cpus: Pass CPUState to qemu_cpu_kick_thread()
[qemu/opensuse.git] / cpus.c
blob3946d49cffd87b982bac242e537c5ddba269a8cd
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39 #include "bitmap.h"
41 #ifndef _WIN32
42 #include "compatfd.h"
43 #endif
45 #ifdef CONFIG_LINUX
47 #include <sys/prctl.h>
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
61 #endif /* CONFIG_LINUX */
63 static CPUArchState *next_cpu;
65 static bool cpu_thread_is_idle(CPUArchState *env)
67 if (env->stop || env->queued_work_first) {
68 return false;
70 if (env->stopped || !runstate_is_running()) {
71 return true;
73 if (!env->halted || qemu_cpu_has_work(env) ||
74 kvm_async_interrupts_enabled()) {
75 return false;
77 return true;
80 static bool all_cpu_threads_idle(void)
82 CPUArchState *env;
84 for (env = first_cpu; env != NULL; env = env->next_cpu) {
85 if (!cpu_thread_is_idle(env)) {
86 return false;
89 return true;
92 /***********************************************************/
93 /* guest cycle counter */
95 /* Conversion factor from emulated instructions to virtual clock ticks. */
96 static int icount_time_shift;
97 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
98 #define MAX_ICOUNT_SHIFT 10
99 /* Compensate for varying guest execution speed. */
100 static int64_t qemu_icount_bias;
101 static QEMUTimer *icount_rt_timer;
102 static QEMUTimer *icount_vm_timer;
103 static QEMUTimer *icount_warp_timer;
104 static int64_t vm_clock_warp_start;
105 static int64_t qemu_icount;
107 typedef struct TimersState {
108 int64_t cpu_ticks_prev;
109 int64_t cpu_ticks_offset;
110 int64_t cpu_clock_offset;
111 int32_t cpu_ticks_enabled;
112 int64_t dummy;
113 } TimersState;
115 TimersState timers_state;
117 /* Return the virtual CPU time, based on the instruction counter. */
118 int64_t cpu_get_icount(void)
120 int64_t icount;
121 CPUArchState *env = cpu_single_env;
123 icount = qemu_icount;
124 if (env) {
125 if (!can_do_io(env)) {
126 fprintf(stderr, "Bad clock read\n");
128 icount -= (env->icount_decr.u16.low + env->icount_extra);
130 return qemu_icount_bias + (icount << icount_time_shift);
133 /* return the host CPU cycle counter and handle stop/restart */
134 int64_t cpu_get_ticks(void)
136 if (use_icount) {
137 return cpu_get_icount();
139 if (!timers_state.cpu_ticks_enabled) {
140 return timers_state.cpu_ticks_offset;
141 } else {
142 int64_t ticks;
143 ticks = cpu_get_real_ticks();
144 if (timers_state.cpu_ticks_prev > ticks) {
145 /* Note: non increasing ticks may happen if the host uses
146 software suspend */
147 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
149 timers_state.cpu_ticks_prev = ticks;
150 return ticks + timers_state.cpu_ticks_offset;
154 /* return the host CPU monotonic timer and handle stop/restart */
155 int64_t cpu_get_clock(void)
157 int64_t ti;
158 if (!timers_state.cpu_ticks_enabled) {
159 return timers_state.cpu_clock_offset;
160 } else {
161 ti = get_clock();
162 return ti + timers_state.cpu_clock_offset;
166 /* enable cpu_get_ticks() */
167 void cpu_enable_ticks(void)
169 if (!timers_state.cpu_ticks_enabled) {
170 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
171 timers_state.cpu_clock_offset -= get_clock();
172 timers_state.cpu_ticks_enabled = 1;
176 /* disable cpu_get_ticks() : the clock is stopped. You must not call
177 cpu_get_ticks() after that. */
178 void cpu_disable_ticks(void)
180 if (timers_state.cpu_ticks_enabled) {
181 timers_state.cpu_ticks_offset = cpu_get_ticks();
182 timers_state.cpu_clock_offset = cpu_get_clock();
183 timers_state.cpu_ticks_enabled = 0;
187 /* Correlation between real and virtual time is always going to be
188 fairly approximate, so ignore small variation.
