x86: use wrappers for memory access helpers
[qemu/opensuse.git] / hw / pxa2xx_mmci.c
blobb505a4cc9879aa183335fb27f9297b310078f395
1 /*
2 * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation.
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
7 * This code is licensed under the GPLv2.
9 * Contributions after 2012-01-13 are licensed under the terms of the
10 * GNU GPL, version 2 or (at your option) any later version.
13 #include "hw.h"
14 #include "pxa.h"
15 #include "sd.h"
16 #include "qdev.h"
18 struct PXA2xxMMCIState {
19 MemoryRegion iomem;
20 qemu_irq irq;
21 qemu_irq rx_dma;
22 qemu_irq tx_dma;
24 SDState *card;
26 uint32_t status;
27 uint32_t clkrt;
28 uint32_t spi;
29 uint32_t cmdat;
30 uint32_t resp_tout;
31 uint32_t read_tout;
32 int blklen;
33 int numblk;
34 uint32_t intmask;
35 uint32_t intreq;
36 int cmd;
37 uint32_t arg;
39 int active;
40 int bytesleft;
41 uint8_t tx_fifo[64];
42 int tx_start;
43 int tx_len;
44 uint8_t rx_fifo[32];
45 int rx_start;
46 int rx_len;
47 uint16_t resp_fifo[9];
48 int resp_len;
50 int cmdreq;
51 int ac_width;
54 #define MMC_STRPCL 0x00 /* MMC Clock Start/Stop register */
55 #define MMC_STAT 0x04 /* MMC Status register */
56 #define MMC_CLKRT 0x08 /* MMC Clock Rate register */
57 #define MMC_SPI 0x0c /* MMC SPI Mode register */
58 #define MMC_CMDAT 0x10 /* MMC Command/Data register */
59 #define MMC_RESTO 0x14 /* MMC Response Time-Out register */
60 #define MMC_RDTO 0x18 /* MMC Read Time-Out register */
61 #define MMC_BLKLEN 0x1c /* MMC Block Length register */
62 #define MMC_NUMBLK 0x20 /* MMC Number of Blocks register */
63 #define MMC_PRTBUF 0x24 /* MMC Buffer Partly Full register */
64 #define MMC_I_MASK 0x28 /* MMC Interrupt Mask register */
65 #define MMC_I_REG 0x2c /* MMC Interrupt Request register */
66 #define MMC_CMD 0x30 /* MMC Command register */
67 #define MMC_ARGH 0x34 /* MMC Argument High register */
68 #define MMC_ARGL 0x38 /* MMC Argument Low register */
69 #define MMC_RES 0x3c /* MMC Response FIFO */
70 #define MMC_RXFIFO 0x40 /* MMC Receive FIFO */
71 #define MMC_TXFIFO 0x44 /* MMC Transmit FIFO */
72 #define MMC_RDWAIT 0x48 /* MMC RD_WAIT register */
73 #define MMC_BLKS_REM 0x4c /* MMC Blocks Remaining register */
75 /* Bitfield masks */
76 #define STRPCL_STOP_CLK (1 << 0)
77 #define STRPCL_STRT_CLK (1 << 1)
78 #define STAT_TOUT_RES (1 << 1)
79 #define STAT_CLK_EN (1 << 8)
80 #define STAT_DATA_DONE (1 << 11)
81 #define STAT_PRG_DONE (1 << 12)
82 #define STAT_END_CMDRES (1 << 13)
83 #define SPI_SPI_MODE (1 << 0)
84 #define CMDAT_RES_TYPE (3 << 0)
85 #define CMDAT_DATA_EN (1 << 2)
86 #define CMDAT_WR_RD (1 << 3)
87 #define CMDAT_DMA_EN (1 << 7)
88 #define CMDAT_STOP_TRAN (1 << 10)
89 #define INT_DATA_DONE (1 << 0)
90 #define INT_PRG_DONE (1 << 1)
91 #define INT_END_CMD (1 << 2)
92 #define INT_STOP_CMD (1 << 3)
93 #define INT_CLK_OFF (1 << 4)
94 #define INT_RXFIFO_REQ (1 << 5)
95 #define INT_TXFIFO_REQ (1 << 6)
96 #define INT_TINT (1 << 7)
97 #define INT_DAT_ERR (1 << 8)
98 #define INT_RES_ERR (1 << 9)
99 #define INT_RD_STALLED (1 << 10)
100 #define INT_SDIO_INT (1 << 11)
101 #define INT_SDIO_SACK (1 << 12)
102 #define PRTBUF_PRT_BUF (1 << 0)
104 /* Route internal interrupt lines to the global IC and DMA */
105 static void pxa2xx_mmci_int_update(PXA2xxMMCIState *s)
107 uint32_t mask = s->intmask;
108 if (s->cmdat & CMDAT_DMA_EN) {
109 mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ;
