target-alpha: Add support for -cpu ?
[qemu/opensuse.git] / dma.h
blobeedf878383837b1978952e6002c51eedca60b2f6
1 /*
2 * DMA helper functions
4 * Copyright (c) 2009 Red Hat
6 * This work is licensed under the terms of the GNU General Public License
7 * (GNU GPL), version 2 or later.
8 */
10 #ifndef DMA_H
11 #define DMA_H
13 #include <stdio.h>
14 #include "memory.h"
15 #include "hw/hw.h"
16 #include "block.h"
17 #include "kvm.h"
19 typedef struct DMAContext DMAContext;
20 typedef struct ScatterGatherEntry ScatterGatherEntry;
22 typedef enum {
23 DMA_DIRECTION_TO_DEVICE = 0,
24 DMA_DIRECTION_FROM_DEVICE = 1,
25 } DMADirection;
27 struct QEMUSGList {
28 ScatterGatherEntry *sg;
29 int nsg;
30 int nalloc;
31 size_t size;
32 DMAContext *dma;
35 #ifndef CONFIG_USER_ONLY
38 * When an IOMMU is present, bus addresses become distinct from
39 * CPU/memory physical addresses and may be a different size. Because
40 * the IOVA size depends more on the bus than on the platform, we more
41 * or less have to treat these as 64-bit always to cover all (or at
42 * least most) cases.
44 typedef uint64_t dma_addr_t;
46 #define DMA_ADDR_BITS 64
47 #define DMA_ADDR_FMT "%" PRIx64
49 typedef int DMATranslateFunc(DMAContext *dma,
50 dma_addr_t addr,
51 hwaddr *paddr,
52 hwaddr *len,
53 DMADirection dir);
54 typedef void* DMAMapFunc(DMAContext *dma,
55 dma_addr_t addr,
56 dma_addr_t *len,
57 DMADirection dir);
58 typedef void DMAUnmapFunc(DMAContext *dma,
59 void *buffer,
60 dma_addr_t len,
61 DMADirection dir,
62 dma_addr_t access_len);
64 struct DMAContext {
65 AddressSpace *as;
66 DMATranslateFunc *translate;
67 DMAMapFunc *map;
68 DMAUnmapFunc *unmap;
71 /* A global DMA context corresponding to the address_space_memory
72 * AddressSpace, for sysbus devices which do DMA.
74 extern DMAContext dma_context_memory;
76 static inline void dma_barrier(DMAContext *dma, DMADirection dir)
79 * This is called before DMA read and write operations
80 * unless the _relaxed form is used and is responsible
81 * for providing some sane ordering of accesses vs
82 * concurrently running VCPUs.
84 * Users of map(), unmap() or lower level st/ld_*
85 * operations are responsible for providing their own
86 * ordering via barriers.
88 * This primitive implementation does a simple smp_mb()
89 * before each operation which provides pretty much full
90 * ordering.
92 * A smarter implementation can be devised if needed to
93 * use lighter barriers based on the direction of the
94 * transfer, the DMA context, etc...
96 if (kvm_enabled()) {
97 smp_mb();
101 static inline bool dma_has_iommu(DMAContext *dma)
103 return dma && dma->translate;
106 /* Checks that the given range of addresses is valid for DMA. This is
107 * useful for certain cases, but usually you should just use
108 * dma_memory_{read,write}() and check for errors */
109 bool iommu_dma_memory_valid(DMAContext *dma, dma_addr_t addr, dma_addr_t len,
110 DMADirection dir);
111 static inline bool dma_memory_valid(DMAContext *dma,
112 dma_addr_t addr, dma_addr_t len,
113 DMADirection dir)
115 if (!dma_has_iommu(dma)) {
116 return true;
117 } else {
118 return iommu_dma_memory_valid(dma, addr, len, dir);
122 int iommu_dma_memory_rw(DMAContext *dma, dma_addr_t addr,
123 void *buf, dma_addr_t len, DMADirection dir);
124 static inline int dma_memory_rw_relaxed(DMAContext *dma, dma_addr_t addr,
125 void *buf, dma_addr_t len,
126 DMADirection dir)
128 if (!dma_has_iommu(dma)) {
129 /* Fast-path for no IOMMU */
130 address_space_rw(dma->as, addr, buf, len, dir == DMA_DIRECTION_FROM_DEVICE);
131 return 0;
132 } else {
133 return iommu_dma_memory_rw(dma, addr, buf, len, dir);
137 static inline int dma_memory_read_relaxed(DMAContext *dma, dma_addr_t addr,
138 void *buf, dma_addr_t len)
140 return dma_memory_rw_relaxed(dma, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
143 static inline int dma_memory_write_relaxed(DMAContext *dma, dma_addr_t addr,
144 const void *buf, dma_addr_t len)
146 return dma_memory_rw_relaxed(dma, addr, (void *)buf, len,