189 When the guest is idle real and virtual time will be aligned in
190 the IO wait loop. */
191 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
193 static void icount_adjust(void)
195 int64_t cur_time;
196 int64_t cur_icount;
197 int64_t delta;
198 static int64_t last_delta;
199 /* If the VM is not running, then do nothing. */
200 if (!runstate_is_running()) {
201 return;
203 cur_time = cpu_get_clock();
204 cur_icount = qemu_get_clock_ns(vm_clock);
205 delta = cur_icount - cur_time;
206 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
207 if (delta > 0
208 && last_delta + ICOUNT_WOBBLE < delta * 2
209 && icount_time_shift > 0) {
210 /* The guest is getting too far ahead. Slow time down. */
211 icount_time_shift--;
213 if (delta < 0
214 && last_delta - ICOUNT_WOBBLE > delta * 2
215 && icount_time_shift < MAX_ICOUNT_SHIFT) {
216 /* The guest is getting too far behind. Speed time up. */
217 icount_time_shift++;
219 last_delta = delta;
220 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
223 static void icount_adjust_rt(void *opaque)
225 qemu_mod_timer(icount_rt_timer,
226 qemu_get_clock_ms(rt_clock) + 1000);
227 icount_adjust();
230 static void icount_adjust_vm(void *opaque)
232 qemu_mod_timer(icount_vm_timer,
233 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
234 icount_adjust();
237 static int64_t qemu_icount_round(int64_t count)
239 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
242 static void icount_warp_rt(void *opaque)
244 if (vm_clock_warp_start == -1) {
245 return;
248 if (runstate_is_running()) {
249 int64_t clock = qemu_get_clock_ns(rt_clock);
250 int64_t warp_delta = clock - vm_clock_warp_start;
251 if (use_icount == 1) {
252 qemu_icount_bias += warp_delta;
253 } else {
255 * In adaptive mode, do not let the vm_clock run too
256 * far ahead of real time.
258 int64_t cur_time = cpu_get_clock();
259 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
260 int64_t delta = cur_time - cur_icount;
261 qemu_icount_bias += MIN(warp_delta, delta);
263 if (qemu_clock_expired(vm_clock)) {
264 qemu_notify_event();
267 vm_clock_warp_start = -1;
270 void qtest_clock_warp(int64_t dest)
272 int64_t clock = qemu_get_clock_ns(vm_clock);
273 assert(qtest_enabled());
274 while (clock < dest) {
275 int64_t deadline = qemu_clock_deadline(vm_clock);
276 int64_t warp = MIN(dest - clock, deadline);
277 qemu_icount_bias += warp;
278 qemu_run_timers(vm_clock);
279 clock = qemu_get_clock_ns(vm_clock);
281 qemu_notify_event();
284 void qemu_clock_warp(QEMUClock *clock)
286 int64_t deadline;
289 * There are too many global variables to make the "warp" behavior
290 * applicable to other clocks. But a clock argument removes the
291 * need for if statements all over the place.
293 if (clock != vm_clock || !use_icount) {
294 return;
298 * If the CPUs have been sleeping, advance the vm_clock timer now. This
299 * ensures that the deadline for the timer is computed correctly below.
300 * This also makes sure that the insn counter is synchronized before the
301 * CPU starts running, in case the CPU is woken by an event other than
302 * the earliest vm_clock timer.
304 icount_warp_rt(NULL);
305 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
306 qemu_del_timer(icount_warp_timer);
307 return;
310 if (qtest_enabled()) {
311 /* When testing, qtest commands advance icount. */
312 return;
315 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
316 deadline = qemu_clock_deadline(vm_clock);
317 if (deadline > 0) {
319 * Ensure the vm_clock proceeds even when the virtual CPU goes to
320 * sleep. Otherwise, the CPU might be waiting for a future timer
321 * interrupt to wake it up, but the interrupt never comes because
322 * the vCPU isn't running any insns and thus doesn't advance the
323 * vm_clock.
325 * An extreme solution for this problem would be to never let VCPUs
326 * sleep in icount mode if there is a pending vm_clock timer; rather
327 * time could just advance to the next vm_clock event. Instead, we
328 * do stop VCPUs and only advance vm_clock after some "real" time,
329 * (related to the time left until the next event) has passed. This
330 * rt_clock timer will do this. This avoids that the warps are too
331 * visible externally---for example, you will not be sending network
332 * packets continuously instead of every 100ms.
