2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include "dyngen-exec.h"
31 #include "host-utils.h"
33 static void do_unaligned_access(target_ulong addr
, int is_write
, int is_user
,
37 #define MMUSUFFIX _mmu
40 #include "softmmu_template.h"
43 #include "softmmu_template.h"
46 #include "softmmu_template.h"
49 #include "softmmu_template.h"
51 static void do_restore_state(void *pc_ptr
)
54 uint32_t pc
= (uint32_t)(intptr_t)pc_ptr
;
58 cpu_restore_state(tb
, env
, pc
);
62 static void do_unaligned_access(target_ulong addr
, int is_write
, int is_user
,
65 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
66 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
67 do_restore_state(retaddr
);
68 HELPER(exception_cause_vaddr
)(
69 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
73 void tlb_fill(CPUXtensaState
*env1
, target_ulong vaddr
, int is_write
, int mmu_idx
,
76 CPUXtensaState
*saved_env
= env
;
83 int ret
= xtensa_get_physical_addr(env
, vaddr
, is_write
, mmu_idx
,
84 &paddr
, &page_size
, &access
);
86 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__
,
87 vaddr
, is_write
, mmu_idx
, paddr
, ret
);
91 vaddr
& TARGET_PAGE_MASK
,
92 paddr
& TARGET_PAGE_MASK
,
93 access
, mmu_idx
, page_size
);
95 do_restore_state(retaddr
);
96 HELPER(exception_cause_vaddr
)(env
->pc
, ret
, vaddr
);
102 void HELPER(exception
)(uint32_t excp
)
104 env
->exception_index
= excp
;
108 void HELPER(exception_cause
)(uint32_t pc
, uint32_t cause
)
113 if (env
->sregs
[PS
] & PS_EXCM
) {
114 if (env
->config
->ndepc
) {
115 env
->sregs
[DEPC
] = pc
;
117 env
->sregs
[EPC1
] = pc
;
121 env
->sregs
[EPC1
] = pc
;
122 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
125 env
->sregs
[EXCCAUSE
] = cause
;
126 env
->sregs
[PS
] |= PS_EXCM
;
128 HELPER(exception
)(vector
);
131 void HELPER(exception_cause_vaddr
)(uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
133 env
->sregs
[EXCVADDR
] = vaddr
;
134 HELPER(exception_cause
)(pc
, cause
);
137 void debug_exception_env(CPUXtensaState
*new_env
, uint32_t cause
)
139 if (xtensa_get_cintlevel(new_env
) < new_env
->config
->debug_level
) {
141 HELPER(debug_exception
)(env
->pc
, cause
);
145 void HELPER(debug_exception
)(uint32_t pc
, uint32_t cause
)
147 unsigned level
= env
->config
->debug_level
;
150 env
->sregs
[DEBUGCAUSE
] = cause
;
151 env
->sregs
[EPC1
+ level
- 1] = pc
;
152 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
153 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
154 (level
<< PS_INTLEVEL_SHIFT
);
155 HELPER(exception
)(EXC_DEBUG
);
158 uint32_t HELPER(nsa
)(uint32_t v
)
160 if (v
& 0x80000000) {
163 return v
? clz32(v
) - 1 : 31;
166 uint32_t HELPER(nsau
)(uint32_t v
)
168 return v
? clz32(v
) : 32;
171 static void copy_window_from_phys(CPUXtensaState
*env
,
172 uint32_t window
, uint32_t phys
, uint32_t n
)
174 assert(phys
< env
->config
->nareg
);
175 if (phys
+ n
<= env
->config
->nareg
) {
176 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
177 n
* sizeof(uint32_t));
179 uint32_t n1
= env
->config
->nareg
- phys
;
180 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
181 n1
* sizeof(uint32_t));
182 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
183 (n
- n1
) * sizeof(uint32_t));
187 static void copy_phys_from_window(CPUXtensaState
*env
,
188 uint32_t phys
, uint32_t window
, uint32_t n
)
190 assert(phys
< env
->config
->nareg
);
191 if (phys
+ n
<= env
->config
->nareg
) {
192 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
193 n
* sizeof(uint32_t));
195 uint32_t n1
= env
->config
->nareg
- phys
;
196 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
197 n1
* sizeof(uint32_t));
