Delete unused tb_invalidate_page_range
[qemu/mdroth.git] / hw / mc146818rtc.c
blob1c9a706b1b545a0b2c862f8709f50c8948de02c2
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "apic.h"
29 #include "isa.h"
30 #include "mc146818rtc.h"
32 //#define DEBUG_CMOS
33 //#define DEBUG_COALESCED
35 #ifdef DEBUG_CMOS
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
37 #else
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
39 #endif
41 #ifdef DEBUG_COALESCED
42 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
43 #else
44 # define DPRINTF_C(format, ...) do { } while (0)
45 #endif
47 #define RTC_REINJECT_ON_ACK_COUNT 20
49 #define RTC_SECONDS 0
50 #define RTC_SECONDS_ALARM 1
51 #define RTC_MINUTES 2
52 #define RTC_MINUTES_ALARM 3
53 #define RTC_HOURS 4
54 #define RTC_HOURS_ALARM 5
55 #define RTC_ALARM_DONT_CARE 0xC0
57 #define RTC_DAY_OF_WEEK 6
58 #define RTC_DAY_OF_MONTH 7
59 #define RTC_MONTH 8
60 #define RTC_YEAR 9
62 #define RTC_REG_A 10
63 #define RTC_REG_B 11
64 #define RTC_REG_C 12
65 #define RTC_REG_D 13
67 #define REG_A_UIP 0x80
69 #define REG_B_SET 0x80
70 #define REG_B_PIE 0x40
71 #define REG_B_AIE 0x20
72 #define REG_B_UIE 0x10
73 #define REG_B_SQWE 0x08
74 #define REG_B_DM 0x04
75 #define REG_B_24H 0x02
77 #define REG_C_UF 0x10
78 #define REG_C_IRQF 0x80
79 #define REG_C_PF 0x40
80 #define REG_C_AF 0x20
82 typedef struct RTCState {
83 ISADevice dev;
84 uint8_t cmos_data[128];
85 uint8_t cmos_index;
86 struct tm current_tm;
87 int32_t base_year;
88 qemu_irq irq;
89 qemu_irq sqw_irq;
90 int it_shift;
91 /* periodic timer */
92 QEMUTimer *periodic_timer;
93 int64_t next_periodic_time;
94 /* second update */
95 int64_t next_second_time;
96 uint16_t irq_reinject_on_ack_count;
97 uint32_t irq_coalesced;
98 uint32_t period;
99 QEMUTimer *coalesced_timer;
100 QEMUTimer *second_timer;
101 QEMUTimer *second_timer2;
102 } RTCState;
104 static void rtc_set_time(RTCState *s);
105 static void rtc_copy_date(RTCState *s);
107 #ifdef TARGET_I386
108 static void rtc_coalesced_timer_update(RTCState *s)
110 if (s->irq_coalesced == 0) {
111 qemu_del_timer(s->coalesced_timer);
112 } else {
113 /* divide each RTC interval to 2 - 8 smaller intervals */
114 int c = MIN(s->irq_coalesced, 7) + 1;
115 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
116 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
117 qemu_mod_timer(s->coalesced_timer, next_clock);
121 static void rtc_coalesced_timer(void *opaque)
123 RTCState *s = opaque;
125 if (s->irq_coalesced != 0) {
126 apic_reset_irq_delivered();
127 s->cmos_data[RTC_REG_C] |= 0xc0;
128 DPRINTF_C("cmos: injecting from timer\n");
129 qemu_irq_raise(s->irq);
130 if (apic_get_irq_delivered()) {
131 s->irq_coalesced--;
132 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
133 s->irq_coalesced);
137 rtc_coalesced_timer_update(s);
139 #endif
141 static void rtc_timer_update(RTCState *s, int64_t current_time)
143 int period_code, period;
144 int64_t cur_clock, next_irq_clock;
146 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
147 if (period_code != 0
148 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
149 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
150 if (period_code <= 2)
151 period_code += 7;
152 /* period in 32 Khz cycles */
153 period = 1 << (period_code - 1);
154 #ifdef TARGET_I386
155 if (period != s->period) {
156 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
157 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
159 s->period = period;
160 #endif
161 /* compute 32 khz clock */
162 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
163 next_irq_clock = (cur_clock & ~(period - 1)) + period;
164 s->next_periodic_time =
165 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
166 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
167 } else {
168 #ifdef TARGET_I386
169 s->irq_coalesced = 0;
170 #endif
171 qemu_del_timer(s->periodic_timer);
175 static void rtc_periodic_timer(void *opaque)
177 RTCState *s = opaque;
179 rtc_timer_update(s, s->next_periodic_time);
180 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
181 s->cmos_data[RTC_REG_C] |= 0xc0;
182 #ifdef TARGET_I386
183 if(rtc_td_hack) {
184 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
185 s->irq_reinject_on_ack_count = 0;
186 apic_reset_irq_delivered();
187 qemu_irq_raise(s->irq);
188 if (!apic_get_irq_delivered()) {
189 s->irq_coalesced++;
190 rtc_coalesced_timer_update(s);
191 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
192 s->irq_coalesced);
194 } else
195 #endif
196 qemu_irq_raise(s->irq);
198 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
199 /* Not square wave at all but we don't want 2048Hz interrupts!
