target-arm: Don't update base register on abort in Thumb T1 LDM
[qemu/mdroth.git] / target-arm / helper.c
blob62ae72ec27b1096cc21ce1b7375666125cabc8b0
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helper.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 #include "hw/loader.h"
13 #endif
15 static uint32_t cortexa9_cp15_c0_c1[8] =
16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
18 static uint32_t cortexa9_cp15_c0_c2[8] =
19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
21 static uint32_t cortexa8_cp15_c0_c1[8] =
22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
24 static uint32_t cortexa8_cp15_c0_c2[8] =
25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
27 static uint32_t mpcore_cp15_c0_c1[8] =
28 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
30 static uint32_t mpcore_cp15_c0_c2[8] =
31 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
33 static uint32_t arm1136_cp15_c0_c1[8] =
34 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
36 static uint32_t arm1136_cp15_c0_c2[8] =
37 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
39 static uint32_t cpu_arm_find_by_name(const char *name);
41 static inline void set_feature(CPUARMState *env, int feature)
43 env->features |= 1u << feature;
46 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
48 env->cp15.c0_cpuid = id;
49 switch (id) {
50 case ARM_CPUID_ARM926:
51 set_feature(env, ARM_FEATURE_V4T);
52 set_feature(env, ARM_FEATURE_V5);
53 set_feature(env, ARM_FEATURE_VFP);
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
55 env->cp15.c0_cachetype = 0x1dd20d2;
56 env->cp15.c1_sys = 0x00090078;
57 break;
58 case ARM_CPUID_ARM946:
59 set_feature(env, ARM_FEATURE_V4T);
60 set_feature(env, ARM_FEATURE_V5);
61 set_feature(env, ARM_FEATURE_MPU);
62 env->cp15.c0_cachetype = 0x0f004006;
63 env->cp15.c1_sys = 0x00000078;
64 break;
65 case ARM_CPUID_ARM1026:
66 set_feature(env, ARM_FEATURE_V4T);
67 set_feature(env, ARM_FEATURE_V5);
68 set_feature(env, ARM_FEATURE_VFP);
69 set_feature(env, ARM_FEATURE_AUXCR);
70 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
71 env->cp15.c0_cachetype = 0x1dd20d2;
72 env->cp15.c1_sys = 0x00090078;
73 break;
74 case ARM_CPUID_ARM1136_R2:
75 case ARM_CPUID_ARM1136:
76 set_feature(env, ARM_FEATURE_V4T);
77 set_feature(env, ARM_FEATURE_V5);
78 set_feature(env, ARM_FEATURE_V6);
79 set_feature(env, ARM_FEATURE_VFP);
80 set_feature(env, ARM_FEATURE_AUXCR);
81 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
82 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
83 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
84 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
85 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
86 env->cp15.c0_cachetype = 0x1dd20d2;
87 env->cp15.c1_sys = 0x00050078;
88 break;
89 case ARM_CPUID_ARM11MPCORE:
90 set_feature(env, ARM_FEATURE_V4T);
91 set_feature(env, ARM_FEATURE_V5);
92 set_feature(env, ARM_FEATURE_V6);
93 set_feature(env, ARM_FEATURE_V6K);
94 set_feature(env, ARM_FEATURE_VFP);
95 set_feature(env, ARM_FEATURE_AUXCR);
96 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
97 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
98 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
99 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
100 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
101 env->cp15.c0_cachetype = 0x1dd20d2;
102 break;
103 case ARM_CPUID_CORTEXA8:
104 set_feature(env, ARM_FEATURE_V4T);
105 set_feature(env, ARM_FEATURE_V5);
106 set_feature(env, ARM_FEATURE_V6);
107 set_feature(env, ARM_FEATURE_V6K);
108 set_feature(env, ARM_FEATURE_V7);
109 set_feature(env, ARM_FEATURE_AUXCR);
110 set_feature(env, ARM_FEATURE_THUMB2);
111 set_feature(env, ARM_FEATURE_VFP);
112 set_feature(env, ARM_FEATURE_VFP3);
113 set_feature(env, ARM_FEATURE_NEON);
114 set_feature(env, ARM_FEATURE_THUMB2EE);
115 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
116 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
117 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
118 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
119 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
120 env->cp15.c0_cachetype = 0x82048004;
121 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
122 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
123 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
124 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
125 env->cp15.c1_sys = 0x00c50078;
126 break;
127 case ARM_CPUID_CORTEXA9:
128 set_feature(env, ARM_FEATURE_V4T);
129 set_feature(env, ARM_FEATURE_V5);
130 set_feature(env, ARM_FEATURE_V6);
131 set_feature(env, ARM_FEATURE_V6K);
132 set_feature(env, ARM_FEATURE_V7);
133 set_feature(env, ARM_FEATURE_AUXCR);
134 set_feature(env, ARM_FEATURE_THUMB2);
135 set_feature(env, ARM_FEATURE_VFP);
136 set_feature(env, ARM_FEATURE_VFP3);
137 set_feature(env, ARM_FEATURE_VFP_FP16);
138 set_feature(env, ARM_FEATURE_NEON);
139 set_feature(env, ARM_FEATURE_THUMB2EE);
140 /* Note that A9 supports the MP extensions even for
141 * A9UP and single-core A9MP (which are both different
142 * and valid configurations; we don't model A9UP).
144 set_feature(env, ARM_FEATURE_V7MP);
145 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
146 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
147 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
148 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
149 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
150 env->cp15.c0_cachetype = 0x80038003;
151 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
152 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
153 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
154 env->cp15.c1_sys = 0x00c50078;
155 break;
156 case ARM_CPUID_CORTEXM3:
157 set_feature(env, ARM_FEATURE_V4T);
158 set_feature(env, ARM_FEATURE_V5);
159 set_feature(env, ARM_FEATURE_V6);
160 set_feature(env, ARM_FEATURE_THUMB2);
161 set_feature(env, ARM_FEATURE_V7);
162 set_feature(env, ARM_FEATURE_M);
163 set_feature(env, ARM_FEATURE_DIV);
164 break;
165 case ARM_CPUID_ANY: /* For userspace emulation. */
166 set_feature(env, ARM_FEATURE_V4T);
167 set_feature(env, ARM_FEATURE_V5);
168 set_feature(env, ARM_FEATURE_V6);
169 set_feature(env, ARM_FEATURE_V6K);
170 set_feature(env, ARM_FEATURE_V7);
171 set_feature(env, ARM_FEATURE_THUMB2);
172 set_feature(env, ARM_FEATURE_VFP);
173 set_feature(env, ARM_FEATURE_VFP3);
174 set_feature(env, ARM_FEATURE_VFP_FP16);
175 set_feature(env, ARM_FEATURE_NEON);
176 set_feature(env, ARM_FEATURE_THUMB2EE);
177 set_feature(env, ARM_FEATURE_DIV);
178 set_feature(env, ARM_FEATURE_V7MP);
179 break;
180 case ARM_CPUID_TI915T:
181 case ARM_CPUID_TI925T:
182 set_feature(env, ARM_FEATURE_V4T);
183 set_feature(env, ARM_FEATURE_OMAPCP);
184 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
185 env->cp15.c0_cachetype = 0x5109149;
186 env->cp15.c1_sys = 0x00000070;
187 env->cp15.c15_i_max = 0x000;
188 env->cp15.c15_i_min = 0xff0;
189 break;
190 case ARM_CPUID_PXA250:
191 case ARM_CPUID_PXA255:
192 case ARM_CPUID_PXA260:
193 case ARM_CPUID_PXA261:
194 case ARM_CPUID_PXA262:
195 set_feature(env, ARM_FEATURE_V4T);
196 set_feature(env, ARM_FEATURE_V5);
197 set_feature(env, ARM_FEATURE_XSCALE);
198 /* JTAG_ID is ((id << 28) | 0x09265013) */
199 env->cp15.c0_cachetype = 0xd172172;
200 env->cp15.c1_sys = 0x00000078;
201 break;
202 case ARM_CPUID_PXA270_A0:
203 case ARM_CPUID_PXA270_A1:
204 case ARM_CPUID_PXA270_B0:
205 case ARM_CPUID_PXA270_B1:
206 case ARM_CPUID_PXA270_C0:
207 case ARM_CPUID_PXA270_C5:
208 set_feature(env, ARM_FEATURE_V4T);
209 set_feature(env, ARM_FEATURE_V5);
210 set_feature(env, ARM_FEATURE_XSCALE);
211 /* JTAG_ID is ((id << 28) | 0x09265013) */
212 set_feature(env, ARM_FEATURE_IWMMXT);
213 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
214 env->cp15.c0_cachetype = 0xd172172;
215 env->cp15.c1_sys = 0x00000078;
216 break;
217 case ARM_CPUID_SA1100:
218 case ARM_CPUID_SA1110:
219 set_feature(env, ARM_FEATURE_STRONGARM);
220 env->cp15.c1_sys = 0x00000070;
221 break;
222 default:
223 cpu_abort(env, "Bad CPU ID: %x\n", id);
224 break;
228 void cpu_reset(CPUARMState *env)
230 uint32_t id;
232 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
233 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
234 log_cpu_state(env, 0);
237 id = env->cp15.c0_cpuid;
238 memset(env, 0, offsetof(CPUARMState, breakpoints));
239 if (id)
240 cpu_reset_model_id(env, id);
241 #if defined (CONFIG_USER_ONLY)
242 env->uncached_cpsr = ARM_CPU_MODE_USR;
243 /* For user mode we must enable access to coprocessors */
244 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
245 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
246 env->cp15.c15_cpar = 3;
247 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
248 env->cp15.c15_cpar = 1;
250 #else
251 /* SVC mode with interrupts disabled. */
252 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
253 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
254 clear at reset. Initial SP and PC are loaded from ROM. */
255 if (IS_M(env)) {
256 uint32_t pc;
257 uint8_t *rom;
258 env->uncached_cpsr &= ~CPSR_I;
