2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #include "host-utils.h"
32 static void do_unaligned_access(CPUXtensaState
*env
,
33 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
);
36 #define MMUSUFFIX _mmu
39 #include "softmmu_template.h"
42 #include "softmmu_template.h"
45 #include "softmmu_template.h"
48 #include "softmmu_template.h"
50 static void do_restore_state(CPUXtensaState
*env
, uintptr_t pc
)
56 cpu_restore_state(tb
, env
, pc
);
60 static void do_unaligned_access(CPUXtensaState
*env
,
61 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
)
63 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
64 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
65 do_restore_state(env
, retaddr
);
66 HELPER(exception_cause_vaddr
)(env
,
67 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
71 void tlb_fill(CPUXtensaState
*env
,
72 target_ulong vaddr
, int is_write
, int mmu_idx
, uintptr_t retaddr
)
77 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, is_write
, mmu_idx
,
78 &paddr
, &page_size
, &access
);
80 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__
,
81 vaddr
, is_write
, mmu_idx
, paddr
, ret
);
85 vaddr
& TARGET_PAGE_MASK
,
86 paddr
& TARGET_PAGE_MASK
,
87 access
, mmu_idx
, page_size
);
89 do_restore_state(env
, retaddr
);
90 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
94 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
99 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
100 &paddr
, &page_size
, &access
);
102 tb_invalidate_phys_addr(paddr
);
106 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
108 env
->exception_index
= excp
;
112 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
117 if (env
->sregs
[PS
] & PS_EXCM
) {
118 if (env
->config
->ndepc
) {
119 env
->sregs
[DEPC
] = pc
;
121 env
->sregs
[EPC1
] = pc
;
125 env
->sregs
[EPC1
] = pc
;
126 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
129 env
->sregs
[EXCCAUSE
] = cause
;
130 env
->sregs
[PS
] |= PS_EXCM
;
132 HELPER(exception
)(env
, vector
);
135 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
136 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
138 env
->sregs
[EXCVADDR
] = vaddr
;
139 HELPER(exception_cause
)(env
, pc
, cause
);
142 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
144 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
145 HELPER(debug_exception
)(env
, env
->pc
, cause
);
149 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
151 unsigned level
= env
->config
->debug_level
;
154 env
->sregs
[DEBUGCAUSE
] = cause
;
155 env
->sregs
[EPC1
+ level
- 1] = pc
;
156 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
157 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
158 (level
<< PS_INTLEVEL_SHIFT
);
159 HELPER(exception
)(env
, EXC_DEBUG
);
162 uint32_t HELPER(nsa
)(uint32_t v
)
164 if (v
& 0x80000000) {
167 return v
? clz32(v
) - 1 : 31;
170 uint32_t HELPER(nsau
)(uint32_t v
)
172 return v
? clz32(v
) : 32;
175 static void copy_window_from_phys(CPUXtensaState
*env
,
176 uint32_t window
, uint32_t phys
, uint32_t n
)
178 assert(phys
< env
->config
->nareg
);
179 if (phys
+ n
<= env
->config
->nareg
) {
180 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
181 n
* sizeof(uint32_t));
183 uint32_t n1
= env
->config
->nareg
- phys
;
184 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
185 n1
* sizeof(uint32_t));
186 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
187 (n
- n1
) * sizeof(uint32_t));
191 static void copy_phys_from_window(CPUXtensaState
*env
,
192 uint32_t phys
, uint32_t window
, uint32_t n
)
194 assert(phys
< env
->config
->nareg
);
195 if (phys
+ n
<= env
->config
->nareg
) {
196 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
197 n
* sizeof(uint32_t));
199 uint32_t n1
= env
->config
->nareg
- phys
;
200 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
201 n1
* sizeof(uint32_t));
202 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
203 (n
- n1
) * sizeof(uint32_t));
208 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
210 return a
& (env
->config
->nareg
/ 4 - 1);
213 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
215 return 1 << windowbase_bound(a
, env
);
218 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
220 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
223 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
225 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
228 static void rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
230 xtensa_sync_phys_from_window(env
);
231 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
232 xtensa_sync_window_from_phys(env
);
235 static void rotate_window(CPUXtensaState
*env
, uint32_t delta
)
237 rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
240 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
242 rotate_window_abs(env
, v
);
245 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
247 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
248 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
249 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
251 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
253 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
254 rotate_window(env
, callinc
);
255 env
->sregs
[WINDOW_START
] |=
256 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
260 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
262 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
263 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
266 if ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) {
274 if (windowstart
& windowstart_bit(windowbase
+ n
, env
)) {
279 m
= windowbase_bound(windowbase
+ n
, env
);
280 rotate_window(env
, n
);
281 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
282 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
283 env
->sregs
[EPC1
] = env
->pc
= pc
;
285 if (windowstart
& windowstart_bit(m
+ 1, env
)) {
286 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