334 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
335 } else {
336 qemu_notify_event();
340 static const VMStateDescription vmstate_timers = {
341 .name = "timer",
342 .version_id = 2,
343 .minimum_version_id = 1,
344 .minimum_version_id_old = 1,
345 .fields = (VMStateField[]) {
346 VMSTATE_INT64(cpu_ticks_offset, TimersState),
347 VMSTATE_INT64(dummy, TimersState),
348 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
349 VMSTATE_END_OF_LIST()
353 void configure_icount(const char *option)
355 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
356 if (!option) {
357 return;
360 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
361 if (strcmp(option, "auto") != 0) {
362 icount_time_shift = strtol(option, NULL, 0);
363 use_icount = 1;
364 return;
367 use_icount = 2;
369 /* 125MIPS seems a reasonable initial guess at the guest speed.
370 It will be corrected fairly quickly anyway. */
371 icount_time_shift = 3;
373 /* Have both realtime and virtual time triggers for speed adjustment.
374 The realtime trigger catches emulated time passing too slowly,
375 the virtual time trigger catches emulated time passing too fast.
376 Realtime triggers occur even when idle, so use them less frequently
377 than VM triggers. */
378 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
379 qemu_mod_timer(icount_rt_timer,
380 qemu_get_clock_ms(rt_clock) + 1000);
381 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
382 qemu_mod_timer(icount_vm_timer,
383 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
386 /***********************************************************/
387 void hw_error(const char *fmt, ...)
389 va_list ap;
390 CPUArchState *env;
392 va_start(ap, fmt);
393 fprintf(stderr, "qemu: hardware error: ");
394 vfprintf(stderr, fmt, ap);
395 fprintf(stderr, "\n");
396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
397 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
398 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
400 va_end(ap);
401 abort();
404 void cpu_synchronize_all_states(void)
406 CPUArchState *cpu;
408 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
409 cpu_synchronize_state(cpu);
413 void cpu_synchronize_all_post_reset(void)
415 CPUArchState *cpu;
417 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
418 cpu_synchronize_post_reset(cpu);
422 void cpu_synchronize_all_post_init(void)
424 CPUArchState *cpu;
426 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
427 cpu_synchronize_post_init(cpu);
431 int cpu_is_stopped(CPUArchState *env)
433 return !runstate_is_running() || env->stopped;
436 static void do_vm_stop(RunState state)
438 if (runstate_is_running()) {
439 cpu_disable_ticks();
440 pause_all_vcpus();
441 runstate_set(state);
442 vm_state_notify(0, state);
443 bdrv_drain_all();
444 bdrv_flush_all();
445 monitor_protocol_event(QEVENT_STOP, NULL);
449 static int cpu_can_run(CPUArchState *env)
451 if (env->stop) {
452 return 0;
454 if (env->stopped || !runstate_is_running()) {
455 return 0;
457 return 1;
460 static void cpu_handle_guest_debug(CPUArchState *env)
462 gdb_set_stop_cpu(env);
463 qemu_system_debug_request();
464 env->stopped = 1;
467 static void cpu_signal(int sig)
469 if (cpu_single_env) {
470 cpu_exit(cpu_single_env);
472 exit_request = 1;
475 #ifdef CONFIG_LINUX
476 static void sigbus_reraise(void)
478 sigset_t set;
479 struct sigaction action;
481 memset(&action, 0, sizeof(action));
482 action.sa_handler = SIG_DFL;
483 if (!sigaction(SIGBUS, &action, NULL)) {
484 raise(SIGBUS);
485 sigemptyset(&set);
486 sigaddset(&set, SIGBUS);
487 sigprocmask(SIG_UNBLOCK, &set, NULL);