259 rom = rom_ptr(0);
260 if (rom) {
261 /* We should really use ldl_phys here, in case the guest
262 modified flash and reset itself. However images
263 loaded via -kenrel have not been copied yet, so load the
264 values directly from there. */
265 env->regs[13] = ldl_p(rom);
266 pc = ldl_p(rom + 4);
267 env->thumb = pc & 1;
268 env->regs[15] = pc & ~1;
271 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
272 env->cp15.c2_base_mask = 0xffffc000u;
273 #endif
274 set_flush_to_zero(1, &env->vfp.standard_fp_status);
275 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
276 set_default_nan_mode(1, &env->vfp.standard_fp_status);
277 set_float_detect_tininess(float_tininess_before_rounding,
278 &env->vfp.fp_status);
279 set_float_detect_tininess(float_tininess_before_rounding,
280 &env->vfp.standard_fp_status);
281 tlb_flush(env, 1);
284 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
286 int nregs;
288 /* VFP data registers are always little-endian. */
289 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
290 if (reg < nregs) {
291 stfq_le_p(buf, env->vfp.regs[reg]);
292 return 8;
294 if (arm_feature(env, ARM_FEATURE_NEON)) {
295 /* Aliases for Q regs. */
296 nregs += 16;
297 if (reg < nregs) {
298 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
299 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
300 return 16;
303 switch (reg - nregs) {
304 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
305 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
306 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
308 return 0;
311 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
313 int nregs;
315 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
316 if (reg < nregs) {
317 env->vfp.regs[reg] = ldfq_le_p(buf);
318 return 8;
320 if (arm_feature(env, ARM_FEATURE_NEON)) {
321 nregs += 16;
322 if (reg < nregs) {
323 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
324 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
325 return 16;
328 switch (reg - nregs) {
329 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
330 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
331 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
333 return 0;
336 CPUARMState *cpu_arm_init(const char *cpu_model)
338 CPUARMState *env;
339 uint32_t id;
340 static int inited = 0;
342 id = cpu_arm_find_by_name(cpu_model);
343 if (id == 0)
344 return NULL;
345 env = qemu_mallocz(sizeof(CPUARMState));
346 cpu_exec_init(env);
347 if (!inited) {
348 inited = 1;
349 arm_translate_init();
352 env->cpu_model_str = cpu_model;
353 env->cp15.c0_cpuid = id;
354 cpu_reset(env);
355 if (arm_feature(env, ARM_FEATURE_NEON)) {
356 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
357 51, "arm-neon.xml", 0);
358 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
359 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
360 35, "arm-vfp3.xml", 0);
361 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
362 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
363 19, "arm-vfp.xml", 0);
365 qemu_init_vcpu(env);
366 return env;
369 struct arm_cpu_t {
370 uint32_t id;
371 const char *name;
374 static const struct arm_cpu_t arm_cpu_names[] = {
375 { ARM_CPUID_ARM926, "arm926"},
376 { ARM_CPUID_ARM946, "arm946"},
377 { ARM_CPUID_ARM1026, "arm1026"},
378 { ARM_CPUID_ARM1136, "arm1136"},
379 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
380 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
381 { ARM_CPUID_CORTEXM3, "cortex-m3"},
382 { ARM_CPUID_CORTEXA8, "cortex-a8"},
383 { ARM_CPUID_CORTEXA9, "cortex-a9"},
384 { ARM_CPUID_TI925T, "ti925t" },
385 { ARM_CPUID_PXA250, "pxa250" },
386 { ARM_CPUID_SA1100, "sa1100" },
387 { ARM_CPUID_SA1110, "sa1110" },
388 { ARM_CPUID_PXA255, "pxa255" },
389 { ARM_CPUID_PXA260, "pxa260" },
390 { ARM_CPUID_PXA261, "pxa261" },
391 { ARM_CPUID_PXA262, "pxa262" },
392 { ARM_CPUID_PXA270, "pxa270" },
393 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
394 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
395 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
396 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
397 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
398 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
399 { ARM_CPUID_ANY, "any"},
400 { 0, NULL}
403 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
405 int i;
407 (*cpu_fprintf)(f, "Available CPUs:\n");
408 for (i = 0; arm_cpu_names[i].name; i++) {
409 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
413 /* return 0 if not found */
414 static uint32_t cpu_arm_find_by_name(const char *name)
416 int i;
417 uint32_t id;
419 id = 0;
420 for (i = 0; arm_cpu_names[i].name; i++) {
421 if (strcmp(name, arm_cpu_names[i].name) == 0) {
422 id = arm_cpu_names[i].id;
423 break;
426 return id;
429 void cpu_arm_close(CPUARMState *env)
431 free(env);
434 uint32_t cpsr_read(CPUARMState *env)
436 int ZF;
437 ZF = (env->ZF == 0);
438 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
439 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
440 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
441 | ((env->condexec_bits & 0xfc) << 8)
442 | (env->GE << 16);
445 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
447 if (mask & CPSR_NZCV) {
448 env->ZF = (~val) & CPSR_Z;
449 env->NF = val;
450 env->CF = (val >> 29) & 1;
451 env->VF = (val << 3) & 0x80000000;
453 if (mask & CPSR_Q)
454 env->QF = ((val & CPSR_Q) != 0);
455 if (mask & CPSR_T)
456 env->thumb = ((val & CPSR_T) != 0);
457 if (mask & CPSR_IT_0_1) {
458 env->condexec_bits &= ~3;
459 env->condexec_bits |= (val >> 25) & 3;
461 if (mask & CPSR_IT_2_7) {
462 env->condexec_bits &= 3;
463 env->condexec_bits |= (val >> 8) & 0xfc;
465 if (mask & CPSR_GE) {
466 env->GE = (val >> 16) & 0xf;
469 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
470 switch_mode(env, val & CPSR_M);
472 mask &= ~CACHED_CPSR_BITS;
473 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
476 /* Sign/zero extend */
477 uint32_t HELPER(sxtb16)(uint32_t x)
479 uint32_t res;
480 res = (uint16_t)(int8_t)x;
481 res |= (uint32_t)(int8_t)(x >> 16) << 16;
482 return res;
485 uint32_t HELPER(uxtb16)(uint32_t x)
487 uint32_t res;
488 res = (uint16_t)(uint8_t)x;
489 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
490 return res;
493 uint32_t HELPER(clz)(uint32_t x)
495 return clz32(x);
498 int32_t HELPER(sdiv)(int32_t num, int32_t den)
500 if (den == 0)
501 return 0;
502 if (num == INT_MIN && den == -1)
503 return INT_MIN;
504 return num / den;
507 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
509 if (den == 0)
510 return 0;
511 return num / den;
514 uint32_t HELPER(rbit)(uint32_t x)
516 x = ((x & 0xff000000) >> 24)
517 | ((x & 0x00ff0000) >> 8)
518 | ((x & 0x0000ff00) << 8)
519 | ((x & 0x000000ff) << 24);
520 x = ((x & 0xf0f0f0f0) >> 4)
521 | ((x & 0x0f0f0f0f) << 4);
522 x = ((x & 0x88888888) >> 3)
523 | ((x & 0x44444444) >> 1)
524 | ((x & 0x22222222) << 1)
525 | ((x & 0x11111111) << 3);
526 return x;
529 uint32_t HELPER(abs)(uint32_t x)
531 return ((int32_t)x < 0) ? -x : x;
534 #if defined(CONFIG_USER_ONLY)
536 void do_interrupt (CPUState *env)
538 env->exception_index = -1;
541 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
542 int mmu_idx, int is_softmmu)
544 if (rw == 2) {
545 env->exception_index = EXCP_PREFETCH_ABORT;
546 env->cp15.c6_insn = address;
547 } else {
548 env->exception_index = EXCP_DATA_ABORT;
549 env->cp15.c6_data = address;
551 return 1;
554 /* These should probably raise undefined insn exceptions. */
555 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
557 int op1 = (insn >> 8) & 0xf;
558 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
559 return;
562 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
564 int op1 = (insn >> 8) & 0xf;
565 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
566 return 0;
569 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
571 cpu_abort(env, "cp15 insn %08x\n", insn);
574 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
576 cpu_abort(env, "cp15 insn %08x\n", insn);
579 /* These should probably raise undefined insn exceptions. */
580 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
582 cpu_abort(env, "v7m_mrs %d\n", reg);
585 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
587 cpu_abort(env, "v7m_mrs %d\n", reg);
588 return 0;
591 void switch_mode(CPUState *env, int mode)
593 if (mode != ARM_CPU_MODE_USR)
594 cpu_abort(env, "Tried to switch out of user mode\n");
597 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
599 cpu_abort(env, "banked r13 write\n");
602 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
604 cpu_abort(env, "banked r13 read\n");
605 return 0;
608 #else
610 extern int semihosting_enabled;
612 /* Map CPU modes onto saved register banks. */
613 static inline int bank_number (int mode)
615 switch (mode) {
616 case ARM_CPU_MODE_USR:
617 case ARM_CPU_MODE_SYS:
618 return 0;
619 case ARM_CPU_MODE_SVC:
620 return 1;
621 case ARM_CPU_MODE_ABT:
622 return 2;
623 case ARM_CPU_MODE_UND:
624 return 3;
625 case ARM_CPU_MODE_IRQ:
626 return 4;
627 case ARM_CPU_MODE_FIQ:
628 return 5;
630 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