198 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
199 (n
- n1
) * sizeof(uint32_t));
204 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
206 return a
& (env
->config
->nareg
/ 4 - 1);
209 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
211 return 1 << windowbase_bound(a
, env
);
214 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
216 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
219 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
221 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
224 static void rotate_window_abs(uint32_t position
)
226 xtensa_sync_phys_from_window(env
);
227 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
228 xtensa_sync_window_from_phys(env
);
231 static void rotate_window(uint32_t delta
)
233 rotate_window_abs(env
->sregs
[WINDOW_BASE
] + delta
);
236 void HELPER(wsr_windowbase
)(uint32_t v
)
238 rotate_window_abs(v
);
241 void HELPER(entry
)(uint32_t pc
, uint32_t s
, uint32_t imm
)
243 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
244 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
245 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
247 HELPER(exception_cause
)(pc
, ILLEGAL_INSTRUCTION_CAUSE
);
249 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
250 rotate_window(callinc
);
251 env
->sregs
[WINDOW_START
] |=
252 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
256 void HELPER(window_check
)(uint32_t pc
, uint32_t w
)
258 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
259 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
262 if ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) {
270 if (windowstart
& windowstart_bit(windowbase
+ n
, env
)) {
275 m
= windowbase_bound(windowbase
+ n
, env
);
277 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
278 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
279 env
->sregs
[EPC1
] = env
->pc
= pc
;
281 if (windowstart
& windowstart_bit(m
+ 1, env
)) {
282 HELPER(exception
)(EXC_WINDOW_OVERFLOW4
);
283 } else if (windowstart
& windowstart_bit(m
+ 2, env
)) {
284 HELPER(exception
)(EXC_WINDOW_OVERFLOW8
);
286 HELPER(exception
)(EXC_WINDOW_OVERFLOW12
);
290 uint32_t HELPER(retw
)(uint32_t pc
)
292 int n
= (env
->regs
[0] >> 30) & 0x3;
294 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
295 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
298 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
300 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
302 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
306 if (n
== 0 || (m
!= 0 && m
!= n
) ||
307 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
308 qemu_log("Illegal retw instruction(pc = %08x), "
309 "PS = %08x, m = %d, n = %d\n",
310 pc
, env
->sregs
[PS
], m
, n
);
311 HELPER(exception_cause
)(pc
, ILLEGAL_INSTRUCTION_CAUSE
);
313 int owb
= windowbase
;
315 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
318 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
319 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
321 /* window underflow */
322 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
323 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
324 env
->sregs
[EPC1
] = env
->pc
= pc
;
327 HELPER(exception
)(EXC_WINDOW_UNDERFLOW4
);
329 HELPER(exception
)(EXC_WINDOW_UNDERFLOW8
);
331 HELPER(exception
)(EXC_WINDOW_UNDERFLOW12
);
338 void HELPER(rotw
)(uint32_t imm4
)
343 void HELPER(restore_owb
)(void)
345 rotate_window_abs((env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
348 void HELPER(movsp
)(uint32_t pc
)
350 if ((env
->sregs
[WINDOW_START
] &
351 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
352 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