111 qemu_set_irq(s->rx_dma, !!(s->intreq & INT_RXFIFO_REQ));
112 qemu_set_irq(s->tx_dma, !!(s->intreq & INT_TXFIFO_REQ));
115 qemu_set_irq(s->irq, !!(s->intreq & ~mask));
118 static void pxa2xx_mmci_fifo_update(PXA2xxMMCIState *s)
120 if (!s->active)
121 return;
123 if (s->cmdat & CMDAT_WR_RD) {
124 while (s->bytesleft && s->tx_len) {
125 sd_write_data(s->card, s->tx_fifo[s->tx_start ++]);
126 s->tx_start &= 0x1f;
127 s->tx_len --;
128 s->bytesleft --;
130 if (s->bytesleft)
131 s->intreq |= INT_TXFIFO_REQ;
132 } else
133 while (s->bytesleft && s->rx_len < 32) {
134 s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] =
135 sd_read_data(s->card);
136 s->bytesleft --;
137 s->intreq |= INT_RXFIFO_REQ;
140 if (!s->bytesleft) {
141 s->active = 0;
142 s->intreq |= INT_DATA_DONE;
143 s->status |= STAT_DATA_DONE;
145 if (s->cmdat & CMDAT_WR_RD) {
146 s->intreq |= INT_PRG_DONE;
147 s->status |= STAT_PRG_DONE;
151 pxa2xx_mmci_int_update(s);
154 static void pxa2xx_mmci_wakequeues(PXA2xxMMCIState *s)
156 int rsplen, i;
157 SDRequest request;
158 uint8_t response[16];
160 s->active = 1;
161 s->rx_len = 0;
162 s->tx_len = 0;
163 s->cmdreq = 0;
165 request.cmd = s->cmd;
166 request.arg = s->arg;
167 request.crc = 0; /* FIXME */
169 rsplen = sd_do_command(s->card, &request, response);
170 s->intreq |= INT_END_CMD;
172 memset(s->resp_fifo, 0, sizeof(s->resp_fifo));
173 switch (s->cmdat & CMDAT_RES_TYPE) {
174 #define PXAMMCI_RESP(wd, value0, value1) \
175 s->resp_fifo[(wd) + 0] |= (value0); \
176 s->resp_fifo[(wd) + 1] |= (value1) << 8;
177 case 0: /* No response */
178 goto complete;
180 case 1: /* R1, R4, R5 or R6 */
181 if (rsplen < 4)
182 goto timeout;
183 goto complete;
185 case 2: /* R2 */
186 if (rsplen < 16)
187 goto timeout;
188 goto complete;
190 case 3: /* R3 */
191 if (rsplen < 4)
192 goto timeout;
193 goto complete;
195 complete:
196 for (i = 0; rsplen > 0; i ++, rsplen -= 2) {
197 PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]);
199 s->status |= STAT_END_CMDRES;
201 if (!(s->cmdat & CMDAT_DATA_EN))
202 s->active = 0;
203 else
204 s->bytesleft = s->numblk * s->blklen;
206 s->resp_len = 0;
207 break;
209 timeout:
210 s->active = 0;
211 s->status |= STAT_TOUT_RES;
212 break;
215 pxa2xx_mmci_fifo_update(s);
218 static uint32_t pxa2xx_mmci_read(void *opaque, target_phys_addr_t offset)
220 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
221 uint32_t ret;
223 switch (offset) {
224 case MMC_STRPCL:
225 return 0;
226 case MMC_STAT:
227 return s->status;
228 case MMC_CLKRT:
229 return s->clkrt;
230 case MMC_SPI:
231 return s->spi;
232 case MMC_CMDAT:
233 return s->cmdat;
234 case MMC_RESTO:
235 return s->resp_tout;
236 case MMC_RDTO:
237 return s->read_tout;
238 case MMC_BLKLEN:
239 return s->blklen;
240 case MMC_NUMBLK:
241 return s->numblk;
242 case MMC_PRTBUF:
243 return 0;
244 case MMC_I_MASK:
245 return s->intmask;
246 case MMC_I_REG:
247 return s->intreq;
248 case MMC_CMD:
249 return s->cmd | 0x40;
250 case MMC_ARGH:
251 return s->arg >> 16;
252 case MMC_ARGL:
253 return s->arg & 0xffff;
254 case MMC_RES:
255 if (s->resp_len < 9)
256 return s->resp_fifo[s->resp_len ++];
257 return 0;
258 case MMC_RXFIFO:
259 ret = 0;
260 while (s->ac_width -- && s->rx_len) {
261 ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3);
262 s->rx_start &= 0x1f;
263 s->rx_len --;
265 s->intreq &= ~INT_RXFIFO_REQ;
266 pxa2xx_mmci_fifo_update(s);
267 return ret;
268 case MMC_RDWAIT:
269 return 0;
270 case MMC_BLKS_REM:
271 return s->numblk;
272 default:
273 hw_error("%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
276 return 0;
279 static void pxa2xx_mmci_write(void *opaque,
280 target_phys_addr_t offset, uint32_t value)
282 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
284 switch (offset) {
285 case MMC_STRPCL:
286 if (value & STRPCL_STRT_CLK) {
287 s->status |= STAT_CLK_EN;
288 s->intreq &= ~INT_CLK_OFF;
290 if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) {
291 s->status &= STAT_CLK_EN;
292 pxa2xx_mmci_wakequeues(s);
296 if (value & STRPCL_STOP_CLK) {
297 s->status &= ~STAT_CLK_EN;
298 s->intreq |= INT_CLK_OFF;
299 s->active = 0;
302 pxa2xx_mmci_int_update(s);
303 break;
305 case MMC_CLKRT:
306 s->clkrt = value & 7;
307 break;
309 case MMC_SPI:
310 s->spi = value & 0xf;
311 if (value & SPI_SPI_MODE)
312 printf("%s: attempted to use card in SPI mode\n", __FUNCTION__);
313 break;
315 case MMC_CMDAT:
316 s->cmdat = value & 0x3dff;
317 s->active = 0;
318 s->cmdreq = 1;
319 if (!(value & CMDAT_STOP_TRAN)) {
320 s->status &= STAT_CLK_EN;
322 if (s->status & STAT_CLK_EN)
323 pxa2xx_mmci_wakequeues(s);
326 pxa2xx_mmci_int_update(s);
327 break;
329 case MMC_RESTO:
330 s->resp_tout = value & 0x7f;
331 break;
333 case MMC_RDTO:
334 s->read_tout = value & 0xffff;
335 break;
337 case MMC_BLKLEN:
338 s->blklen = value & 0xfff;
339 break;
341 case MMC_NUMBLK:
342 s->numblk = value & 0xffff;
343 break;
345 case MMC_PRTBUF:
346 if (value & PRTBUF_PRT_BUF) {
347 s->tx_start ^= 32;
348 s->tx_len = 0;
350 pxa2xx_mmci_fifo_update(s);
351 break;
353 case MMC_I_MASK:
354 s->intmask = value & 0x1fff;
355 pxa2xx_mmci_int_update(s);
356 break;
358 case MMC_CMD:
359 s->cmd = value & 0x3f;
360 break;
362 case MMC_ARGH:
363 s->arg &= 0x0000ffff;
364 s->arg |= value << 16;
365 break;
367 case MMC_ARGL:
368 s->arg &= 0xffff0000;
369 s->arg |= value & 0x0000ffff;
370 break;
372 case MMC_TXFIFO:
373 while (s->ac_width -- && s->tx_len < 0x20)
374 s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] =
375 (value >> (s->ac_width << 3)) & 0xff;
376 s->intreq &= ~INT_TXFIFO_REQ;
377 pxa2xx_mmci_fifo_update(s);
378 break;
380 case MMC_RDWAIT:
381 case MMC_BLKS_REM:
382 break;
384 default:
385 hw_error("%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
389 static uint32_t pxa2xx_mmci_readb(void *opaque, target_phys_addr_t offset)
391 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
392 s->ac_width = 1;
393 return pxa2xx_mmci_read(opaque, offset);
396 static uint32_t pxa2xx_mmci_readh(void *opaque, target_phys_addr_t offset)
398 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
399 s->ac_width = 2;
400 return pxa2xx_mmci_read(opaque, offset);
403 static uint32_t pxa2xx_mmci_readw(void *opaque, target_phys_addr_t offset)
405 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
406 s->ac_width = 4;
407 return pxa2xx_mmci_read(opaque, offset);
410 static void pxa2xx_mmci_writeb(void *opaque,
411 target_phys_addr_t offset, uint32_t value)
413 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
414 s->ac_width = 1;
415 pxa2xx_mmci_write(opaque, offset, value);
418 static void pxa2xx_mmci_writeh(void *opaque,
419 target_phys_addr_t offset, uint32_t value)
421 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
422 s->ac_width = 2;
423 pxa2xx_mmci_write(opaque, offset, value);
426 static void pxa2xx_mmci_writew(void *opaque,
427 target_phys_addr_t offset, uint32_t value)
429 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