631 return -1;
634 void switch_mode(CPUState *env, int mode)
636 int old_mode;
637 int i;
639 old_mode = env->uncached_cpsr & CPSR_M;
640 if (mode == old_mode)
641 return;
643 if (old_mode == ARM_CPU_MODE_FIQ) {
644 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
645 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
646 } else if (mode == ARM_CPU_MODE_FIQ) {
647 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
648 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
651 i = bank_number(old_mode);
652 env->banked_r13[i] = env->regs[13];
653 env->banked_r14[i] = env->regs[14];
654 env->banked_spsr[i] = env->spsr;
656 i = bank_number(mode);
657 env->regs[13] = env->banked_r13[i];
658 env->regs[14] = env->banked_r14[i];
659 env->spsr = env->banked_spsr[i];
662 static void v7m_push(CPUARMState *env, uint32_t val)
664 env->regs[13] -= 4;
665 stl_phys(env->regs[13], val);
668 static uint32_t v7m_pop(CPUARMState *env)
670 uint32_t val;
671 val = ldl_phys(env->regs[13]);
672 env->regs[13] += 4;
673 return val;
676 /* Switch to V7M main or process stack pointer. */
677 static void switch_v7m_sp(CPUARMState *env, int process)
679 uint32_t tmp;
680 if (env->v7m.current_sp != process) {
681 tmp = env->v7m.other_sp;
682 env->v7m.other_sp = env->regs[13];
683 env->regs[13] = tmp;
684 env->v7m.current_sp = process;
688 static void do_v7m_exception_exit(CPUARMState *env)
690 uint32_t type;
691 uint32_t xpsr;
693 type = env->regs[15];
694 if (env->v7m.exception != 0)
695 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
697 /* Switch to the target stack. */
698 switch_v7m_sp(env, (type & 4) != 0);
699 /* Pop registers. */
700 env->regs[0] = v7m_pop(env);
701 env->regs[1] = v7m_pop(env);
702 env->regs[2] = v7m_pop(env);
703 env->regs[3] = v7m_pop(env);
704 env->regs[12] = v7m_pop(env);
705 env->regs[14] = v7m_pop(env);
706 env->regs[15] = v7m_pop(env);
707 xpsr = v7m_pop(env);
708 xpsr_write(env, xpsr, 0xfffffdff);
709 /* Undo stack alignment. */
710 if (xpsr & 0x200)
711 env->regs[13] |= 4;
712 /* ??? The exception return type specifies Thread/Handler mode. However
713 this is also implied by the xPSR value. Not sure what to do
714 if there is a mismatch. */
715 /* ??? Likewise for mismatches between the CONTROL register and the stack
716 pointer. */
719 static void do_interrupt_v7m(CPUARMState *env)
721 uint32_t xpsr = xpsr_read(env);
722 uint32_t lr;
723 uint32_t addr;
725 lr = 0xfffffff1;
726 if (env->v7m.current_sp)
727 lr |= 4;
728 if (env->v7m.exception == 0)
729 lr |= 8;
731 /* For exceptions we just mark as pending on the NVIC, and let that
732 handle it. */
733 /* TODO: Need to escalate if the current priority is higher than the
734 one we're raising. */
735 switch (env->exception_index) {
736 case EXCP_UDEF:
737 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
738 return;
739 case EXCP_SWI:
740 env->regs[15] += 2;
741 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
742 return;
743 case EXCP_PREFETCH_ABORT:
744 case EXCP_DATA_ABORT:
745 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
746 return;
747 case EXCP_BKPT:
748 if (semihosting_enabled) {
749 int nr;
750 nr = lduw_code(env->regs[15]) & 0xff;
751 if (nr == 0xab) {
752 env->regs[15] += 2;
753 env->regs[0] = do_arm_semihosting(env);
754 return;
757 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
758 return;
759 case EXCP_IRQ:
760 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
761 break;
762 case EXCP_EXCEPTION_EXIT:
763 do_v7m_exception_exit(env);
764 return;
765 default:
766 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
767 return; /* Never happens. Keep compiler happy. */
770 /* Align stack pointer. */
771 /* ??? Should only do this if Configuration Control Register
772 STACKALIGN bit is set. */
773 if (env->regs[13] & 4) {
774 env->regs[13] -= 4;
775 xpsr |= 0x200;
777 /* Switch to the handler mode. */
778 v7m_push(env, xpsr);
779 v7m_push(env, env->regs[15]);
780 v7m_push(env, env->regs[14]);
781 v7m_push(env, env->regs[12]);
782 v7m_push(env, env->regs[3]);
783 v7m_push(env, env->regs[2]);
784 v7m_push(env, env->regs[1]);
785 v7m_push(env, env->regs[0]);
786 switch_v7m_sp(env, 0);
787 env->uncached_cpsr &= ~CPSR_IT;
788 env->regs[14] = lr;
789 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
790 env->regs[15] = addr & 0xfffffffe;
791 env->thumb = addr & 1;
794 /* Handle a CPU exception. */
795 void do_interrupt(CPUARMState *env)
797 uint32_t addr;
798 uint32_t mask;
799 int new_mode;
800 uint32_t offset;
802 if (IS_M(env)) {
803 do_interrupt_v7m(env);
804 return;
806 /* TODO: Vectored interrupt controller. */
807 switch (env->exception_index) {
808 case EXCP_UDEF:
809 new_mode = ARM_CPU_MODE_UND;
810 addr = 0x04;
811 mask = CPSR_I;
812 if (env->thumb)
813 offset = 2;
814 else
815 offset = 4;
816 break;
817 case EXCP_SWI:
818 if (semihosting_enabled) {
819 /* Check for semihosting interrupt. */
820 if (env->thumb) {
821 mask = lduw_code(env->regs[15] - 2) & 0xff;
822 } else {
823 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
825 /* Only intercept calls from privileged modes, to provide some
826 semblance of security. */
827 if (((mask == 0x123456 && !env->thumb)
828 || (mask == 0xab && env->thumb))
829 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
830 env->regs[0] = do_arm_semihosting(env);
831 return;
834 new_mode = ARM_CPU_MODE_SVC;
835 addr = 0x08;
836 mask = CPSR_I;
837 /* The PC already points to the next instruction. */
838 offset = 0;
839 break;
840 case EXCP_BKPT:
841 /* See if this is a semihosting syscall. */
842 if (env->thumb && semihosting_enabled) {
843 mask = lduw_code(env->regs[15]) & 0xff;
844 if (mask == 0xab
845 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
846 env->regs[15] += 2;
847 env->regs[0] = do_arm_semihosting(env);
848 return;
851 /* Fall through to prefetch abort. */
852 case EXCP_PREFETCH_ABORT:
853 new_mode = ARM_CPU_MODE_ABT;
854 addr = 0x0c;
855 mask = CPSR_A | CPSR_I;
856 offset = 4;
857 break;
858 case EXCP_DATA_ABORT:
859 new_mode = ARM_CPU_MODE_ABT;
860 addr = 0x10;
861 mask = CPSR_A | CPSR_I;
862 offset = 8;
863 break;
864 case EXCP_IRQ:
865 new_mode = ARM_CPU_MODE_IRQ;
866 addr = 0x18;
867 /* Disable IRQ and imprecise data aborts. */
868 mask = CPSR_A | CPSR_I;
869 offset = 4;
870 break;
871 case EXCP_FIQ:
872 new_mode = ARM_CPU_MODE_FIQ;
873 addr = 0x1c;
874 /* Disable FIQ, IRQ and imprecise data aborts. */
875 mask = CPSR_A | CPSR_I | CPSR_F;
876 offset = 4;
877 break;
878 default:
879 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
880 return; /* Never happens. Keep compiler happy. */
882 /* High vectors. */
883 if (env->cp15.c1_sys & (1 << 13)) {
884 addr += 0xffff0000;
886 switch_mode (env, new_mode);
887 env->spsr = cpsr_read(env);
888 /* Clear IT bits. */
889 env->condexec_bits = 0;
890 /* Switch to the new mode, and to the correct instruction set. */
891 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
892 env->uncached_cpsr |= mask;
893 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
894 * and we should just guard the thumb mode on V4 */
895 if (arm_feature(env, ARM_FEATURE_V4T)) {
896 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
898 env->regs[14] = env->regs[15] + offset;
899 env->regs[15] = addr;
900 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
903 /* Check section/page access permissions.
904 Returns the page protection flags, or zero if the access is not
905 permitted. */
906 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
907 int is_user)
909 int prot_ro;
911 if (domain == 3)
912 return PAGE_READ | PAGE_WRITE;
914 if (access_type == 1)
915 prot_ro = 0;
916 else
917 prot_ro = PAGE_READ;
919 switch (ap) {
920 case 0:
921 if (access_type == 1)
922 return 0;
923 switch ((env->cp15.c1_sys >> 8) & 3) {
924 case 1:
925 return is_user ? 0 : PAGE_READ;
926 case 2:
927 return PAGE_READ;
928 default:
929 return 0;
931 case 1:
932 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
933 case 2:
934 if (is_user)
935 return prot_ro;
936 else
937 return PAGE_READ | PAGE_WRITE;
938 case 3:
939 return PAGE_READ | PAGE_WRITE;
940 case 4: /* Reserved. */
941 return 0;
942 case 5:
943 return is_user ? 0 : prot_ro;
944 case 6:
945 return prot_ro;
946 case 7:
947 if (!arm_feature (env, ARM_FEATURE_V7))
948 return 0;
949 return prot_ro;
950 default:
951 abort();
955 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
957 uint32_t table;
959 if (address & env->cp15.c2_mask)
960 table = env->cp15.c2_base1 & 0xffffc000;
961 else
962 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
964 table |= (address >> 18) & 0x3ffc;
965 return table;
968 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
969 int is_user, uint32_t *phys_ptr, int *prot,
970 target_ulong *page_size)
972 int code;
973 uint32_t table;
974 uint32_t desc;
975 int type;
976 int ap;
977 int domain;
978 uint32_t phys_addr;
980 /* Pagetable walk. */
981 /* Lookup l1 descriptor. */
982 table = get_level1_table_address(env, address);
983 desc = ldl_phys(table);
984 type = (desc & 3);
985 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
986 if (type == 0) {