200 Must be seen as a pulse. */
201 qemu_irq_raise(s->sqw_irq);
205 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
207 RTCState *s = opaque;
209 if ((addr & 1) == 0) {
210 s->cmos_index = data & 0x7f;
211 } else {
212 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
213 s->cmos_index, data);
214 switch(s->cmos_index) {
215 case RTC_SECONDS_ALARM:
216 case RTC_MINUTES_ALARM:
217 case RTC_HOURS_ALARM:
218 s->cmos_data[s->cmos_index] = data;
219 break;
220 case RTC_SECONDS:
221 case RTC_MINUTES:
222 case RTC_HOURS:
223 case RTC_DAY_OF_WEEK:
224 case RTC_DAY_OF_MONTH:
225 case RTC_MONTH:
226 case RTC_YEAR:
227 s->cmos_data[s->cmos_index] = data;
228 /* if in set mode, do not update the time */
229 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
230 rtc_set_time(s);
232 break;
233 case RTC_REG_A:
234 /* UIP bit is read only */
235 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
236 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
237 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
238 break;
239 case RTC_REG_B:
240 if (data & REG_B_SET) {
241 /* set mode: reset UIP mode */
242 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
243 data &= ~REG_B_UIE;
244 } else {
245 /* if disabling set mode, update the time */
246 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
247 rtc_set_time(s);
250 if (((s->cmos_data[RTC_REG_B] ^ data) & (REG_B_DM | REG_B_24H)) &&
251 !(data & REG_B_SET)) {
252 /* If the time format has changed and not in set mode,
253 update the registers immediately. */
254 s->cmos_data[RTC_REG_B] = data;
255 rtc_copy_date(s);
256 } else {
257 s->cmos_data[RTC_REG_B] = data;
259 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
260 break;
261 case RTC_REG_C:
262 case RTC_REG_D:
263 /* cannot write to them */
264 break;
265 default:
266 s->cmos_data[s->cmos_index] = data;
267 break;
272 static inline int rtc_to_bcd(RTCState *s, int a)
274 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
275 return a;
276 } else {
277 return ((a / 10) << 4) | (a % 10);
281 static inline int rtc_from_bcd(RTCState *s, int a)
283 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
284 return a;
285 } else {
286 return ((a >> 4) * 10) + (a & 0x0f);
290 static void rtc_set_time(RTCState *s)
292 struct tm *tm = &s->current_tm;
294 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
295 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
296 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
297 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H) &&
298 (s->cmos_data[RTC_HOURS] & 0x80)) {
299 tm->tm_hour += 12;
301 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
302 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
303 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
304 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
306 rtc_change_mon_event(tm);
309 static void rtc_copy_date(RTCState *s)
311 const struct tm *tm = &s->current_tm;
312 int year;
314 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
315 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
316 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
317 /* 24 hour format */
318 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
319 } else {
320 /* 12 hour format */
321 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
322 if (tm->tm_hour >= 12)
323 s->cmos_data[RTC_HOURS] |= 0x80;
325 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
326 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
327 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
328 year = (tm->tm_year - s->base_year) % 100;
329 if (year < 0)
330 year += 100;
331 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
334 /* month is between 0 and 11. */
335 static int get_days_in_month(int month, int year)
337 static const int days_tab[12] = {
338 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
340 int d;
341 if ((unsigned )month >= 12)
342 return 31;
343 d = days_tab[month];
344 if (month == 1) {
345 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