353 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
354 HELPER(exception_cause
)(pc
, ALLOCA_CAUSE
);
358 void HELPER(wsr_lbeg
)(uint32_t v
)
360 if (env
->sregs
[LBEG
] != v
) {
361 tb_invalidate_phys_page_range(
362 env
->sregs
[LEND
] - 1, env
->sregs
[LEND
], 0);
363 env
->sregs
[LBEG
] = v
;
367 void HELPER(wsr_lend
)(uint32_t v
)
369 if (env
->sregs
[LEND
] != v
) {
370 tb_invalidate_phys_page_range(
371 env
->sregs
[LEND
] - 1, env
->sregs
[LEND
], 0);
372 env
->sregs
[LEND
] = v
;
373 tb_invalidate_phys_page_range(
374 env
->sregs
[LEND
] - 1, env
->sregs
[LEND
], 0);
378 void HELPER(dump_state
)(void)
380 cpu_dump_state(env
, stderr
, fprintf
, 0);
383 void HELPER(waiti
)(uint32_t pc
, uint32_t intlevel
)
386 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
387 (intlevel
<< PS_INTLEVEL_SHIFT
);
388 check_interrupts(env
);
389 if (env
->pending_irq_level
) {
394 env
->halt_clock
= qemu_get_clock_ns(vm_clock
);
396 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
397 xtensa_rearm_ccompare_timer(env
);
399 HELPER(exception
)(EXCP_HLT
);
402 void HELPER(timer_irq
)(uint32_t id
, uint32_t active
)
404 xtensa_timer_irq(env
, id
, active
);
407 void HELPER(advance_ccount
)(uint32_t d
)
409 xtensa_advance_ccount(env
, d
);
412 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
414 check_interrupts(env
);
417 void HELPER(wsr_rasid
)(uint32_t v
)
419 v
= (v
& 0xffffff00) | 0x1;
420 if (v
!= env
->sregs
[RASID
]) {
421 env
->sregs
[RASID
] = v
;
426 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
428 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
432 return (tlbcfg
>> 16) & 0x3;
435 return (tlbcfg
>> 20) & 0x1;
438 return (tlbcfg
>> 24) & 0x1;
446 * Get bit mask for the virtual address bits translated by the TLB way
448 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
450 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
451 bool varway56
= dtlb
?
452 env
->config
->dtlb
.varway56
:
453 env
->config
->itlb
.varway56
;
457 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
461 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
468 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
477 return REGION_PAGE_MASK
;
482 * Get bit mask for the 'VPN without index' field.
483 * See ISA, 4.6.5.6, data format for RxTLB0
485 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
489 env
->config
->dtlb
.nrefillentries
:
490 env
->config
->itlb
.nrefillentries
) == 32;
491 return is32
? 0xffff8000 : 0xffffc000;
492 } else if (way
== 4) {
493 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
494 } else if (way
<= 6) {
495 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
496 bool varway56
= dtlb
?
497 env
->config
->dtlb
.varway56
:
498 env
->config
->itlb
.varway56
;
501 return mask
<< (way
== 5 ? 2 : 3);
511 * Split virtual address into VPN (with index) and entry index
512 * for the given TLB way
514 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
515 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
517 bool varway56
= dtlb
?
518 env
->config
->dtlb
.varway56
:
519 env
->config
->itlb
.varway56
;
527 env
->config
->dtlb
.nrefillentries
:
528 env
->config
->itlb
.nrefillentries
) == 32;
529 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
534 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
535 *ei
= (v
>> eibase
) & 0x3;
541 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
542 *ei
= (v
>> eibase
) & 0x3;
544 *ei
= (v
>> 27) & 0x1;
550 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
551 *ei
= (v
>> eibase
) & 0x7;
553 *ei
= (v
>> 28) & 0x1;
562 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
566 * Split TLB address into TLB way, entry index and VPN (with index).