987 /* Section translation fault. */
988 code = 5;
989 goto do_fault;
991 if (domain == 0 || domain == 2) {
992 if (type == 2)
993 code = 9; /* Section domain fault. */
994 else
995 code = 11; /* Page domain fault. */
996 goto do_fault;
998 if (type == 2) {
999 /* 1Mb section. */
1000 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1001 ap = (desc >> 10) & 3;
1002 code = 13;
1003 *page_size = 1024 * 1024;
1004 } else {
1005 /* Lookup l2 entry. */
1006 if (type == 1) {
1007 /* Coarse pagetable. */
1008 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1009 } else {
1010 /* Fine pagetable. */
1011 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1013 desc = ldl_phys(table);
1014 switch (desc & 3) {
1015 case 0: /* Page translation fault. */
1016 code = 7;
1017 goto do_fault;
1018 case 1: /* 64k page. */
1019 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1020 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1021 *page_size = 0x10000;
1022 break;
1023 case 2: /* 4k page. */
1024 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1025 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1026 *page_size = 0x1000;
1027 break;
1028 case 3: /* 1k page. */
1029 if (type == 1) {
1030 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1031 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1032 } else {
1033 /* Page translation fault. */
1034 code = 7;
1035 goto do_fault;
1037 } else {
1038 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1040 ap = (desc >> 4) & 3;
1041 *page_size = 0x400;
1042 break;
1043 default:
1044 /* Never happens, but compiler isn't smart enough to tell. */
1045 abort();
1047 code = 15;
1049 *prot = check_ap(env, ap, domain, access_type, is_user);
1050 if (!*prot) {
1051 /* Access permission fault. */
1052 goto do_fault;
1054 *prot |= PAGE_EXEC;
1055 *phys_ptr = phys_addr;
1056 return 0;
1057 do_fault:
1058 return code | (domain << 4);
1061 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1062 int is_user, uint32_t *phys_ptr, int *prot,
1063 target_ulong *page_size)
1065 int code;
1066 uint32_t table;
1067 uint32_t desc;
1068 uint32_t xn;
1069 int type;
1070 int ap;
1071 int domain;
1072 uint32_t phys_addr;
1074 /* Pagetable walk. */
1075 /* Lookup l1 descriptor. */
1076 table = get_level1_table_address(env, address);
1077 desc = ldl_phys(table);
1078 type = (desc & 3);
1079 if (type == 0) {
1080 /* Section translation fault. */
1081 code = 5;
1082 domain = 0;
1083 goto do_fault;
1084 } else if (type == 2 && (desc & (1 << 18))) {
1085 /* Supersection. */
1086 domain = 0;
1087 } else {
1088 /* Section or page. */
1089 domain = (desc >> 4) & 0x1e;
1091 domain = (env->cp15.c3 >> domain) & 3;
1092 if (domain == 0 || domain == 2) {
1093 if (type == 2)
1094 code = 9; /* Section domain fault. */
1095 else
1096 code = 11; /* Page domain fault. */
1097 goto do_fault;
1099 if (type == 2) {
1100 if (desc & (1 << 18)) {
1101 /* Supersection. */
1102 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1103 *page_size = 0x1000000;
1104 } else {
1105 /* Section. */
1106 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1107 *page_size = 0x100000;
1109 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1110 xn = desc & (1 << 4);
1111 code = 13;
1112 } else {
1113 /* Lookup l2 entry. */
1114 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1115 desc = ldl_phys(table);
1116 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1117 switch (desc & 3) {
1118 case 0: /* Page translation fault. */
1119 code = 7;
1120 goto do_fault;
1121 case 1: /* 64k page. */
1122 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1123 xn = desc & (1 << 15);
1124 *page_size = 0x10000;
1125 break;
1126 case 2: case 3: /* 4k page. */
1127 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1128 xn = desc & 1;
1129 *page_size = 0x1000;
1130 break;
1131 default:
1132 /* Never happens, but compiler isn't smart enough to tell. */
1133 abort();
1135 code = 15;
1137 if (domain == 3) {
1138 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1139 } else {
1140 if (xn && access_type == 2)
1141 goto do_fault;
1143 /* The simplified model uses AP[0] as an access control bit. */
1144 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1145 /* Access flag fault. */
1146 code = (code == 15) ? 6 : 3;
1147 goto do_fault;
1149 *prot = check_ap(env, ap, domain, access_type, is_user);
1150 if (!*prot) {
1151 /* Access permission fault. */
1152 goto do_fault;
1154 if (!xn) {
1155 *prot |= PAGE_EXEC;
1158 *phys_ptr = phys_addr;
1159 return 0;
1160 do_fault:
1161 return code | (domain << 4);
1164 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1165 int is_user, uint32_t *phys_ptr, int *prot)
1167 int n;
1168 uint32_t mask;
1169 uint32_t base;
1171 *phys_ptr = address;
1172 for (n = 7; n >= 0; n--) {
1173 base = env->cp15.c6_region[n];
1174 if ((base & 1) == 0)
1175 continue;
1176 mask = 1 << ((base >> 1) & 0x1f);
1177 /* Keep this shift separate from the above to avoid an
1178 (undefined) << 32. */
1179 mask = (mask << 1) - 1;
1180 if (((base ^ address) & ~mask) == 0)
1181 break;
1183 if (n < 0)
1184 return 2;
1186 if (access_type == 2) {
1187 mask = env->cp15.c5_insn;
1188 } else {
1189 mask = env->cp15.c5_data;
1191 mask = (mask >> (n * 4)) & 0xf;
1192 switch (mask) {
1193 case 0:
1194 return 1;
1195 case 1:
1196 if (is_user)
1197 return 1;
1198 *prot = PAGE_READ | PAGE_WRITE;
1199 break;
1200 case 2:
1201 *prot = PAGE_READ;
1202 if (!is_user)
1203 *prot |= PAGE_WRITE;
1204 break;
1205 case 3:
1206 *prot = PAGE_READ | PAGE_WRITE;
1207 break;
1208 case 5:
1209 if (is_user)
1210 return 1;
1211 *prot = PAGE_READ;
1212 break;
1213 case 6:
1214 *prot = PAGE_READ;
1215 break;
1216 default:
1217 /* Bad permission. */
1218 return 1;
1220 *prot |= PAGE_EXEC;
1221 return 0;
1224 static inline int get_phys_addr(CPUState *env, uint32_t address,
1225 int access_type, int is_user,
1226 uint32_t *phys_ptr, int *prot,
1227 target_ulong *page_size)
1229 /* Fast Context Switch Extension. */
1230 if (address < 0x02000000)
1231 address += env->cp15.c13_fcse;
1233 if ((env->cp15.c1_sys & 1) == 0) {
1234 /* MMU/MPU disabled. */
1235 *phys_ptr = address;
1236 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1237 *page_size = TARGET_PAGE_SIZE;
1238 return 0;
1239 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1240 *page_size = TARGET_PAGE_SIZE;
1241 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1242 prot);
1243 } else if (env->cp15.c1_sys & (1 << 23)) {
1244 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1245 prot, page_size);
1246 } else {
1247 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1248 prot, page_size);
1252 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1253 int access_type, int mmu_idx, int is_softmmu)
1255 uint32_t phys_addr;
1256 target_ulong page_size;
1257 int prot;
1258 int ret, is_user;
1260 is_user = mmu_idx == MMU_USER_IDX;
1261 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1262 &page_size);
1263 if (ret == 0) {
1264 /* Map a single [sub]page. */
1265 phys_addr &= ~(uint32_t)0x3ff;
1266 address &= ~(uint32_t)0x3ff;
1267 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1268 return 0;
1271 if (access_type == 2) {
1272 env->cp15.c5_insn = ret;
1273 env->cp15.c6_insn = address;
1274 env->exception_index = EXCP_PREFETCH_ABORT;
1275 } else {
1276 env->cp15.c5_data = ret;
1277 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1278 env->cp15.c5_data |= (1 << 11);
1279 env->cp15.c6_data = address;
1280 env->exception_index = EXCP_DATA_ABORT;
1282 return 1;
1285 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1287 uint32_t phys_addr;
1288 target_ulong page_size;
1289 int prot;
1290 int ret;
1292 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1294 if (ret != 0)
1295 return -1;
1297 return phys_addr;
1300 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1302 int cp_num = (insn >> 8) & 0xf;
1303 int cp_info = (insn >> 5) & 7;
1304 int src = (insn >> 16) & 0xf;
1305 int operand = insn & 0xf;
1307 if (env->cp[cp_num].cp_write)
1308 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1309 cp_info, src, operand, val);
1312 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1314 int cp_num = (insn >> 8) & 0xf;
1315 int cp_info = (insn >> 5) & 7;
1316 int dest = (insn >> 16) & 0xf;
1317 int operand = insn & 0xf;
1319 if (env->cp[cp_num].cp_read)
1320 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1321 cp_info, dest, operand);
1322 return 0;
1325 /* Return basic MPU access permission bits. */
1326 static uint32_t simple_mpu_ap_bits(uint32_t val)
1328 uint32_t ret;
1329 uint32_t mask;
1330 int i;
1331 ret = 0;
1332 mask = 3;
1333 for (i = 0; i < 16; i += 2) {
1334 ret |= (val >> i) & mask;
1335 mask <<= 2;
1337 return ret;
1340 /* Pad basic MPU access permission bits to extended format. */
1341 static uint32_t extended_mpu_ap_bits(uint32_t val)
1343 uint32_t ret;
1344 uint32_t mask;
1345 int i;
1346 ret = 0;
1347 mask = 3;
1348 for (i = 0; i < 16; i += 2) {
1349 ret |= (val & mask) << i;
1350 mask <<= 2;
1352 return ret;
1355 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1357 int op1;
1358 int op2;
1359 int crm;