147 DMA_DIRECTION_FROM_DEVICE);
150 static inline int dma_memory_rw(DMAContext *dma, dma_addr_t addr,
151 void *buf, dma_addr_t len,
152 DMADirection dir)
154 dma_barrier(dma, dir);
156 return dma_memory_rw_relaxed(dma, addr, buf, len, dir);
159 static inline int dma_memory_read(DMAContext *dma, dma_addr_t addr,
160 void *buf, dma_addr_t len)
162 return dma_memory_rw(dma, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
165 static inline int dma_memory_write(DMAContext *dma, dma_addr_t addr,
166 const void *buf, dma_addr_t len)
168 return dma_memory_rw(dma, addr, (void *)buf, len,
169 DMA_DIRECTION_FROM_DEVICE);
172 int iommu_dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c,
173 dma_addr_t len);
175 int dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c, dma_addr_t len);
177 void *iommu_dma_memory_map(DMAContext *dma,
178 dma_addr_t addr, dma_addr_t *len,
179 DMADirection dir);
180 static inline void *dma_memory_map(DMAContext *dma,
181 dma_addr_t addr, dma_addr_t *len,
182 DMADirection dir)
184 if (!dma_has_iommu(dma)) {
185 hwaddr xlen = *len;
186 void *p;
188 p = address_space_map(dma->as, addr, &xlen, dir == DMA_DIRECTION_FROM_DEVICE);
189 *len = xlen;
190 return p;
191 } else {
192 return iommu_dma_memory_map(dma, addr, len, dir);
196 void iommu_dma_memory_unmap(DMAContext *dma,
197 void *buffer, dma_addr_t len,
198 DMADirection dir, dma_addr_t access_len);
199 static inline void dma_memory_unmap(DMAContext *dma,
200 void *buffer, dma_addr_t len,
201 DMADirection dir, dma_addr_t access_len)
203 if (!dma_has_iommu(dma)) {
204 address_space_unmap(dma->as, buffer, (hwaddr)len,
205 dir == DMA_DIRECTION_FROM_DEVICE, access_len);
206 } else {
207 iommu_dma_memory_unmap(dma, buffer, len, dir, access_len);
211 #define DEFINE_LDST_DMA(_lname, _sname, _bits, _end) \
212 static inline uint##_bits##_t ld##_lname##_##_end##_dma(DMAContext *dma, \
213 dma_addr_t addr) \
215 uint##_bits##_t val; \
216 dma_memory_read(dma, addr, &val, (_bits) / 8); \
217 return _end##_bits##_to_cpu(val); \
219 static inline void st##_sname##_##_end##_dma(DMAContext *dma, \
220 dma_addr_t addr, \
221 uint##_bits##_t val) \
223 val = cpu_to_##_end##_bits(val); \
224 dma_memory_write(dma, addr, &val, (_bits) / 8); \
227 static inline uint8_t ldub_dma(DMAContext *dma, dma_addr_t addr)
229 uint8_t val;
231 dma_memory_read(dma, addr, &val, 1);
232 return val;
235 static inline void stb_dma(DMAContext *dma, dma_addr_t addr, uint8_t val)
237 dma_memory_write(dma, addr, &val, 1);
240 DEFINE_LDST_DMA(uw, w, 16, le);
241 DEFINE_LDST_DMA(l, l, 32, le);
242 DEFINE_LDST_DMA(q, q, 64, le);
243 DEFINE_LDST_DMA(uw, w, 16, be);
244 DEFINE_LDST_DMA(l, l, 32, be);
245 DEFINE_LDST_DMA(q, q, 64, be);
247 #undef DEFINE_LDST_DMA
249 void dma_context_init(DMAContext *dma, AddressSpace *as, DMATranslateFunc translate,
250 DMAMapFunc map, DMAUnmapFunc unmap);
252 struct ScatterGatherEntry {
253 dma_addr_t base;
254 dma_addr_t len;
257 void qemu_sglist_init(QEMUSGList *qsg, int alloc_hint, DMAContext *dma);
258 void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len);
259 void qemu_sglist_destroy(QEMUSGList *qsg);
260 #endif
262 typedef BlockDriverAIOCB *DMAIOFunc(BlockDriverState *bs, int64_t sector_num,
263 QEMUIOVector *iov, int nb_sectors,
264 BlockDriverCompletionFunc *cb, void *opaque);
266 BlockDriverAIOCB *dma_bdrv_io(BlockDriverState *bs,
267 QEMUSGList *sg, uint64_t sector_num,
268 DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
269 void *opaque, DMADirection dir);
270 BlockDriverAIOCB *dma_bdrv_read(BlockDriverState *bs,
271 QEMUSGList *sg, uint64_t sector,
272 BlockDriverCompletionFunc *cb, void *opaque);
273 BlockDriverAIOCB *dma_bdrv_write(BlockDriverState *bs,
274 QEMUSGList *sg, uint64_t sector,
275 BlockDriverCompletionFunc *cb, void *opaque);
276 uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg);
277 uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg);
279 void dma_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
280 QEMUSGList *sg, enum BlockAcctType type);
282 #endif