489 perror("Failed to re-raise SIGBUS!\n");
490 abort();
493 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
494 void *ctx)
496 if (kvm_on_sigbus(siginfo->ssi_code,
497 (void *)(intptr_t)siginfo->ssi_addr)) {
498 sigbus_reraise();
502 static void qemu_init_sigbus(void)
504 struct sigaction action;
506 memset(&action, 0, sizeof(action));
507 action.sa_flags = SA_SIGINFO;
508 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
509 sigaction(SIGBUS, &action, NULL);
511 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
514 static void qemu_kvm_eat_signals(CPUArchState *env)
516 struct timespec ts = { 0, 0 };
517 siginfo_t siginfo;
518 sigset_t waitset;
519 sigset_t chkset;
520 int r;
522 sigemptyset(&waitset);
523 sigaddset(&waitset, SIG_IPI);
524 sigaddset(&waitset, SIGBUS);
526 do {
527 r = sigtimedwait(&waitset, &siginfo, &ts);
528 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
529 perror("sigtimedwait");
530 exit(1);
533 switch (r) {
534 case SIGBUS:
535 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
536 sigbus_reraise();
538 break;
539 default:
540 break;
543 r = sigpending(&chkset);
544 if (r == -1) {
545 perror("sigpending");
546 exit(1);
548 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
551 #else /* !CONFIG_LINUX */
553 static void qemu_init_sigbus(void)
557 static void qemu_kvm_eat_signals(CPUArchState *env)
560 #endif /* !CONFIG_LINUX */
562 #ifndef _WIN32
563 static void dummy_signal(int sig)
567 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
569 int r;
570 sigset_t set;
571 struct sigaction sigact;
573 memset(&sigact, 0, sizeof(sigact));
574 sigact.sa_handler = dummy_signal;
575 sigaction(SIG_IPI, &sigact, NULL);
577 pthread_sigmask(SIG_BLOCK, NULL, &set);
578 sigdelset(&set, SIG_IPI);
579 sigdelset(&set, SIGBUS);
580 r = kvm_set_signal_mask(env, &set);
581 if (r) {
582 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
583 exit(1);
587 static void qemu_tcg_init_cpu_signals(void)
589 sigset_t set;
590 struct sigaction sigact;
592 memset(&sigact, 0, sizeof(sigact));
593 sigact.sa_handler = cpu_signal;
594 sigaction(SIG_IPI, &sigact, NULL);
596 sigemptyset(&set);
597 sigaddset(&set, SIG_IPI);
598 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
601 #else /* _WIN32 */
602 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
604 abort();
607 static void qemu_tcg_init_cpu_signals(void)
610 #endif /* _WIN32 */
612 static QemuMutex qemu_global_mutex;
613 static QemuCond qemu_io_proceeded_cond;
614 static bool iothread_requesting_mutex;
616 static QemuThread io_thread;
618 static QemuThread *tcg_cpu_thread;
619 static QemuCond *tcg_halt_cond;
621 /* cpu creation */
622 static QemuCond qemu_cpu_cond;
623 /* system init */
624 static QemuCond qemu_pause_cond;
625 static QemuCond qemu_work_cond;
627 void qemu_init_cpu_loop(void)
629 qemu_init_sigbus();
630 qemu_cond_init(&qemu_cpu_cond);
631 qemu_cond_init(&qemu_pause_cond);
632 qemu_cond_init(&qemu_work_cond);
633 qemu_cond_init(&qemu_io_proceeded_cond);
634 qemu_mutex_init(&qemu_global_mutex);
636 qemu_thread_get_self(&io_thread);
639 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
641 CPUState *cpu = ENV_GET_CPU(env);
642 struct qemu_work_item wi;
644 if (qemu_cpu_is_self(cpu)) {
645 func(data);
646 return;
649 wi.func = func;
650 wi.data = data;
651 if (!env->queued_work_first) {
652 env->queued_work_first = &wi;
653 } else {
654 env->queued_work_last->next = &wi;
656 env->queued_work_last = &wi;
657 wi.next = NULL;
658 wi.done = false;
660 qemu_cpu_kick(env);
661 while (!wi.done) {
662 CPUArchState *self_env = cpu_single_env;