567 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
569 static void split_tlb_entry_spec(uint32_t v
, bool dtlb
,
570 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
572 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
573 *wi
= v
& (dtlb
? 0xf : 0x7);
574 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
576 *vpn
= v
& REGION_PAGE_MASK
;
578 *ei
= (v
>> 29) & 0x7;
582 static xtensa_tlb_entry
*get_tlb_entry(uint32_t v
, bool dtlb
, uint32_t *pwi
)
588 split_tlb_entry_spec(v
, dtlb
, &vpn
, &wi
, &ei
);
592 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
595 uint32_t HELPER(rtlb0
)(uint32_t v
, uint32_t dtlb
)
597 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
599 const xtensa_tlb_entry
*entry
= get_tlb_entry(v
, dtlb
, &wi
);
600 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
602 return v
& REGION_PAGE_MASK
;
606 uint32_t HELPER(rtlb1
)(uint32_t v
, uint32_t dtlb
)
608 const xtensa_tlb_entry
*entry
= get_tlb_entry(v
, dtlb
, NULL
);
609 return entry
->paddr
| entry
->attr
;
612 void HELPER(itlb
)(uint32_t v
, uint32_t dtlb
)
614 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
616 xtensa_tlb_entry
*entry
= get_tlb_entry(v
, dtlb
, &wi
);
617 if (entry
->variable
&& entry
->asid
) {
618 tlb_flush_page(env
, entry
->vaddr
);
624 uint32_t HELPER(ptlb
)(uint32_t v
, uint32_t dtlb
)
626 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
630 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
634 if (ring
>= xtensa_get_ring(env
)) {
635 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
639 case INST_TLB_MULTI_HIT_CAUSE
:
640 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
641 HELPER(exception_cause_vaddr
)(env
->pc
, res
, v
);
646 return (v
& REGION_PAGE_MASK
) | 0x1;
650 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
651 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
653 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
655 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
656 if (entry
->variable
) {
658 tlb_flush_page(env
, entry
->vaddr
);
661 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
662 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
663 entry
->attr
= pte
& 0xf;
665 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
666 __func__
, dtlb
, wi
, ei
);
669 tlb_flush_page(env
, entry
->vaddr
);
670 if (xtensa_option_enabled(env
->config
,
671 XTENSA_OPTION_REGION_TRANSLATION
)) {
672 entry
->paddr
= pte
& REGION_PAGE_MASK
;
674 entry
->attr
= pte
& 0xf;
678 void HELPER(wtlb
)(uint32_t p
, uint32_t v
, uint32_t dtlb
)
683 split_tlb_entry_spec(v
, dtlb
, &vpn
, &wi
, &ei
);
684 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
688 void HELPER(wsr_ibreakenable
)(uint32_t v
)
690 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
693 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
694 if (change
& (1 << i
)) {
695 tb_invalidate_phys_page_range(
696 env
->sregs
[IBREAKA
+ i
], env
->sregs
[IBREAKA
+ i
] + 1, 0);
699 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
702 void HELPER(wsr_ibreaka
)(uint32_t i
, uint32_t v
)
704 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
705 tb_invalidate_phys_page_range(
706 env
->sregs
[IBREAKA
+ i
], env
->sregs
[IBREAKA
+ i
] + 1, 0);
707 tb_invalidate_phys_page_range(v
, v
+ 1, 0);
709 env
->sregs
[IBREAKA
+ i
] = v
;
712 static void set_dbreak(unsigned i
, uint32_t dbreaka
, uint32_t dbreakc
)
714 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
715 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
717 if (env
->cpu_watchpoint
[i
]) {
718 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
720 if (dbreakc
& DBREAKC_SB
) {
721 flags
|= BP_MEM_WRITE
;
723 if (dbreakc
& DBREAKC_LB
) {
724 flags
|= BP_MEM_READ
;
726 /* contiguous mask after inversion is one less than some power of 2 */
727 if ((~mask
+ 1) & ~mask
) {
728 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
729 /* cut mask after the first zero bit */
730 mask
= 0xffffffff << (32 - clo32(mask
));
732 if (cpu_watchpoint_insert(env
, dbreaka
& mask
, ~mask
+ 1,
733 flags
, &env
->cpu_watchpoint
[i
])) {
734 env
->cpu_watchpoint
[i
] = NULL
;
735 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
736 dbreaka
& mask
, ~mask
+ 1);
740 void HELPER(wsr_dbreaka
)(uint32_t i
, uint32_t v
)
742 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
744 if ((dbreakc
& DBREAKC_SB_LB
) &&
745 env
->sregs
[DBREAKA
+ i
] != v
) {
746 set_dbreak(i
, v
, dbreakc
);
748 env
->sregs
[DBREAKA
+ i
] = v
;
751 void HELPER(wsr_dbreakc
)(uint32_t i
, uint32_t v
)
753 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
754 if (v
& DBREAKC_SB_LB
) {
755 set_dbreak(i
, env
->sregs
[DBREAKA
+ i
], v
);
757 if (env
->cpu_watchpoint
[i
]) {
758 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
759 env
->cpu_watchpoint
[i
] = NULL
;
763 env
->sregs
[DBREAKC
+ i
] = v
;