430 s->ac_width = 4;
431 pxa2xx_mmci_write(opaque, offset, value);
434 static const MemoryRegionOps pxa2xx_mmci_ops = {
435 .old_mmio = {
436 .read = { pxa2xx_mmci_readb,
437 pxa2xx_mmci_readh,
438 pxa2xx_mmci_readw, },
439 .write = { pxa2xx_mmci_writeb,
440 pxa2xx_mmci_writeh,
441 pxa2xx_mmci_writew, },
443 .endianness = DEVICE_NATIVE_ENDIAN,
446 static void pxa2xx_mmci_save(QEMUFile *f, void *opaque)
448 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
449 int i;
451 qemu_put_be32s(f, &s->status);
452 qemu_put_be32s(f, &s->clkrt);
453 qemu_put_be32s(f, &s->spi);
454 qemu_put_be32s(f, &s->cmdat);
455 qemu_put_be32s(f, &s->resp_tout);
456 qemu_put_be32s(f, &s->read_tout);
457 qemu_put_be32(f, s->blklen);
458 qemu_put_be32(f, s->numblk);
459 qemu_put_be32s(f, &s->intmask);
460 qemu_put_be32s(f, &s->intreq);
461 qemu_put_be32(f, s->cmd);
462 qemu_put_be32s(f, &s->arg);
463 qemu_put_be32(f, s->cmdreq);
464 qemu_put_be32(f, s->active);
465 qemu_put_be32(f, s->bytesleft);
467 qemu_put_byte(f, s->tx_len);
468 for (i = 0; i < s->tx_len; i ++)
469 qemu_put_byte(f, s->tx_fifo[(s->tx_start + i) & 63]);
471 qemu_put_byte(f, s->rx_len);
472 for (i = 0; i < s->rx_len; i ++)
473 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 31]);
475 qemu_put_byte(f, s->resp_len);
476 for (i = s->resp_len; i < 9; i ++)
477 qemu_put_be16s(f, &s->resp_fifo[i]);
480 static int pxa2xx_mmci_load(QEMUFile *f, void *opaque, int version_id)
482 PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
483 int i;
485 qemu_get_be32s(f, &s->status);
486 qemu_get_be32s(f, &s->clkrt);
487 qemu_get_be32s(f, &s->spi);
488 qemu_get_be32s(f, &s->cmdat);
489 qemu_get_be32s(f, &s->resp_tout);
490 qemu_get_be32s(f, &s->read_tout);
491 s->blklen = qemu_get_be32(f);
492 s->numblk = qemu_get_be32(f);
493 qemu_get_be32s(f, &s->intmask);
494 qemu_get_be32s(f, &s->intreq);
495 s->cmd = qemu_get_be32(f);
496 qemu_get_be32s(f, &s->arg);
497 s->cmdreq = qemu_get_be32(f);
498 s->active = qemu_get_be32(f);
499 s->bytesleft = qemu_get_be32(f);
501 s->tx_len = qemu_get_byte(f);
502 s->tx_start = 0;
503 if (s->tx_len >= sizeof(s->tx_fifo) || s->tx_len < 0)
504 return -EINVAL;
505 for (i = 0; i < s->tx_len; i ++)
506 s->tx_fifo[i] = qemu_get_byte(f);
508 s->rx_len = qemu_get_byte(f);
509 s->rx_start = 0;
510 if (s->rx_len >= sizeof(s->rx_fifo) || s->rx_len < 0)
511 return -EINVAL;
512 for (i = 0; i < s->rx_len; i ++)
513 s->rx_fifo[i] = qemu_get_byte(f);
515 s->resp_len = qemu_get_byte(f);
516 if (s->resp_len > 9 || s->resp_len < 0)
517 return -EINVAL;
518 for (i = s->resp_len; i < 9; i ++)
519 qemu_get_be16s(f, &s->resp_fifo[i]);
521 return 0;
524 PXA2xxMMCIState *pxa2xx_mmci_init(MemoryRegion *sysmem,
525 target_phys_addr_t base,
526 BlockDriverState *bd, qemu_irq irq,
527 qemu_irq rx_dma, qemu_irq tx_dma)
529 PXA2xxMMCIState *s;
531 s = (PXA2xxMMCIState *) g_malloc0(sizeof(PXA2xxMMCIState));
532 s->irq = irq;
533 s->rx_dma = rx_dma;
534 s->tx_dma = tx_dma;
536 memory_region_init_io(&s->iomem, &pxa2xx_mmci_ops, s,
537 "pxa2xx-mmci", 0x00100000);
538 memory_region_add_subregion(sysmem, base, &s->iomem);
540 /* Instantiate the actual storage */
541 s->card = sd_init(bd, 0);
543 register_savevm(NULL, "pxa2xx_mmci", 0, 0,
544 pxa2xx_mmci_save, pxa2xx_mmci_load, s);
546 return s;
549 void pxa2xx_mmci_handlers(PXA2xxMMCIState *s, qemu_irq readonly,
550 qemu_irq coverswitch)
552 sd_set_cb(s->card, readonly, coverswitch);