664 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
665 cpu_single_env = self_env;
669 static void flush_queued_work(CPUArchState *env)
671 struct qemu_work_item *wi;
673 if (!env->queued_work_first) {
674 return;
677 while ((wi = env->queued_work_first)) {
678 env->queued_work_first = wi->next;
679 wi->func(wi->data);
680 wi->done = true;
682 env->queued_work_last = NULL;
683 qemu_cond_broadcast(&qemu_work_cond);
686 static void qemu_wait_io_event_common(CPUArchState *env)
688 CPUState *cpu = ENV_GET_CPU(env);
690 if (env->stop) {
691 env->stop = 0;
692 env->stopped = 1;
693 qemu_cond_signal(&qemu_pause_cond);
695 flush_queued_work(env);
696 cpu->thread_kicked = false;
699 static void qemu_tcg_wait_io_event(void)
701 CPUArchState *env;
703 while (all_cpu_threads_idle()) {
704 /* Start accounting real time to the virtual clock if the CPUs
705 are idle. */
706 qemu_clock_warp(vm_clock);
707 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
710 while (iothread_requesting_mutex) {
711 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
714 for (env = first_cpu; env != NULL; env = env->next_cpu) {
715 qemu_wait_io_event_common(env);
719 static void qemu_kvm_wait_io_event(CPUArchState *env)
721 while (cpu_thread_is_idle(env)) {
722 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
725 qemu_kvm_eat_signals(env);
726 qemu_wait_io_event_common(env);
729 static void *qemu_kvm_cpu_thread_fn(void *arg)
731 CPUArchState *env = arg;
732 CPUState *cpu = ENV_GET_CPU(env);
733 int r;
735 qemu_mutex_lock(&qemu_global_mutex);
736 qemu_thread_get_self(cpu->thread);
737 env->thread_id = qemu_get_thread_id();
738 cpu_single_env = env;
740 r = kvm_init_vcpu(env);
741 if (r < 0) {
742 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
743 exit(1);
746 qemu_kvm_init_cpu_signals(env);
748 /* signal CPU creation */
749 env->created = 1;
750 qemu_cond_signal(&qemu_cpu_cond);
752 while (1) {
753 if (cpu_can_run(env)) {
754 r = kvm_cpu_exec(env);
755 if (r == EXCP_DEBUG) {
756 cpu_handle_guest_debug(env);
759 qemu_kvm_wait_io_event(env);
762 return NULL;
765 static void *qemu_dummy_cpu_thread_fn(void *arg)
767 #ifdef _WIN32
768 fprintf(stderr, "qtest is not supported under Windows\n");
769 exit(1);
770 #else
771 CPUArchState *env = arg;
772 CPUState *cpu = ENV_GET_CPU(env);
773 sigset_t waitset;
774 int r;
776 qemu_mutex_lock_iothread();
777 qemu_thread_get_self(cpu->thread);
778 env->thread_id = qemu_get_thread_id();
780 sigemptyset(&waitset);
781 sigaddset(&waitset, SIG_IPI);
783 /* signal CPU creation */
784 env->created = 1;
785 qemu_cond_signal(&qemu_cpu_cond);
787 cpu_single_env = env;
788 while (1) {
789 cpu_single_env = NULL;
790 qemu_mutex_unlock_iothread();
791 do {
792 int sig;
793 r = sigwait(&waitset, &sig);
794 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
795 if (r == -1) {
796 perror("sigwait");
797 exit(1);
799 qemu_mutex_lock_iothread();
800 cpu_single_env = env;
801 qemu_wait_io_event_common(env);
804 return NULL;
805 #endif
808 static void tcg_exec_all(void);
810 static void *qemu_tcg_cpu_thread_fn(void *arg)
812 CPUArchState *env = arg;
813 CPUState *cpu = ENV_GET_CPU(env);
815 qemu_tcg_init_cpu_signals();
816 qemu_thread_get_self(cpu->thread);
818 /* signal CPU creation */
819 qemu_mutex_lock(&qemu_global_mutex);
820 for (env = first_cpu; env != NULL; env = env->next_cpu) {
821 env->thread_id = qemu_get_thread_id();
822 env->created = 1;
824 qemu_cond_signal(&qemu_cpu_cond);
826 /* wait for initial kick-off after machine start */
827 while (first_cpu->stopped) {
828 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
