Set cpuid definition to 0 before initializing it
[qemu/mdroth.git] / target-ppc / kvm.c
blob5cacef7b5806b791ec2d48f88917b2c1d880c58b
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
6 * Authors:
7 * Jerone Young <jyoung5@us.ibm.com>
8 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
9 * Hollis Blanchard <hollisb@us.ibm.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "qemu-timer.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_ppc.h"
27 #include "cpu.h"
28 #include "device_tree.h"
30 //#define DEBUG_KVM
32 #ifdef DEBUG_KVM
33 #define dprintf(fmt, ...) \
34 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
35 #else
36 #define dprintf(fmt, ...) \
37 do { } while (0)
38 #endif
40 static int cap_interrupt_unset = false;
41 static int cap_interrupt_level = false;
43 /* XXX We have a race condition where we actually have a level triggered
44 * interrupt, but the infrastructure can't expose that yet, so the guest
45 * takes but ignores it, goes to sleep and never gets notified that there's
46 * still an interrupt pending.
48 * As a quick workaround, let's just wake up again 20 ms after we injected
49 * an interrupt. That way we can assure that we're always reinjecting
50 * interrupts in case the guest swallowed them.
52 static QEMUTimer *idle_timer;
54 static void kvm_kick_env(void *env)
56 qemu_cpu_kick(env);
59 int kvm_arch_init(KVMState *s, int smp_cpus)
61 #ifdef KVM_CAP_PPC_UNSET_IRQ
62 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
63 #endif
64 #ifdef KVM_CAP_PPC_IRQ_LEVEL
65 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
66 #endif
68 if (!cap_interrupt_level) {
69 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
70 "VM to stall at times!\n");
73 return 0;
76 int kvm_arch_init_vcpu(CPUState *cenv)
78 int ret = 0;
79 struct kvm_sregs sregs;
81 sregs.pvr = cenv->spr[SPR_PVR];
82 ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
84 idle_timer = qemu_new_timer(vm_clock, kvm_kick_env, cenv);
86 return ret;
89 void kvm_arch_reset_vcpu(CPUState *env)
93 int kvm_arch_put_registers(CPUState *env, int level)
95 struct kvm_regs regs;
96 int ret;
97 int i;
99 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
100 if (ret < 0)
101 return ret;
103 regs.ctr = env->ctr;
104 regs.lr = env->lr;
105 regs.xer = env->xer;
106 regs.msr = env->msr;
107 regs.pc = env->nip;
109 regs.srr0 = env->spr[SPR_SRR0];
110 regs.srr1 = env->spr[SPR_SRR1];
112 regs.sprg0 = env->spr[SPR_SPRG0];
113 regs.sprg1 = env->spr[SPR_SPRG1];
114 regs.sprg2 = env->spr[SPR_SPRG2];
115 regs.sprg3 = env->spr[SPR_SPRG3];
116 regs.sprg4 = env->spr[SPR_SPRG4];
117 regs.sprg5 = env->spr[SPR_SPRG5];
118 regs.sprg6 = env->spr[SPR_SPRG6];
119 regs.sprg7 = env->spr[SPR_SPRG7];
121 for (i = 0;i < 32; i++)
122 regs.gpr[i] = env->gpr[i];
124 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
125 if (ret < 0)
126 return ret;
128 return ret;
131 int kvm_arch_get_registers(CPUState *env)
133 struct kvm_regs regs;
134 struct kvm_sregs sregs;
135 uint32_t i, ret;
137 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
138 if (ret < 0)
139 return ret;
141 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
142 if (ret < 0)
143 return ret;
145 env->ctr = regs.ctr;
146 env->lr = regs.lr;
147 env->xer = regs.xer;
148 env->msr = regs.msr;
149 env->nip = regs.pc;
151 env->spr[SPR_SRR0] = regs.srr0;
152 env->spr[SPR_SRR1] = regs.srr1;
154 env->spr[SPR_SPRG0] = regs.sprg0;
155 env->spr[SPR_SPRG1] = regs.sprg1;
156 env->spr[SPR_SPRG2] = regs.sprg2;
157 env->spr[SPR_SPRG3] = regs.sprg3;
158 env->spr[SPR_SPRG4] = regs.sprg4;
159 env->spr[SPR_SPRG5] = regs.sprg5;
160 env->spr[SPR_SPRG6] = regs.sprg6;
161 env->spr[SPR_SPRG7] = regs.sprg7;
163 for (i = 0;i < 32; i++)
164 env->gpr[i] = regs.gpr[i];
166 #ifdef KVM_CAP_PPC_SEGSTATE
167 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) {
168 env->sdr1 = sregs.u.s.sdr1;
170 /* Sync SLB */
171 #ifdef TARGET_PPC64
172 for (i = 0; i < 64; i++) {
173 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
174 sregs.u.s.ppc64.slb[i].slbv);
176 #endif
178 /* Sync SRs */
179 for (i = 0; i < 16; i++) {
180 env->sr[i] = sregs.u.s.ppc32.sr[i];
183 /* Sync BATs */
184 for (i = 0; i < 8; i++) {
185 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
186 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
187 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