1361 op1 = (insn >> 21) & 7;
1362 op2 = (insn >> 5) & 7;
1363 crm = insn & 0xf;
1364 switch ((insn >> 16) & 0xf) {
1365 case 0:
1366 /* ID codes. */
1367 if (arm_feature(env, ARM_FEATURE_XSCALE))
1368 break;
1369 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1370 break;
1371 if (arm_feature(env, ARM_FEATURE_V7)
1372 && op1 == 2 && crm == 0 && op2 == 0) {
1373 env->cp15.c0_cssel = val & 0xf;
1374 break;
1376 goto bad_reg;
1377 case 1: /* System configuration. */
1378 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1379 op2 = 0;
1380 switch (op2) {
1381 case 0:
1382 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1383 env->cp15.c1_sys = val;
1384 /* ??? Lots of these bits are not implemented. */
1385 /* This may enable/disable the MMU, so do a TLB flush. */
1386 tlb_flush(env, 1);
1387 break;
1388 case 1: /* Auxiliary control register. */
1389 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1390 env->cp15.c1_xscaleauxcr = val;
1391 break;
1393 /* Not implemented. */
1394 break;
1395 case 2:
1396 if (arm_feature(env, ARM_FEATURE_XSCALE))
1397 goto bad_reg;
1398 if (env->cp15.c1_coproc != val) {
1399 env->cp15.c1_coproc = val;
1400 /* ??? Is this safe when called from within a TB? */
1401 tb_flush(env);
1403 break;
1404 default:
1405 goto bad_reg;
1407 break;
1408 case 2: /* MMU Page table control / MPU cache control. */
1409 if (arm_feature(env, ARM_FEATURE_MPU)) {
1410 switch (op2) {
1411 case 0:
1412 env->cp15.c2_data = val;
1413 break;
1414 case 1:
1415 env->cp15.c2_insn = val;
1416 break;
1417 default:
1418 goto bad_reg;
1420 } else {
1421 switch (op2) {
1422 case 0:
1423 env->cp15.c2_base0 = val;
1424 break;
1425 case 1:
1426 env->cp15.c2_base1 = val;
1427 break;
1428 case 2:
1429 val &= 7;
1430 env->cp15.c2_control = val;
1431 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1432 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1433 break;
1434 default:
1435 goto bad_reg;
1438 break;
1439 case 3: /* MMU Domain access control / MPU write buffer control. */
1440 env->cp15.c3 = val;
1441 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1442 break;
1443 case 4: /* Reserved. */
1444 goto bad_reg;
1445 case 5: /* MMU Fault status / MPU access permission. */
1446 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1447 op2 = 0;
1448 switch (op2) {
1449 case 0:
1450 if (arm_feature(env, ARM_FEATURE_MPU))
1451 val = extended_mpu_ap_bits(val);
1452 env->cp15.c5_data = val;
1453 break;
1454 case 1:
1455 if (arm_feature(env, ARM_FEATURE_MPU))
1456 val = extended_mpu_ap_bits(val);
1457 env->cp15.c5_insn = val;
1458 break;
1459 case 2:
1460 if (!arm_feature(env, ARM_FEATURE_MPU))
1461 goto bad_reg;
1462 env->cp15.c5_data = val;
1463 break;
1464 case 3:
1465 if (!arm_feature(env, ARM_FEATURE_MPU))
1466 goto bad_reg;
1467 env->cp15.c5_insn = val;
1468 break;
1469 default:
1470 goto bad_reg;
1472 break;
1473 case 6: /* MMU Fault address / MPU base/size. */
1474 if (arm_feature(env, ARM_FEATURE_MPU)) {
1475 if (crm >= 8)
1476 goto bad_reg;
1477 env->cp15.c6_region[crm] = val;
1478 } else {
1479 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1480 op2 = 0;
1481 switch (op2) {
1482 case 0:
1483 env->cp15.c6_data = val;
1484 break;
1485 case 1: /* ??? This is WFAR on armv6 */
1486 case 2:
1487 env->cp15.c6_insn = val;
1488 break;
1489 default:
1490 goto bad_reg;
1493 break;
1494 case 7: /* Cache control. */
1495 env->cp15.c15_i_max = 0x000;
1496 env->cp15.c15_i_min = 0xff0;
1497 if (op1 != 0) {
1498 goto bad_reg;
1500 /* No cache, so nothing to do except VA->PA translations. */
1501 if (arm_feature(env, ARM_FEATURE_V6K)) {
1502 switch (crm) {
1503 case 4:
1504 if (arm_feature(env, ARM_FEATURE_V7)) {
1505 env->cp15.c7_par = val & 0xfffff6ff;
1506 } else {
1507 env->cp15.c7_par = val & 0xfffff1ff;
1509 break;
1510 case 8: {
1511 uint32_t phys_addr;
1512 target_ulong page_size;
1513 int prot;
1514 int ret, is_user = op2 & 2;
1515 int access_type = op2 & 1;
1517 if (op2 & 4) {
1518 /* Other states are only available with TrustZone */
1519 goto bad_reg;
1521 ret = get_phys_addr(env, val, access_type, is_user,
1522 &phys_addr, &prot, &page_size);
1523 if (ret == 0) {
1524 /* We do not set any attribute bits in the PAR */
1525 if (page_size == (1 << 24)
1526 && arm_feature(env, ARM_FEATURE_V7)) {
1527 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1528 } else {
1529 env->cp15.c7_par = phys_addr & 0xfffff000;
1531 } else {
1532 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1533 ((ret & (12 << 1)) >> 6) |
1534 ((ret & 0xf) << 1) | 1;
1536 break;
1540 break;
1541 case 8: /* MMU TLB control. */
1542 switch (op2) {
1543 case 0: /* Invalidate all. */
1544 tlb_flush(env, 0);
1545 break;
1546 case 1: /* Invalidate single TLB entry. */
1547 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1548 break;
1549 case 2: /* Invalidate on ASID. */
1550 tlb_flush(env, val == 0);
1551 break;
1552 case 3: /* Invalidate single entry on MVA. */
1553 /* ??? This is like case 1, but ignores ASID. */
1554 tlb_flush(env, 1);
1555 break;
1556 default:
1557 goto bad_reg;
1559 break;
1560 case 9:
1561 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1562 break;
1563 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1564 break; /* Ignore ReadBuffer access */
1565 switch (crm) {
1566 case 0: /* Cache lockdown. */
1567 switch (op1) {
1568 case 0: /* L1 cache. */
1569 switch (op2) {
1570 case 0:
1571 env->cp15.c9_data = val;
1572 break;
1573 case 1:
1574 env->cp15.c9_insn = val;
1575 break;
1576 default:
1577 goto bad_reg;
1579 break;
1580 case 1: /* L2 cache. */
1581 /* Ignore writes to L2 lockdown/auxiliary registers. */
1582 break;
1583 default:
1584 goto bad_reg;
1586 break;
1587 case 1: /* TCM memory region registers. */
1588 /* Not implemented. */
1589 goto bad_reg;
1590 default:
1591 goto bad_reg;
1593 break;
1594 case 10: /* MMU TLB lockdown. */
1595 /* ??? TLB lockdown not implemented. */
1596 break;
1597 case 12: /* Reserved. */
1598 goto bad_reg;
1599 case 13: /* Process ID. */
1600 switch (op2) {
1601 case 0:
1602 /* Unlike real hardware the qemu TLB uses virtual addresses,
1603 not modified virtual addresses, so this causes a TLB flush.
1605 if (env->cp15.c13_fcse != val)
1606 tlb_flush(env, 1);
1607 env->cp15.c13_fcse = val;
1608 break;
1609 case 1:
1610 /* This changes the ASID, so do a TLB flush. */
1611 if (env->cp15.c13_context != val
1612 && !arm_feature(env, ARM_FEATURE_MPU))
1613 tlb_flush(env, 0);
1614 env->cp15.c13_context = val;
1615 break;
1616 default:
1617 goto bad_reg;
1619 break;
1620 case 14: /* Reserved. */
1621 goto bad_reg;
1622 case 15: /* Implementation specific. */
1623 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1624 if (op2 == 0 && crm == 1) {
1625 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1626 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1627 tb_flush(env);
1628 env->cp15.c15_cpar = val & 0x3fff;
1630 break;
1632 goto bad_reg;
1634 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1635 switch (crm) {
1636 case 0:
1637 break;
1638 case 1: /* Set TI925T configuration. */
1639 env->cp15.c15_ticonfig = val & 0xe7;
1640 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1641 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1642 break;
1643 case 2: /* Set I_max. */
1644 env->cp15.c15_i_max = val;
1645 break;
1646 case 3: /* Set I_min. */
1647 env->cp15.c15_i_min = val;
1648 break;
1649 case 4: /* Set thread-ID. */
1650 env->cp15.c15_threadid = val & 0xffff;
1651 break;
1652 case 8: /* Wait-for-interrupt (deprecated). */
1653 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1654 break;
1655 default:
1656 goto bad_reg;
1659 break;
1661 return;
1662 bad_reg:
1663 /* ??? For debugging only. Should raise illegal instruction exception. */
1664 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1665 (insn >> 16) & 0xf, crm, op1, op2);
1668 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1670 int op1;
1671 int op2;
1672 int crm;
1674 op1 = (insn >> 21) & 7;
1675 op2 = (insn >> 5) & 7;
1676 crm = insn & 0xf;
1677 switch ((insn >> 16) & 0xf) {
1678 case 0: /* ID codes. */
1679 switch (op1) {
1680 case 0:
1681 switch (crm) {
1682 case 0:
1683 switch (op2) {
1684 case 0: /* Device ID. */
1685 return env->cp15.c0_cpuid;
1686 case 1: /* Cache Type. */
1687 return env->cp15.c0_cachetype;
1688 case 2: /* TCM status. */
1689 return 0;
1690 case 3: /* TLB type register. */
1691 return 0; /* No lockable TLB entries. */
1692 case 5: /* MPIDR */
1693 /* The MPIDR was standardised in v7; prior to
1694 * this it was implemented only in the 11MPCore.
1695 * For all other pre-v7 cores it does not exist.
1697 if (arm_feature(env, ARM_FEATURE_V7) ||
1698 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1699 int mpidr = env->cpu_index;
1700 /* We don't support setting cluster ID ([8..11])
1701 * so these bits always RAZ.
1703 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1704 mpidr |= (1 << 31);
1705 /* Cores which are uniprocessor (non-coherent)
1706 * but still implement the MP extensions set
1707 * bit 30. (For instance, A9UP.) However we do
1708 * not currently model any of those cores.