830 /* process any pending work */
831 for (env = first_cpu; env != NULL; env = env->next_cpu) {
832 qemu_wait_io_event_common(env);
836 while (1) {
837 tcg_exec_all();
838 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
839 qemu_notify_event();
841 qemu_tcg_wait_io_event();
844 return NULL;
847 static void qemu_cpu_kick_thread(CPUState *cpu)
849 #ifndef _WIN32
850 int err;
852 err = pthread_kill(cpu->thread->thread, SIG_IPI);
853 if (err) {
854 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
855 exit(1);
857 #else /* _WIN32 */
858 if (!qemu_cpu_is_self(cpu)) {
859 SuspendThread(cpu->hThread);
860 cpu_signal(0);
861 ResumeThread(cpu->hThread);
863 #endif
866 void qemu_cpu_kick(void *_env)
868 CPUArchState *env = _env;
869 CPUState *cpu = ENV_GET_CPU(env);
871 qemu_cond_broadcast(env->halt_cond);
872 if (!tcg_enabled() && !cpu->thread_kicked) {
873 qemu_cpu_kick_thread(cpu);
874 cpu->thread_kicked = true;
878 void qemu_cpu_kick_self(void)
880 #ifndef _WIN32
881 assert(cpu_single_env);
882 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
884 if (!cpu_single_cpu->thread_kicked) {
885 qemu_cpu_kick_thread(cpu_single_cpu);
886 cpu_single_cpu->thread_kicked = true;
888 #else
889 abort();
890 #endif
893 bool qemu_cpu_is_self(CPUState *cpu)
895 return qemu_thread_is_self(cpu->thread);
898 static bool qemu_in_vcpu_thread(void)
900 return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
903 void qemu_mutex_lock_iothread(void)
905 if (!tcg_enabled()) {
906 qemu_mutex_lock(&qemu_global_mutex);
907 } else {
908 iothread_requesting_mutex = true;
909 if (qemu_mutex_trylock(&qemu_global_mutex)) {
910 qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
911 qemu_mutex_lock(&qemu_global_mutex);
913 iothread_requesting_mutex = false;
914 qemu_cond_broadcast(&qemu_io_proceeded_cond);
918 void qemu_mutex_unlock_iothread(void)
920 qemu_mutex_unlock(&qemu_global_mutex);
923 static int all_vcpus_paused(void)
925 CPUArchState *penv = first_cpu;
927 while (penv) {
928 if (!penv->stopped) {
929 return 0;
931 penv = penv->next_cpu;
934 return 1;
937 void pause_all_vcpus(void)
939 CPUArchState *penv = first_cpu;
941 qemu_clock_enable(vm_clock, false);
942 while (penv) {
943 penv->stop = 1;
944 qemu_cpu_kick(penv);
945 penv = penv->next_cpu;
948 if (qemu_in_vcpu_thread()) {
949 cpu_stop_current();
950 if (!kvm_enabled()) {
951 while (penv) {
952 penv->stop = 0;
953 penv->stopped = 1;
954 penv = penv->next_cpu;
956 return;
960 while (!all_vcpus_paused()) {
961 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
962 penv = first_cpu;
963 while (penv) {
964 qemu_cpu_kick(penv);
965 penv = penv->next_cpu;
970 void resume_all_vcpus(void)
972 CPUArchState *penv = first_cpu;
974 qemu_clock_enable(vm_clock, true);
975 while (penv) {
976 penv->stop = 0;
977 penv->stopped = 0;
978 qemu_cpu_kick(penv);
979 penv = penv->next_cpu;
983 static void qemu_tcg_init_vcpu(void *_env)
985 CPUArchState *env = _env;
986 CPUState *cpu = ENV_GET_CPU(env);
988 /* share a single thread for all cpus with TCG */
989 if (!tcg_cpu_thread) {
990 cpu->thread = g_malloc0(sizeof(QemuThread));
991 env->halt_cond = g_malloc0(sizeof(QemuCond));
992 qemu_cond_init(env->halt_cond);
993 tcg_halt_cond = env->halt_cond;
994 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
995 QEMU_THREAD_JOINABLE);
996 #ifdef _WIN32
997 cpu->hThread = qemu_thread_get_handle(cpu->thread);
998 #endif
999 while (env->created == 0) {
1000 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1002 tcg_cpu_thread = cpu->thread;
1003 } else {
1004 cpu->thread = tcg_cpu_thread;
1005 env->halt_cond = tcg_halt_cond;