188 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
191 #endif
193 return 0;
196 int kvmppc_set_interrupt(CPUState *env, int irq, int level)
198 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
200 if (irq != PPC_INTERRUPT_EXT) {
201 return 0;
204 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
205 return 0;
208 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
210 return 0;
213 #if defined(TARGET_PPCEMB)
214 #define PPC_INPUT_INT PPC40x_INPUT_INT
215 #elif defined(TARGET_PPC64)
216 #define PPC_INPUT_INT PPC970_INPUT_INT
217 #else
218 #define PPC_INPUT_INT PPC6xx_INPUT_INT
219 #endif
221 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
223 int r;
224 unsigned irq;
226 /* PowerPC Qemu tracks the various core input pins (interrupt, critical
227 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
228 if (!cap_interrupt_level &&
229 run->ready_for_interrupt_injection &&
230 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
231 (env->irq_input_state & (1<<PPC_INPUT_INT)))
233 /* For now KVM disregards the 'irq' argument. However, in the
234 * future KVM could cache it in-kernel to avoid a heavyweight exit
235 * when reading the UIC.
237 irq = KVM_INTERRUPT_SET;
239 dprintf("injected interrupt %d\n", irq);
240 r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
241 if (r < 0)
242 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
244 /* Always wake up soon in case the interrupt was level based */
245 qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) +
246 (get_ticks_per_sec() / 50));
249 /* We don't know if there are more interrupts pending after this. However,
250 * the guest will return to userspace in the course of handling this one
251 * anyways, so we will get a chance to deliver the rest. */
252 return 0;
255 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
257 return 0;
260 int kvm_arch_process_irqchip_events(CPUState *env)
262 return 0;
265 static int kvmppc_handle_halt(CPUState *env)
267 if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
268 env->halted = 1;
269 env->exception_index = EXCP_HLT;
272 return 1;
275 /* map dcr access to existing qemu dcr emulation */
276 static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
278 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
279 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
281 return 1;
284 static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
286 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
287 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
289 return 1;
292 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
294 int ret = 0;
296 switch (run->exit_reason) {
297 case KVM_EXIT_DCR:
298 if (run->dcr.is_write) {
299 dprintf("handle dcr write\n");
300 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
301 } else {
302 dprintf("handle dcr read\n");
303 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
305 break;
306 case KVM_EXIT_HLT:
307 dprintf("handle halt\n");
308 ret = kvmppc_handle_halt(env);
309 break;
312 return ret;
315 static int read_cpuinfo(const char *field, char *value, int len)
317 FILE *f;
318 int ret = -1;
319 int field_len = strlen(field);
320 char line[512];
322 f = fopen("/proc/cpuinfo", "r");
323 if (!f) {
324 return -1;
327 do {
328 if(!fgets(line, sizeof(line), f)) {
329 break;
331 if (!strncmp(line, field, field_len)) {
332 strncpy(value, line, len);
333 ret = 0;
334 break;
336 } while(*line);
338 fclose(f);
340 return ret;
343 uint32_t kvmppc_get_tbfreq(void)
345 char line[512];
346 char *ns;
347 uint32_t retval = get_ticks_per_sec();
349 if (read_cpuinfo("timebase", line, sizeof(line))) {
350 return retval;
353 if (!(ns = strchr(line, ':'))) {
354 return retval;
357 ns++;
359 retval = atoi(ns);
360 return retval;
363 int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
365 uint32_t *hc = (uint32_t*)buf;
367 #ifdef KVM_CAP_PPC_GET_PVINFO
368 struct kvm_ppc_pvinfo pvinfo;
370 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
371 !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
372 memcpy(buf, pvinfo.hcall, buf_len);
374 return 0;
376 #endif
379 * Fallback to always fail hypercalls:
381 * li r3, -1
382 * nop
383 * nop
384 * nop
387 hc[0] = 0x3860ffff;
388 hc[1] = 0x60000000;
389 hc[2] = 0x60000000;
390 hc[3] = 0x60000000;
392 return 0;
395 bool kvm_arch_stop_on_emulation_error(CPUState *env)
397 return true;