346 d++;
348 return d;
351 /* update 'tm' to the next second */
352 static void rtc_next_second(struct tm *tm)
354 int days_in_month;
356 tm->tm_sec++;
357 if ((unsigned)tm->tm_sec >= 60) {
358 tm->tm_sec = 0;
359 tm->tm_min++;
360 if ((unsigned)tm->tm_min >= 60) {
361 tm->tm_min = 0;
362 tm->tm_hour++;
363 if ((unsigned)tm->tm_hour >= 24) {
364 tm->tm_hour = 0;
365 /* next day */
366 tm->tm_wday++;
367 if ((unsigned)tm->tm_wday >= 7)
368 tm->tm_wday = 0;
369 days_in_month = get_days_in_month(tm->tm_mon,
370 tm->tm_year + 1900);
371 tm->tm_mday++;
372 if (tm->tm_mday < 1) {
373 tm->tm_mday = 1;
374 } else if (tm->tm_mday > days_in_month) {
375 tm->tm_mday = 1;
376 tm->tm_mon++;
377 if (tm->tm_mon >= 12) {
378 tm->tm_mon = 0;
379 tm->tm_year++;
388 static void rtc_update_second(void *opaque)
390 RTCState *s = opaque;
391 int64_t delay;
393 /* if the oscillator is not in normal operation, we do not update */
394 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
395 s->next_second_time += get_ticks_per_sec();
396 qemu_mod_timer(s->second_timer, s->next_second_time);
397 } else {
398 rtc_next_second(&s->current_tm);
400 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
401 /* update in progress bit */
402 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
404 /* should be 244 us = 8 / 32768 seconds, but currently the
405 timers do not have the necessary resolution. */
406 delay = (get_ticks_per_sec() * 1) / 100;
407 if (delay < 1)
408 delay = 1;
409 qemu_mod_timer(s->second_timer2,
410 s->next_second_time + delay);
414 static void rtc_update_second2(void *opaque)
416 RTCState *s = opaque;
418 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
419 rtc_copy_date(s);
422 /* check alarm */
423 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
424 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
425 rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
426 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
427 rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
428 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
429 rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
431 s->cmos_data[RTC_REG_C] |= 0xa0;
432 qemu_irq_raise(s->irq);
436 /* update ended interrupt */
437 s->cmos_data[RTC_REG_C] |= REG_C_UF;
438 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
439 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
440 qemu_irq_raise(s->irq);
443 /* clear update in progress bit */
444 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
446 s->next_second_time += get_ticks_per_sec();
447 qemu_mod_timer(s->second_timer, s->next_second_time);
450 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
452 RTCState *s = opaque;
453 int ret;
454 if ((addr & 1) == 0) {
455 return 0xff;
456 } else {
457 switch(s->cmos_index) {
458 case RTC_SECONDS:
459 case RTC_MINUTES:
460 case RTC_HOURS:
461 case RTC_DAY_OF_WEEK:
462 case RTC_DAY_OF_MONTH:
463 case RTC_MONTH:
464 case RTC_YEAR:
465 ret = s->cmos_data[s->cmos_index];
466 break;
467 case RTC_REG_A:
468 ret = s->cmos_data[s->cmos_index];
469 break;
470 case RTC_REG_C:
471 ret = s->cmos_data[s->cmos_index];
472 qemu_irq_lower(s->irq);
473 #ifdef TARGET_I386
474 if(s->irq_coalesced &&
475 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
476 s->irq_reinject_on_ack_count++;
477 apic_reset_irq_delivered();
478 DPRINTF_C("cmos: injecting on ack\n");
479 qemu_irq_raise(s->irq);
480 if (apic_get_irq_delivered()) {
481 s->irq_coalesced--;
482 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
483 s->irq_coalesced);
485 break;
487 #endif
489 s->cmos_data[RTC_REG_C] = 0x00;
490 break;
491 default:
492 ret = s->cmos_data[s->cmos_index];
493 break;
495 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
496 s->cmos_index, ret);
497 return ret;
501 void rtc_set_memory(ISADevice *dev, int addr, int val)
503 RTCState *s = DO_UPCAST(RTCState, dev, dev);
504 if (addr >= 0 && addr <= 127)
505 s->cmos_data[addr] = val;
508 void rtc_set_date(ISADevice *dev, const struct tm *tm)