1711 return mpidr;
1713 /* otherwise fall through to the unimplemented-reg case */
1714 default:
1715 goto bad_reg;
1717 case 1:
1718 if (!arm_feature(env, ARM_FEATURE_V6))
1719 goto bad_reg;
1720 return env->cp15.c0_c1[op2];
1721 case 2:
1722 if (!arm_feature(env, ARM_FEATURE_V6))
1723 goto bad_reg;
1724 return env->cp15.c0_c2[op2];
1725 case 3: case 4: case 5: case 6: case 7:
1726 return 0;
1727 default:
1728 goto bad_reg;
1730 case 1:
1731 /* These registers aren't documented on arm11 cores. However
1732 Linux looks at them anyway. */
1733 if (!arm_feature(env, ARM_FEATURE_V6))
1734 goto bad_reg;
1735 if (crm != 0)
1736 goto bad_reg;
1737 if (!arm_feature(env, ARM_FEATURE_V7))
1738 return 0;
1740 switch (op2) {
1741 case 0:
1742 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1743 case 1:
1744 return env->cp15.c0_clid;
1745 case 7:
1746 return 0;
1748 goto bad_reg;
1749 case 2:
1750 if (op2 != 0 || crm != 0)
1751 goto bad_reg;
1752 return env->cp15.c0_cssel;
1753 default:
1754 goto bad_reg;
1756 case 1: /* System configuration. */
1757 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1758 op2 = 0;
1759 switch (op2) {
1760 case 0: /* Control register. */
1761 return env->cp15.c1_sys;
1762 case 1: /* Auxiliary control register. */
1763 if (arm_feature(env, ARM_FEATURE_XSCALE))
1764 return env->cp15.c1_xscaleauxcr;
1765 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1766 goto bad_reg;
1767 switch (ARM_CPUID(env)) {
1768 case ARM_CPUID_ARM1026:
1769 return 1;
1770 case ARM_CPUID_ARM1136:
1771 case ARM_CPUID_ARM1136_R2:
1772 return 7;
1773 case ARM_CPUID_ARM11MPCORE:
1774 return 1;
1775 case ARM_CPUID_CORTEXA8:
1776 return 2;
1777 case ARM_CPUID_CORTEXA9:
1778 return 0;
1779 default:
1780 goto bad_reg;
1782 case 2: /* Coprocessor access register. */
1783 if (arm_feature(env, ARM_FEATURE_XSCALE))
1784 goto bad_reg;
1785 return env->cp15.c1_coproc;
1786 default:
1787 goto bad_reg;
1789 case 2: /* MMU Page table control / MPU cache control. */
1790 if (arm_feature(env, ARM_FEATURE_MPU)) {
1791 switch (op2) {
1792 case 0:
1793 return env->cp15.c2_data;
1794 break;
1795 case 1:
1796 return env->cp15.c2_insn;
1797 break;
1798 default:
1799 goto bad_reg;
1801 } else {
1802 switch (op2) {
1803 case 0:
1804 return env->cp15.c2_base0;
1805 case 1:
1806 return env->cp15.c2_base1;
1807 case 2:
1808 return env->cp15.c2_control;
1809 default:
1810 goto bad_reg;
1813 case 3: /* MMU Domain access control / MPU write buffer control. */
1814 return env->cp15.c3;
1815 case 4: /* Reserved. */
1816 goto bad_reg;
1817 case 5: /* MMU Fault status / MPU access permission. */
1818 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1819 op2 = 0;
1820 switch (op2) {
1821 case 0:
1822 if (arm_feature(env, ARM_FEATURE_MPU))
1823 return simple_mpu_ap_bits(env->cp15.c5_data);
1824 return env->cp15.c5_data;
1825 case 1:
1826 if (arm_feature(env, ARM_FEATURE_MPU))
1827 return simple_mpu_ap_bits(env->cp15.c5_data);
1828 return env->cp15.c5_insn;
1829 case 2:
1830 if (!arm_feature(env, ARM_FEATURE_MPU))
1831 goto bad_reg;
1832 return env->cp15.c5_data;
1833 case 3:
1834 if (!arm_feature(env, ARM_FEATURE_MPU))
1835 goto bad_reg;
1836 return env->cp15.c5_insn;
1837 default:
1838 goto bad_reg;
1840 case 6: /* MMU Fault address. */
1841 if (arm_feature(env, ARM_FEATURE_MPU)) {
1842 if (crm >= 8)
1843 goto bad_reg;
1844 return env->cp15.c6_region[crm];
1845 } else {
1846 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1847 op2 = 0;
1848 switch (op2) {
1849 case 0:
1850 return env->cp15.c6_data;
1851 case 1:
1852 if (arm_feature(env, ARM_FEATURE_V6)) {
1853 /* Watchpoint Fault Adrress. */
1854 return 0; /* Not implemented. */
1855 } else {
1856 /* Instruction Fault Adrress. */
1857 /* Arm9 doesn't have an IFAR, but implementing it anyway
1858 shouldn't do any harm. */
1859 return env->cp15.c6_insn;
1861 case 2:
1862 if (arm_feature(env, ARM_FEATURE_V6)) {
1863 /* Instruction Fault Adrress. */
1864 return env->cp15.c6_insn;
1865 } else {
1866 goto bad_reg;
1868 default:
1869 goto bad_reg;
1872 case 7: /* Cache control. */
1873 if (crm == 4 && op1 == 0 && op2 == 0) {
1874 return env->cp15.c7_par;
1876 /* FIXME: Should only clear Z flag if destination is r15. */
1877 env->ZF = 0;
1878 return 0;
1879 case 8: /* MMU TLB control. */
1880 goto bad_reg;
1881 case 9: /* Cache lockdown. */
1882 switch (op1) {
1883 case 0: /* L1 cache. */
1884 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1885 return 0;
1886 switch (op2) {
1887 case 0:
1888 return env->cp15.c9_data;
1889 case 1:
1890 return env->cp15.c9_insn;
1891 default:
1892 goto bad_reg;
1894 case 1: /* L2 cache */
1895 if (crm != 0)
1896 goto bad_reg;
1897 /* L2 Lockdown and Auxiliary control. */
1898 return 0;
1899 default:
1900 goto bad_reg;
1902 case 10: /* MMU TLB lockdown. */
1903 /* ??? TLB lockdown not implemented. */
1904 return 0;
1905 case 11: /* TCM DMA control. */
1906 case 12: /* Reserved. */
1907 goto bad_reg;
1908 case 13: /* Process ID. */
1909 switch (op2) {
1910 case 0:
1911 return env->cp15.c13_fcse;
1912 case 1:
1913 return env->cp15.c13_context;
1914 default:
1915 goto bad_reg;
1917 case 14: /* Reserved. */
1918 goto bad_reg;
1919 case 15: /* Implementation specific. */
1920 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1921 if (op2 == 0 && crm == 1)
1922 return env->cp15.c15_cpar;
1924 goto bad_reg;
1926 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1927 switch (crm) {
1928 case 0:
1929 return 0;
1930 case 1: /* Read TI925T configuration. */
1931 return env->cp15.c15_ticonfig;
1932 case 2: /* Read I_max. */
1933 return env->cp15.c15_i_max;
1934 case 3: /* Read I_min. */
1935 return env->cp15.c15_i_min;
1936 case 4: /* Read thread-ID. */
1937 return env->cp15.c15_threadid;
1938 case 8: /* TI925T_status */
1939 return 0;
1941 /* TODO: Peripheral port remap register:
1942 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1943 * controller base address at $rn & ~0xfff and map size of
1944 * 0x200 << ($rn & 0xfff), when MMU is off. */
1945 goto bad_reg;
1947 return 0;
1949 bad_reg:
1950 /* ??? For debugging only. Should raise illegal instruction exception. */
1951 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1952 (insn >> 16) & 0xf, crm, op1, op2);
1953 return 0;
1956 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1958 if ((env->uncached_cpsr & CPSR_M) == mode) {
1959 env->regs[13] = val;
1960 } else {
1961 env->banked_r13[bank_number(mode)] = val;
1965 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1967 if ((env->uncached_cpsr & CPSR_M) == mode) {
1968 return env->regs[13];
1969 } else {
1970 return env->banked_r13[bank_number(mode)];
1974 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1976 switch (reg) {
1977 case 0: /* APSR */
1978 return xpsr_read(env) & 0xf8000000;
1979 case 1: /* IAPSR */
1980 return xpsr_read(env) & 0xf80001ff;
1981 case 2: /* EAPSR */
1982 return xpsr_read(env) & 0xff00fc00;
1983 case 3: /* xPSR */
1984 return xpsr_read(env) & 0xff00fdff;
1985 case 5: /* IPSR */
1986 return xpsr_read(env) & 0x000001ff;
1987 case 6: /* EPSR */
1988 return xpsr_read(env) & 0x0700fc00;
1989 case 7: /* IEPSR */
1990 return xpsr_read(env) & 0x0700edff;
1991 case 8: /* MSP */
1992 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1993 case 9: /* PSP */
1994 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1995 case 16: /* PRIMASK */
1996 return (env->uncached_cpsr & CPSR_I) != 0;
1997 case 17: /* FAULTMASK */
1998 return (env->uncached_cpsr & CPSR_F) != 0;
1999 case 18: /* BASEPRI */
2000 case 19: /* BASEPRI_MAX */
2001 return env->v7m.basepri;
2002 case 20: /* CONTROL */
2003 return env->v7m.control;
2004 default:
2005 /* ??? For debugging only. */
2006 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2007 return 0;
2011 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
2013 switch (reg) {
2014 case 0: /* APSR */
2015 xpsr_write(env, val, 0xf8000000);
2016 break;
2017 case 1: /* IAPSR */
2018 xpsr_write(env, val, 0xf8000000);
2019 break;
2020 case 2: /* EAPSR */
2021 xpsr_write(env, val, 0xfe00fc00);
2022 break;
2023 case 3: /* xPSR */
2024 xpsr_write(env, val, 0xfe00fc00);
2025 break;
2026 case 5: /* IPSR */
2027 /* IPSR bits are readonly. */
2028 break;
2029 case 6: /* EPSR */
2030 xpsr_write(env, val, 0x0600fc00);
2031 break;
2032 case 7: /* IEPSR */
2033 xpsr_write(env, val, 0x0600fc00);
2034 break;
2035 case 8: /* MSP */
2036 if (env->v7m.current_sp)
2037 env->v7m.other_sp = val;
2038 else
2039 env->regs[13] = val;
2040 break;
2041 case 9: /* PSP */
2042 if (env->v7m.current_sp)
2043 env->regs[13] = val;
2044 else
2045 env->v7m.other_sp = val;
2046 break;
2047 case 16: /* PRIMASK */
2048 if (val & 1)
2049 env->uncached_cpsr |= CPSR_I;
2050 else
2051 env->uncached_cpsr &= ~CPSR_I;
2052 break;
2053 case 17: /* FAULTMASK */
2054 if (val & 1)
2055 env->uncached_cpsr |= CPSR_F;
2056 else
2057 env->uncached_cpsr &= ~CPSR_F;
2058 break;
2059 case 18: /* BASEPRI */
2060 env->v7m.basepri = val & 0xff;
2061 break;
2062 case 19: /* BASEPRI_MAX */
2063 val &= 0xff;
2064 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2065 env->v7m.basepri = val;
2066 break;
2067 case 20: /* CONTROL */
2068 env->v7m.control = val & 3;
2069 switch_v7m_sp(env, (val & 2) != 0);
2070 break;
2071 default:
2072 /* ??? For debugging only. */
2073 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2074 return;
2078 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2079 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2080 void *opaque)
2082 if (cpnum < 0 || cpnum > 14) {
2083 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2084 return;
2087 env->cp[cpnum].cp_read = cp_read;
2088 env->cp[cpnum].cp_write = cp_write;
2089 env->cp[cpnum].opaque = opaque;
2092 #endif
2094 /* Note that signed overflow is undefined in C. The following routines are
2095 careful to use unsigned types where modulo arithmetic is required.