1009 static void qemu_kvm_start_vcpu(CPUArchState *env)
1011 CPUState *cpu = ENV_GET_CPU(env);
1013 cpu->thread = g_malloc0(sizeof(QemuThread));
1014 env->halt_cond = g_malloc0(sizeof(QemuCond));
1015 qemu_cond_init(env->halt_cond);
1016 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1017 QEMU_THREAD_JOINABLE);
1018 while (env->created == 0) {
1019 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1023 static void qemu_dummy_start_vcpu(CPUArchState *env)
1025 CPUState *cpu = ENV_GET_CPU(env);
1027 cpu->thread = g_malloc0(sizeof(QemuThread));
1028 env->halt_cond = g_malloc0(sizeof(QemuCond));
1029 qemu_cond_init(env->halt_cond);
1030 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1031 QEMU_THREAD_JOINABLE);
1032 while (env->created == 0) {
1033 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1037 void qemu_init_vcpu(void *_env)
1039 CPUArchState *env = _env;
1041 env->nr_cores = smp_cores;
1042 env->nr_threads = smp_threads;
1043 env->stopped = 1;
1044 if (kvm_enabled()) {
1045 qemu_kvm_start_vcpu(env);
1046 } else if (tcg_enabled()) {
1047 qemu_tcg_init_vcpu(env);
1048 } else {
1049 qemu_dummy_start_vcpu(env);
1053 void cpu_stop_current(void)
1055 if (cpu_single_env) {
1056 cpu_single_env->stop = 0;
1057 cpu_single_env->stopped = 1;
1058 cpu_exit(cpu_single_env);
1059 qemu_cond_signal(&qemu_pause_cond);
1063 void vm_stop(RunState state)
1065 if (qemu_in_vcpu_thread()) {
1066 qemu_system_vmstop_request(state);
1068 * FIXME: should not return to device code in case
1069 * vm_stop() has been requested.
1071 cpu_stop_current();
1072 return;
1074 do_vm_stop(state);
1077 /* does a state transition even if the VM is already stopped,
1078 current state is forgotten forever */
1079 void vm_stop_force_state(RunState state)
1081 if (runstate_is_running()) {
1082 vm_stop(state);
1083 } else {
1084 runstate_set(state);
1088 static int tcg_cpu_exec(CPUArchState *env)
1090 int ret;
1091 #ifdef CONFIG_PROFILER
1092 int64_t ti;
1093 #endif
1095 #ifdef CONFIG_PROFILER
1096 ti = profile_getclock();
1097 #endif
1098 if (use_icount) {
1099 int64_t count;
1100 int decr;
1101 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1102 env->icount_decr.u16.low = 0;
1103 env->icount_extra = 0;
1104 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1105 qemu_icount += count;
1106 decr = (count > 0xffff) ? 0xffff : count;
1107 count -= decr;
1108 env->icount_decr.u16.low = decr;
1109 env->icount_extra = count;
1111 ret = cpu_exec(env);
1112 #ifdef CONFIG_PROFILER
1113 qemu_time += profile_getclock() - ti;
1114 #endif
1115 if (use_icount) {
1116 /* Fold pending instructions back into the
1117 instruction counter, and clear the interrupt flag. */
1118 qemu_icount -= (env->icount_decr.u16.low
1119 + env->icount_extra);
1120 env->icount_decr.u32 = 0;
1121 env->icount_extra = 0;
1123 return ret;
1126 static void tcg_exec_all(void)
1128 int r;
1130 /* Account partial waits to the vm_clock. */
1131 qemu_clock_warp(vm_clock);
1133 if (next_cpu == NULL) {
1134 next_cpu = first_cpu;
1136 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1137 CPUArchState *env = next_cpu;
1139 qemu_clock_enable(vm_clock,
1140 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1142 if (cpu_can_run(env)) {
1143 r = tcg_cpu_exec(env);
1144 if (r == EXCP_DEBUG) {
1145 cpu_handle_guest_debug(env);
1146 break;
1148 } else if (env->stop || env->stopped) {
1149 break;
1152 exit_request = 0;
1155 void set_numa_modes(void)
1157 CPUArchState *env;
1158 int i;
1160 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1161 for (i = 0; i < nb_numa_nodes; i++) {
