)) {
417 do_interrupt(env);
418 next_tb = 0;
420 #elif defined(TARGET_SH4)
421 if (interrupt_request & CPU_INTERRUPT_HARD) {
422 do_interrupt(env);
423 next_tb = 0;
425 #elif defined(TARGET_ALPHA)
427 int idx = -1;
428 /* ??? This hard-codes the OSF/1 interrupt levels. */
429 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
430 case 0 ... 3:
431 if (interrupt_request & CPU_INTERRUPT_HARD) {
432 idx = EXCP_DEV_INTERRUPT;
434 /* FALLTHRU */
435 case 4:
436 if (interrupt_request & CPU_INTERRUPT_TIMER) {
437 idx = EXCP_CLK_INTERRUPT;
439 /* FALLTHRU */
440 case 5:
441 if (interrupt_request & CPU_INTERRUPT_SMP) {
442 idx = EXCP_SMP_INTERRUPT;
444 /* FALLTHRU */
445 case 6:
446 if (interrupt_request & CPU_INTERRUPT_MCHK) {
447 idx = EXCP_MCHK;
450 if (idx >= 0) {
451 env->exception_index = idx;
452 env->error_code = 0;
453 do_interrupt(env);
454 next_tb = 0;
457 #elif defined(TARGET_CRIS)
458 if (interrupt_request & CPU_INTERRUPT_HARD
459 && (env->pregs[PR_CCS] & I_FLAG)
460 && !env->locked_irq) {
461 env->exception_index = EXCP_IRQ;
462 do_interrupt(env);
463 next_tb = 0;
465 if (interrupt_request & CPU_INTERRUPT_NMI
466 && (env->pregs[PR_CCS] & M_FLAG)) {
467 env->exception_index = EXCP_NMI;
468 do_interrupt(env);
469 next_tb = 0;
471 #elif defined(TARGET_M68K)
472 if (interrupt_request & CPU_INTERRUPT_HARD
473 && ((env->sr & SR_I) >> SR_I_SHIFT)
474 < env->pending_level) {
475 /* Real hardware gets the interrupt vector via an
476 IACK cycle at this point. Current emulated
477 hardware doesn't rely on this, so we
478 provide/save the vector when the interrupt is
479 first signalled. */
480 env->exception_index = env->pending_vector;
481 do_interrupt_m68k_hardirq(env);
482 next_tb = 0;
484 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
485 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
486 (env->psw.mask & PSW_MASK_EXT)) {
487 do_interrupt(env);
488 next_tb = 0;
490 #endif
491 /* Don't use the cached interrupt_request value,
492 do_interrupt may have updated the EXITTB flag. */
493 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
494 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
495 /* ensure that no TB jump will be modified as
496 the program flow was changed */
497 next_tb = 0;
500 if (unlikely(env->exit_request)) {
501 env->exit_request = 0;
502 env->exception_index = EXCP_INTERRUPT;
503 cpu_loop_exit(env);
505 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
506 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
507 /* restore flags in standard format */
508 #if defined(TARGET_I386)
509 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
510 | (DF & DF_MASK);
511 log_cpu_state(env, X86_DUMP_CCOP);
512 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
513 #elif defined(TARGET_M68K)
514 cpu_m68k_flush_flags(env, env->cc_op);
515 env->cc_op = CC_OP_FLAGS;
516 env->sr = (env->sr & 0xffe0)
517 | env->cc_dest | (env->cc_x << 4);
518 log_cpu_state(env, 0);
519 #else
520 log_cpu_state(env, 0);
521 #endif
523 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
524 spin_lock(&tb_lock);
525 tb = tb_find_fast(env);
526 /* Note: we do it here to avoid a gcc bug on Mac OS X when
527 doing it in tb_find_slow */
528 if (tb_invalidated_flag) {
529 /* as some TB could have been invalidated because
530 of memory exceptions while generating the code, we
531 must recompute the hash index here */
532 next_tb = 0;
533 tb_invalidated_flag = 0;
535 #ifdef CONFIG_DEBUG_EXEC
536 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
537 (long)tb->tc_ptr, tb->pc,
538 lookup_symbol(tb->pc));
539 #endif
540 /* see if we can patch the calling TB. When the TB
541 spans two pages, we cannot safely do a direct
542 jump. */
543 if (next_tb != 0 && tb->page_addr[1] == -1) {
544 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
546 spin_unlock(&tb_lock);
548 /* cpu_interrupt might be called while translating the
549 TB, but before it is linked into a potentially
550 infinite loop and becomes env->current_tb. Avoid
551 starting execution if there is a pending interrupt. */
552 env->current_tb = tb;
553 barrier();
554 if (likely(!env->exit_request)) {
555 tc_ptr = tb->tc_ptr;
556 /* execute the generated code */
557 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
558 if ((next_tb & 3) == 2) {
559 /* Instruction counter expired. */
560 int insns_left;
561 tb = (TranslationBlock *)(long)(next_tb & ~3);
562 /* Restore PC. */
563 cpu_pc_from_tb(env, tb);
564 insns_left = env->icount_decr.u32;
565 if (env->icount_extra && insns_left >= 0) {
566 /* Refill decrementer and continue execution. */
567 env->icount_extra += insns_left;
568 if (env->icount_extra > 0xffff) {
569 insns_left = 0xffff;
570 } else {
571 insns_left = env->icount_extra;
573 env->icount_extra -= insns_left;
574 env->icount_decr.u16.low = insns_left;
575 } else {
576 if (insns_left > 0) {
577 /* Execute remaining instructions. */
578 cpu_exec_nocache(env, insns_left, tb);
580 env->exception_index = EXCP_INTERRUPT;
581 next_tb = 0;
582 cpu_loop_exit(env);
586 env->current_tb = NULL;
587 /* reset soft MMU for next block (it can currently
588 only be set by a memory fault) */
589 } /* for(;;) */
590 } else {
591 /* Reload env after longjmp - the compiler may have smashed all
592 * local variables as longjmp is marked 'noreturn'. */
593 env = cpu_single_env;
595 } /* for(;;) */
598 #if defined(TARGET_I386)
599 /* restore flags in standard format */
600 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
601 | (DF & DF_MASK);
602 #elif defined(TARGET_ARM)
603 /* XXX: Save/restore host fpu exception state?. */
604 #elif defined(TARGET_UNICORE32)
605 #elif defined(TARGET_SPARC)
606 #elif defined(TARGET_PPC)
607 #elif defined(TARGET_LM32)
608 #elif defined(TARGET_M68K)
609 cpu_m68k_flush_flags(env, env->cc_op);
610 env->cc_op = CC_OP_FLAGS;
611 env->sr = (env->sr & 0xffe0)
612 | env->cc_dest | (env->cc_x << 4);
613 #elif defined(TARGET_MICROBLAZE)
614 #elif defined(TARGET_MIPS)
615 #elif defined(TARGET_SH4)
616 #elif defined(TARGET_ALPHA)
617 #elif defined(TARGET_CRIS)
618 #elif defined(TARGET_S390X)
619 /* XXXXX */
620 #else
621 #error unsupported target CPU
622 #endif
624 /* fail safe : never use cpu_single_env outside cpu_exec() */
625 cpu_single_env = NULL;
626 return ret;