2096 Failure to do so _will_ break on newer gcc. */
2098 /* Signed saturating arithmetic. */
2100 /* Perform 16-bit signed saturating addition. */
2101 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2103 uint16_t res;
2105 res = a + b;
2106 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2107 if (a & 0x8000)
2108 res = 0x8000;
2109 else
2110 res = 0x7fff;
2112 return res;
2115 /* Perform 8-bit signed saturating addition. */
2116 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2118 uint8_t res;
2120 res = a + b;
2121 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2122 if (a & 0x80)
2123 res = 0x80;
2124 else
2125 res = 0x7f;
2127 return res;
2130 /* Perform 16-bit signed saturating subtraction. */
2131 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2133 uint16_t res;
2135 res = a - b;
2136 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2137 if (a & 0x8000)
2138 res = 0x8000;
2139 else
2140 res = 0x7fff;
2142 return res;
2145 /* Perform 8-bit signed saturating subtraction. */
2146 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2148 uint8_t res;
2150 res = a - b;
2151 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2152 if (a & 0x80)
2153 res = 0x80;
2154 else
2155 res = 0x7f;
2157 return res;
2160 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2161 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2162 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2163 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2164 #define PFX q
2166 #include "op_addsub.h"
2168 /* Unsigned saturating arithmetic. */
2169 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2171 uint16_t res;
2172 res = a + b;
2173 if (res < a)
2174 res = 0xffff;
2175 return res;
2178 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2180 if (a > b)
2181 return a - b;
2182 else
2183 return 0;
2186 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2188 uint8_t res;
2189 res = a + b;
2190 if (res < a)
2191 res = 0xff;
2192 return res;
2195 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2197 if (a > b)
2198 return a - b;
2199 else
2200 return 0;
2203 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2204 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2205 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2206 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2207 #define PFX uq
2209 #include "op_addsub.h"
2211 /* Signed modulo arithmetic. */
2212 #define SARITH16(a, b, n, op) do { \
2213 int32_t sum; \
2214 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2215 RESULT(sum, n, 16); \
2216 if (sum >= 0) \
2217 ge |= 3 << (n * 2); \
2218 } while(0)
2220 #define SARITH8(a, b, n, op) do { \
2221 int32_t sum; \
2222 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2223 RESULT(sum, n, 8); \
2224 if (sum >= 0) \
2225 ge |= 1 << n; \
2226 } while(0)
2229 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2230 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2231 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2232 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2233 #define PFX s
2234 #define ARITH_GE
2236 #include "op_addsub.h"
2238 /* Unsigned modulo arithmetic. */
2239 #define ADD16(a, b, n) do { \
2240 uint32_t sum; \
2241 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2242 RESULT(sum, n, 16); \
2243 if ((sum >> 16) == 1) \
2244 ge |= 3 << (n * 2); \
2245 } while(0)
2247 #define ADD8(a, b, n) do { \
2248 uint32_t sum; \
2249 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2250 RESULT(sum, n, 8); \
2251 if ((sum >> 8) == 1) \
2252 ge |= 1 << n; \
2253 } while(0)
2255 #define SUB16(a, b, n) do { \
2256 uint32_t sum; \
2257 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2258 RESULT(sum, n, 16); \
2259 if ((sum >> 16) == 0) \
2260 ge |= 3 << (n * 2); \
2261 } while(0)
2263 #define SUB8(a, b, n) do { \
2264 uint32_t sum; \
2265 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2266 RESULT(sum, n, 8); \
2267 if ((sum >> 8) == 0) \
2268 ge |= 1 << n; \
2269 } while(0)
2271 #define PFX u
2272 #define ARITH_GE
2274 #include "op_addsub.h"
2276 /* Halved signed arithmetic. */
2277 #define ADD16(a, b, n) \
2278 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2279 #define SUB16(a, b, n) \
2280 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2281 #define ADD8(a, b, n) \
2282 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2283 #define SUB8(a, b, n) \
2284 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2285 #define PFX sh
2287 #include "op_addsub.h"
2289 /* Halved unsigned arithmetic. */
2290 #define ADD16(a, b, n) \
2291 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2292 #define SUB16(a, b, n) \
2293 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2294 #define ADD8(a, b, n) \
2295 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2296 #define SUB8(a, b, n) \
2297 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2298 #define PFX uh
2300 #include "op_addsub.h"
2302 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2304 if (a > b)
2305 return a - b;
2306 else
2307 return b - a;
2310 /* Unsigned sum of absolute byte differences. */
2311 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2313 uint32_t sum;
2314 sum = do_usad(a, b);
2315 sum += do_usad(a >> 8, b >> 8);
2316 sum += do_usad(a >> 16, b >>16);
2317 sum += do_usad(a >> 24, b >> 24);
2318 return sum;
2321 /* For ARMv6 SEL instruction. */
2322 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2324 uint32_t mask;
2326 mask = 0;
2327 if (flags & 1)
2328 mask |= 0xff;
2329 if (flags & 2)
2330 mask |= 0xff00;
2331 if (flags & 4)
2332 mask |= 0xff0000;
2333 if (flags & 8)
2334 mask |= 0xff000000;
2335 return (a & mask) | (b & ~mask);
2338 uint32_t HELPER(logicq_cc)(uint64_t val)
2340 return (val >> 32) | (val != 0);
2343 /* VFP support. We follow the convention used for VFP instrunctions:
2344 Single precition routines have a "s" suffix, double precision a
2345 "d" suffix. */
2347 /* Convert host exception flags to vfp form. */
2348 static inline int vfp_exceptbits_from_host(int host_bits)
2350 int target_bits = 0;
2352 if (host_bits & float_flag_invalid)
2353 target_bits |= 1;
2354 if (host_bits & float_flag_divbyzero)
2355 target_bits |= 2;
2356 if (host_bits & float_flag_overflow)
2357 target_bits |= 4;
2358 if (host_bits & float_flag_underflow)
2359 target_bits |= 8;
2360 if (host_bits & float_flag_inexact)
2361 target_bits |= 0x10;
2362 if (host_bits & float_flag_input_denormal)
2363 target_bits |= 0x80;
2364 return target_bits;
2367 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2369 int i;
2370 uint32_t fpscr;
2372 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2373 | (env->vfp.vec_len << 16)
2374 | (env->vfp.vec_stride << 20);
2375 i = get_float_exception_flags(&env->vfp.fp_status);
2376 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2377 fpscr |= vfp_exceptbits_from_host(i);
2378 return fpscr;
2381 uint32_t vfp_get_fpscr(CPUState *env)
2383 return HELPER(vfp_get_fpscr)(env);
2386 /* Convert vfp exception flags to target form. */
2387 static inline int vfp_exceptbits_to_host(int target_bits)
2389 int host_bits = 0;
2391 if (target_bits & 1)
2392 host_bits |= float_flag_invalid;
2393 if (target_bits & 2)
2394 host_bits |= float_flag_divbyzero;
2395 if (target_bits & 4)
2396 host_bits |= float_flag_overflow;
2397 if (target_bits & 8)
2398 host_bits |= float_flag_underflow;
2399 if (target_bits & 0x10)
2400 host_bits |= float_flag_inexact;
2401 if (target_bits & 0x80)
2402 host_bits |= float_flag_input_denormal;
2403 return host_bits;
2406 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2408 int i;
2409 uint32_t changed;
2411 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2412 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2413 env->vfp.vec_len = (val >> 16) & 7;
2414 env->vfp.vec_stride = (val >> 20) & 3;
2416 changed ^= val;
2417 if (changed & (3 << 22)) {
2418 i = (val >> 22) & 3;
2419 switch (i) {
2420 case 0:
2421 i = float_round_nearest_even;
2422 break;
2423 case 1:
2424 i = float_round_up;
2425 break;
2426 case 2:
2427 i = float_round_down;
2428 break;
2429 case 3:
2430 i = float_round_to_zero;
2431 break;
2433 set_float_rounding_mode(i, &env->vfp.fp_status);
2435 if (changed & (1 << 24)) {
2436 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2437 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2439 if (changed & (1 << 25))
2440 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2442 i = vfp_exceptbits_to_host(val);
2443 set_float_exception_flags(i, &env->vfp.fp_status);
2444 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2447 void vfp_set_fpscr(CPUState *env, uint32_t val)
2449 HELPER(vfp_set_fpscr)(env, val);
2452 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2454 #define VFP_BINOP(name) \
2455 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2457 return float32_ ## name (a, b, &env->vfp.fp_status); \
2459 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2461 return float64_ ## name (a, b, &env->vfp.fp_status); \
2463 VFP_BINOP(add)
2464 VFP_BINOP(sub)
2465 VFP_BINOP(mul)
2466 VFP_BINOP(div)
2467 #undef VFP_BINOP
2469 float32 VFP_HELPER(neg, s)(float32 a)
2471 return float32_chs(a);
2474 float64 VFP_HELPER(neg, d)(float64 a)
2476 return float64_chs(a);
2479 float32 VFP_HELPER(abs, s)(float32 a)
2481 return float32_abs(a);
2484 float64 VFP_HELPER(abs, d)(float64 a)
2486 return float64_abs(a);
2489 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2491 return float32_sqrt(a, &env->vfp.fp_status);
2494 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2496 return float64_sqrt(a, &env->vfp.fp_status);
2499 /* XXX: check quiet/signaling case */
2500 #define DO_VFP_cmp(p, type) \
2501 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2503 uint32_t flags; \
2504 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2505 case 0: flags = 0x6; break; \
2506 case -1: flags = 0x8; break; \
2507 case 1: flags = 0x2; break; \
2508 default: case 2: flags = 0x3; break; \
2510 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2511 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2513 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2515 uint32_t flags; \
2516 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2517 case 0: flags = 0x6; break; \
2518 case -1: flags = 0x8; break; \
2519 case 1: flags = 0x2; break; \
2520 default: case 2: flags = 0x3; break; \
2522 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2523 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2525 DO_VFP_cmp(s, float32)
2526 DO_VFP_cmp(d, float64)
2527 #undef DO_VFP_cmp
2529 /* Integer to float conversion. */
2530 float32 VFP_HELPER(uito, s)(uint32_t x, CPUState *env)
2532 return uint32_to_float32(x, &env->vfp.fp_status);
2535 float64 VFP_HELPER(uito, d)(uint32_t x, CPUState *env)
2537 return uint32_to_float64(x, &env->vfp.fp_status);
2540 float32 VFP_HELPER(sito, s)(uint32_t x, CPUState *env)
2542 return int32_to_float32(x, &env->vfp.fp_status);
2545 float64 VFP_HELPER(sito, d)(uint32_t x, CPUState *env)
2547 return int32_to_float64(x, &env->vfp.fp_status);
2550 /* Float to integer conversion. */
2551 uint32_t VFP_HELPER(toui, s)(float32 x, CPUState *env)
2553 if (float32_is_any_nan(x)) {
2554 float_raise(float_flag_invalid, &env->vfp.fp_status);
2555 return 0;
2557 return float32_to_uint32(x, &env->vfp.fp_status);
2560 uint32_t VFP_HELPER(toui, d)(float64 x, CPUState *env)
2562 if (float64_is_any_nan(x)) {
2563 float_raise(float_flag_invalid, &env->vfp.fp_status);
2564 return 0;
2566 return float64_to_uint32(x, &env->vfp.fp_status);
2569 uint32_t VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2571 if (float32_is_any_nan(x)) {
2572 float_raise(float_flag_invalid, &env->vfp.fp_status);
2573 return 0;
2575 return float32_to_int32(x, &env->vfp.fp_status);
2578 uint32_t VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2580 if (float64_is_any_nan(x)) {
2581 float_raise(float_flag_invalid, &env->vfp.fp_status);
2582 return 0;
2584 return float64_to_int32(x, &env->vfp.fp_status);
2587 uint32_t VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2589 if (float32_is_any_nan(x)) {
2590 float_raise(float_flag_invalid, &env->vfp.fp_status);
2591 return 0;
2593 return float32_to_uint32_round_to_zero(x, &env->vfp.fp_status);
2596 uint32_t VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2598 if (float64_is_any_nan(x)) {
2599 float_raise(float_flag_invalid, &env->vfp.fp_status);
2600 return 0;
2602 return float64_to_uint32_round_to_zero(x, &env->vfp.fp_status);
2605 uint32_t VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2607 if (float32_is_any_nan(x)) {
2608 float_raise(float_flag_invalid, &env->vfp.fp_status);
2609 return 0;
2611 return float32_to_int32_round_to_zero(x, &env->vfp.fp_status);
2614 uint32_t VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2616 if (float64_is_any_nan(x)) {
2617 float_raise(float_flag_invalid, &env->vfp.fp_status);
2618 return 0;
2620 return float64_to_int32_round_to_zero(x, &env->vfp.fp_status);
2623 /* floating point conversion */
2624 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2626 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2627 /* ARM requires that S<->D conversion of any kind of NaN generates
2628 * a quiet NaN by forcing the most significant frac bit to 1.