1162 if (test_bit(env->cpu_index, node_cpumask[i])) {
1163 env->numa_node = i;
1169 void set_cpu_log(const char *optarg)
1171 int mask;
1172 const CPULogItem *item;
1174 mask = cpu_str_to_log_mask(optarg);
1175 if (!mask) {
1176 printf("Log items (comma separated):\n");
1177 for (item = cpu_log_items; item->mask != 0; item++) {
1178 printf("%-10s %s\n", item->name, item->help);
1180 exit(1);
1182 cpu_set_log(mask);
1185 void set_cpu_log_filename(const char *optarg)
1187 cpu_set_log_filename(optarg);
1190 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1192 /* XXX: implement xxx_cpu_list for targets that still miss it */
1193 #if defined(cpu_list)
1194 cpu_list(f, cpu_fprintf);
1195 #endif
1198 CpuInfoList *qmp_query_cpus(Error **errp)
1200 CpuInfoList *head = NULL, *cur_item = NULL;
1201 CPUArchState *env;
1203 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1204 CpuInfoList *info;
1206 cpu_synchronize_state(env);
1208 info = g_malloc0(sizeof(*info));
1209 info->value = g_malloc0(sizeof(*info->value));
1210 info->value->CPU = env->cpu_index;
1211 info->value->current = (env == first_cpu);
1212 info->value->halted = env->halted;
1213 info->value->thread_id = env->thread_id;
1214 #if defined(TARGET_I386)
1215 info->value->has_pc = true;
1216 info->value->pc = env->eip + env->segs[R_CS].base;
1217 #elif defined(TARGET_PPC)
1218 info->value->has_nip = true;
1219 info->value->nip = env->nip;
1220 #elif defined(TARGET_SPARC)
1221 info->value->has_pc = true;
1222 info->value->pc = env->pc;
1223 info->value->has_npc = true;
1224 info->value->npc = env->npc;
1225 #elif defined(TARGET_MIPS)
1226 info->value->has_PC = true;
1227 info->value->PC = env->active_tc.PC;
1228 #endif
1230 /* XXX: waiting for the qapi to support GSList */
1231 if (!cur_item) {
1232 head = cur_item = info;
1233 } else {
1234 cur_item->next = info;
1235 cur_item = info;
1239 return head;
1242 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1243 bool has_cpu, int64_t cpu_index, Error **errp)
1245 FILE *f;
1246 uint32_t l;
1247 CPUArchState *env;
1248 uint8_t buf[1024];
1250 if (!has_cpu) {
1251 cpu_index = 0;
1254 for (env = first_cpu; env; env = env->next_cpu) {
1255 if (cpu_index == env->cpu_index) {
1256 break;
1260 if (env == NULL) {
1261 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1262 "a CPU number");
1263 return;
1266 f = fopen(filename, "wb");
1267 if (!f) {
1268 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1269 return;
1272 while (size != 0) {
1273 l = sizeof(buf);
1274 if (l > size)
1275 l = size;
1276 cpu_memory_rw_debug(env, addr, buf, l, 0);
1277 if (fwrite(buf, 1, l, f) != l) {
1278 error_set(errp, QERR_IO_ERROR);
1279 goto exit;
1281 addr += l;
1282 size -= l;
1285 exit:
1286 fclose(f);
1289 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1290 Error **errp)
1292 FILE *f;
1293 uint32_t l;
1294 uint8_t buf[1024];
1296 f = fopen(filename, "wb");
1297 if (!f) {
1298 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1299 return;
1302 while (size != 0) {
1303 l = sizeof(buf);
1304 if (l > size)
1305 l = size;
1306 cpu_physical_memory_rw(addr, buf, l, 0);
1307 if (fwrite(buf, 1, l, f) != l) {
1308 error_set(errp, QERR_IO_ERROR);
1309 goto exit;
1311 addr += l;
1312 size -= l;
1315 exit:
1316 fclose(f);
1319 void qmp_inject_nmi(Error **errp)
1321 #if defined(TARGET_I386)
1322 CPUArchState *env;
1324 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1325 if (!env->apic_state) {
1326 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1327 } else {
1328 apic_deliver_nmi(env->apic_state);
1331 #else
1332 error_set(errp, QERR_UNSUPPORTED);
1333 #endif