510 RTCState *s = DO_UPCAST(RTCState, dev, dev);
511 s->current_tm = *tm;
512 rtc_copy_date(s);
515 /* PC cmos mappings */
516 #define REG_IBM_CENTURY_BYTE 0x32
517 #define REG_IBM_PS2_CENTURY_BYTE 0x37
519 static void rtc_set_date_from_host(ISADevice *dev)
521 RTCState *s = DO_UPCAST(RTCState, dev, dev);
522 struct tm tm;
523 int val;
525 /* set the CMOS date */
526 qemu_get_timedate(&tm, 0);
527 rtc_set_date(dev, &tm);
529 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
530 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
531 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
534 static int rtc_post_load(void *opaque, int version_id)
536 #ifdef TARGET_I386
537 RTCState *s = opaque;
539 if (version_id >= 2) {
540 if (rtc_td_hack) {
541 rtc_coalesced_timer_update(s);
544 #endif
545 return 0;
548 static const VMStateDescription vmstate_rtc = {
549 .name = "mc146818rtc",
550 .version_id = 2,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .post_load = rtc_post_load,
554 .fields = (VMStateField []) {
555 VMSTATE_BUFFER(cmos_data, RTCState),
556 VMSTATE_UINT8(cmos_index, RTCState),
557 VMSTATE_INT32(current_tm.tm_sec, RTCState),
558 VMSTATE_INT32(current_tm.tm_min, RTCState),
559 VMSTATE_INT32(current_tm.tm_hour, RTCState),
560 VMSTATE_INT32(current_tm.tm_wday, RTCState),
561 VMSTATE_INT32(current_tm.tm_mday, RTCState),
562 VMSTATE_INT32(current_tm.tm_mon, RTCState),
563 VMSTATE_INT32(current_tm.tm_year, RTCState),
564 VMSTATE_TIMER(periodic_timer, RTCState),
565 VMSTATE_INT64(next_periodic_time, RTCState),
566 VMSTATE_INT64(next_second_time, RTCState),
567 VMSTATE_TIMER(second_timer, RTCState),
568 VMSTATE_TIMER(second_timer2, RTCState),
569 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
570 VMSTATE_UINT32_V(period, RTCState, 2),
571 VMSTATE_END_OF_LIST()
575 static void rtc_reset(void *opaque)
577 RTCState *s = opaque;
579 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
580 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
582 qemu_irq_lower(s->irq);
584 #ifdef TARGET_I386
585 if (rtc_td_hack)
586 s->irq_coalesced = 0;
587 #endif
590 static int rtc_initfn(ISADevice *dev)
592 RTCState *s = DO_UPCAST(RTCState, dev, dev);
593 int base = 0x70;
595 s->cmos_data[RTC_REG_A] = 0x26;
596 s->cmos_data[RTC_REG_B] = 0x02;
597 s->cmos_data[RTC_REG_C] = 0x00;
598 s->cmos_data[RTC_REG_D] = 0x80;
600 rtc_set_date_from_host(dev);
602 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
603 #ifdef TARGET_I386
604 if (rtc_td_hack)
605 s->coalesced_timer =
606 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
607 #endif
608 s->second_timer = qemu_new_timer_ns(rtc_clock, rtc_update_second, s);
609 s->second_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_second2, s);
611 s->next_second_time =
612 qemu_get_clock_ns(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
613 qemu_mod_timer(s->second_timer2, s->next_second_time);
615 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
616 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
617 isa_init_ioport_range(dev, base, 2);
619 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
620 qemu_register_reset(rtc_reset, s);
621 return 0;
624 ISADevice *rtc_init(int base_year, qemu_irq intercept_irq)
626 ISADevice *dev;
627 RTCState *s;
629 dev = isa_create("mc146818rtc");
630 s = DO_UPCAST(RTCState, dev, dev);
631 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
632 qdev_init_nofail(&dev->qdev);
633 if (intercept_irq) {
634 s->irq = intercept_irq;
635 } else {
636 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
638 return dev;
641 static ISADeviceInfo mc146818rtc_info = {
642 .qdev.name = "mc146818rtc",
643 .qdev.size = sizeof(RTCState),
644 .qdev.no_user = 1,
645 .qdev.vmsd = &vmstate_rtc,
646 .init = rtc_initfn,
647 .qdev.props = (Property[]) {
648 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
649 DEFINE_PROP_END_OF_LIST(),
653 static void mc146818rtc_register(void)
655 isa_qdev_register(&mc146818rtc_info);
657 device_init(mc146818rtc_register)