2630 return float64_maybe_silence_nan(r);
2633 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2635 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2636 /* ARM requires that S<->D conversion of any kind of NaN generates
2637 * a quiet NaN by forcing the most significant frac bit to 1.
2639 return float32_maybe_silence_nan(r);
2642 /* VFP3 fixed point conversion. */
2643 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2644 float##fsz VFP_HELPER(name##to, p)(uint##fsz##_t x, uint32_t shift, \
2645 CPUState *env) \
2647 float##fsz tmp; \
2648 tmp = sign##int32_to_##float##fsz ((itype##_t)x, &env->vfp.fp_status); \
2649 return float##fsz##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2651 uint##fsz##_t VFP_HELPER(to##name, p)(float##fsz x, uint32_t shift, \
2652 CPUState *env) \
2654 float##fsz tmp; \
2655 if (float##fsz##_is_any_nan(x)) { \
2656 float_raise(float_flag_invalid, &env->vfp.fp_status); \
2657 return 0; \
2659 tmp = float##fsz##_scalbn(x, shift, &env->vfp.fp_status); \
2660 return float##fsz##_to_##itype##_round_to_zero(tmp, &env->vfp.fp_status); \
2663 VFP_CONV_FIX(sh, d, 64, int16, )
2664 VFP_CONV_FIX(sl, d, 64, int32, )
2665 VFP_CONV_FIX(uh, d, 64, uint16, u)
2666 VFP_CONV_FIX(ul, d, 64, uint32, u)
2667 VFP_CONV_FIX(sh, s, 32, int16, )
2668 VFP_CONV_FIX(sl, s, 32, int32, )
2669 VFP_CONV_FIX(uh, s, 32, uint16, u)
2670 VFP_CONV_FIX(ul, s, 32, uint32, u)
2671 #undef VFP_CONV_FIX
2673 /* Half precision conversions. */
2674 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
2676 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2677 float32 r = float16_to_float32(make_float16(a), ieee, s);
2678 if (ieee) {
2679 return float32_maybe_silence_nan(r);
2681 return r;
2684 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
2686 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2687 float16 r = float32_to_float16(a, ieee, s);
2688 if (ieee) {
2689 r = float16_maybe_silence_nan(r);
2691 return float16_val(r);
2694 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2696 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2699 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
2701 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2704 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2706 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2709 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2711 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2714 #define float32_two make_float32(0x40000000)
2715 #define float32_three make_float32(0x40400000)
2716 #define float32_one_point_five make_float32(0x3fc00000)
2718 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2720 float_status *s = &env->vfp.standard_fp_status;
2721 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2722 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2723 return float32_two;
2725 return float32_sub(float32_two, float32_mul(a, b, s), s);
2728 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2730 float_status *s = &env->vfp.standard_fp_status;
2731 float32 product;
2732 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2733 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2734 return float32_one_point_five;
2736 product = float32_mul(a, b, s);
2737 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2740 /* NEON helpers. */
2742 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2743 * int->float conversions at run-time. */
2744 #define float64_256 make_float64(0x4070000000000000LL)
2745 #define float64_512 make_float64(0x4080000000000000LL)
2747 /* The algorithm that must be used to calculate the estimate
2748 * is specified by the ARM ARM.
2750 static float64 recip_estimate(float64 a, CPUState *env)
2752 float_status *s = &env->vfp.standard_fp_status;
2753 /* q = (int)(a * 512.0) */
2754 float64 q = float64_mul(float64_512, a, s);
2755 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2757 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2758 q = int64_to_float64(q_int, s);
2759 q = float64_add(q, float64_half, s);
2760 q = float64_div(q, float64_512, s);
2761 q = float64_div(float64_one, q, s);
2763 /* s = (int)(256.0 * r + 0.5) */
2764 q = float64_mul(q, float64_256, s);
2765 q = float64_add(q, float64_half, s);
2766 q_int = float64_to_int64_round_to_zero(q, s);
2768 /* return (double)s / 256.0 */
2769 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2772 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2774 float_status *s = &env->vfp.standard_fp_status;
2775 float64 f64;
2776 uint32_t val32 = float32_val(a);
2778 int result_exp;
2779 int a_exp = (val32 & 0x7f800000) >> 23;
2780 int sign = val32 & 0x80000000;
2782 if (float32_is_any_nan(a)) {
2783 if (float32_is_signaling_nan(a)) {
2784 float_raise(float_flag_invalid, s);
2786 return float32_default_nan;
2787 } else if (float32_is_infinity(a)) {
2788 return float32_set_sign(float32_zero, float32_is_neg(a));
2789 } else if (float32_is_zero_or_denormal(a)) {
2790 float_raise(float_flag_divbyzero, s);
2791 return float32_set_sign(float32_infinity, float32_is_neg(a));
2792 } else if (a_exp >= 253) {
2793 float_raise(float_flag_underflow, s);
2794 return float32_set_sign(float32_zero, float32_is_neg(a));
2797 f64 = make_float64((0x3feULL << 52)
2798 | ((int64_t)(val32 & 0x7fffff) << 29));
2800 result_exp = 253 - a_exp;
2802 f64 = recip_estimate(f64, env);
2804 val32 = sign
2805 | ((result_exp & 0xff) << 23)
2806 | ((float64_val(f64) >> 29) & 0x7fffff);
2807 return make_float32(val32);
2810 /* The algorithm that must be used to calculate the estimate
2811 * is specified by the ARM ARM.
2813 static float64 recip_sqrt_estimate(float64 a, CPUState *env)
2815 float_status *s = &env->vfp.standard_fp_status;
2816 float64 q;
2817 int64_t q_int;
2819 if (float64_lt(a, float64_half, s)) {
2820 /* range 0.25 <= a < 0.5 */
2822 /* a in units of 1/512 rounded down */
2823 /* q0 = (int)(a * 512.0); */
2824 q = float64_mul(float64_512, a, s);
2825 q_int = float64_to_int64_round_to_zero(q, s);
2827 /* reciprocal root r */
2828 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2829 q = int64_to_float64(q_int, s);
2830 q = float64_add(q, float64_half, s);
2831 q = float64_div(q, float64_512, s);
2832 q = float64_sqrt(q, s);
2833 q = float64_div(float64_one, q, s);
2834 } else {
2835 /* range 0.5 <= a < 1.0 */
2837 /* a in units of 1/256 rounded down */
2838 /* q1 = (int)(a * 256.0); */
2839 q = float64_mul(float64_256, a, s);
2840 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2842 /* reciprocal root r */
2843 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2844 q = int64_to_float64(q_int, s);
2845 q = float64_add(q, float64_half, s);
2846 q = float64_div(q, float64_256, s);
2847 q = float64_sqrt(q, s);
2848 q = float64_div(float64_one, q, s);
2850 /* r in units of 1/256 rounded to nearest */
2851 /* s = (int)(256.0 * r + 0.5); */
2853 q = float64_mul(q, float64_256,s );
2854 q = float64_add(q, float64_half, s);
2855 q_int = float64_to_int64_round_to_zero(q, s);
2857 /* return (double)s / 256.0;*/
2858 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2861 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2863 float_status *s = &env->vfp.standard_fp_status;
2864 int result_exp;
2865 float64 f64;
2866 uint32_t val;
2867 uint64_t val64;
2869 val = float32_val(a);
2871 if (float32_is_any_nan(a)) {
2872 if (float32_is_signaling_nan(a)) {
2873 float_raise(float_flag_invalid, s);
2875 return float32_default_nan;
2876 } else if (float32_is_zero_or_denormal(a)) {
2877 float_raise(float_flag_divbyzero, s);
2878 return float32_set_sign(float32_infinity, float32_is_neg(a));
2879 } else if (float32_is_neg(a)) {
2880 float_raise(float_flag_invalid, s);
2881 return float32_default_nan;
2882 } else if (float32_is_infinity(a)) {
2883 return float32_zero;
2886 /* Normalize to a double-precision value between 0.25 and 1.0,
2887 * preserving the parity of the exponent. */
2888 if ((val & 0x800000) == 0) {
2889 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2890 | (0x3feULL << 52)
2891 | ((uint64_t)(val & 0x7fffff) << 29));
2892 } else {
2893 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2894 | (0x3fdULL << 52)
2895 | ((uint64_t)(val & 0x7fffff) << 29));
2898 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
2900 f64 = recip_sqrt_estimate(f64, env);
2902 val64 = float64_val(f64);
2904 val = ((val64 >> 63) & 0x80000000)
2905 | ((result_exp & 0xff) << 23)
2906 | ((val64 >> 29) & 0x7fffff);
2907 return make_float32(val);
2910 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2912 float64 f64;
2914 if ((a & 0x80000000) == 0) {
2915 return 0xffffffff;
2918 f64 = make_float64((0x3feULL << 52)
2919 | ((int64_t)(a & 0x7fffffff) << 21));
2921 f64 = recip_estimate (f64, env);
2923 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
2926 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2928 float64 f64;
2930 if ((a & 0xc0000000) == 0) {
2931 return 0xffffffff;
2934 if (a & 0x80000000) {
2935 f64 = make_float64((0x3feULL << 52)
2936 | ((uint64_t)(a & 0x7fffffff) << 21));
2937 } else { /* bits 31-30 == '01' */
2938 f64 = make_float64((0x3fdULL << 52)
2939 | ((uint64_t)(a & 0x3fffffff) << 22));
2942 f64 = recip_sqrt_estimate(f64, env);
2944 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
2947 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2949 val &= 1;
2950 if (env->teecr != val) {
2951 env->teecr = val;
2952 tb_flush(env);