287 } else if (windowstart
& windowstart_bit(m
+ 2, env
)) {
288 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
290 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
294 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
296 int n
= (env
->regs
[0] >> 30) & 0x3;
298 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
299 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
302 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
304 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
306 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
310 if (n
== 0 || (m
!= 0 && m
!= n
) ||
311 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
312 qemu_log("Illegal retw instruction(pc = %08x), "
313 "PS = %08x, m = %d, n = %d\n",
314 pc
, env
->sregs
[PS
], m
, n
);
315 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
317 int owb
= windowbase
;
319 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
321 rotate_window(env
, -n
);
322 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
323 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
325 /* window underflow */
326 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
327 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
328 env
->sregs
[EPC1
] = env
->pc
= pc
;
331 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
333 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
335 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
342 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
344 rotate_window(env
, imm4
);
347 void HELPER(restore_owb
)(CPUXtensaState
*env
)
349 rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
352 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
354 if ((env
->sregs
[WINDOW_START
] &
355 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
356 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
357 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
358 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
362 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
364 if (env
->sregs
[LBEG
] != v
) {
365 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
366 env
->sregs
[LBEG
] = v
;
370 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
372 if (env
->sregs
[LEND
] != v
) {
373 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
374 env
->sregs
[LEND
] = v
;
375 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
379 void HELPER(dump_state
)(CPUXtensaState
*env
)
381 cpu_dump_state(env
, stderr
, fprintf
, 0);
384 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
387 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
388 (intlevel
<< PS_INTLEVEL_SHIFT
);
389 check_interrupts(env
);
390 if (env
->pending_irq_level
) {
395 env
->halt_clock
= qemu_get_clock_ns(vm_clock
);
397 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
398 xtensa_rearm_ccompare_timer(env
);
400 HELPER(exception
)(env
, EXCP_HLT
);
403 void HELPER(timer_irq
)(CPUXtensaState
*env
, uint32_t id
, uint32_t active
)
405 xtensa_timer_irq(env
, id
, active
);
408 void HELPER(advance_ccount
)(CPUXtensaState
*env
, uint32_t d
)
410 xtensa_advance_ccount(env
, d
);
413 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
415 check_interrupts(env
);
419 * Check vaddr accessibility/cache attributes and raise an exception if
420 * specified by the ATOMCTL SR.
422 * Note: local memory exclusion is not implemented
424 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
426 uint32_t paddr
, page_size
, access
;
427 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
428 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
429 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
432 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
433 * see opcode description in the ISA
436 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
437 rc
= STORE_PROHIBITED_CAUSE
;
441 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
445 * When data cache is not configured use ATOMCTL bypass field.
446 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
447 * under the Conditional Store Option.
449 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
450 access
= PAGE_CACHE_BYPASS
;
453 switch (access
& PAGE_CACHE_MASK
) {
458 case PAGE_CACHE_BYPASS
:
459 if ((atomctl
& 0x3) == 0) {
460 HELPER(exception_cause_vaddr
)(env
, pc
,
461 LOAD_STORE_ERROR_CAUSE
, vaddr
);
465 case PAGE_CACHE_ISOLATE
:
466 HELPER(exception_cause_vaddr
)(env
, pc
,
467 LOAD_STORE_ERROR_CAUSE
, vaddr
);
475 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
477 v
= (v
& 0xffffff00) | 0x1;
478 if (v
!= env
->sregs
[RASID
]) {
479 env
->sregs
[RASID
] = v
;
484 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
486 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
490 return (tlbcfg
>> 16) & 0x3;
493 return (tlbcfg
>> 20) & 0x1;
496 return (tlbcfg
>> 24) & 0x1;
504 * Get bit mask for the virtual address bits translated by the TLB way
506 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
508 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
509 bool varway56
= dtlb
?
510 env
->config
->dtlb
.varway56
:
511 env
->config
->itlb
.varway56
;
515 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
519 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
526 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
535 return REGION_PAGE_MASK
;
540 * Get bit mask for the 'VPN without index' field.
541 * See ISA, 4.6.5.6, data format for RxTLB0
543 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
547 env
->config
->dtlb
.nrefillentries
:
548 env
->config
->itlb
.nrefillentries
) == 32;
549 return is32
? 0xffff8000 : 0xffffc000;
550 } else if (way
== 4) {
551 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
552 } else if (way
<= 6) {
553 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
554 bool varway56
= dtlb
?
555 env
->config
->dtlb
.varway56
:
556 env
->config
->itlb
.varway56
;
559 return mask
<< (way
== 5 ? 2 : 3);
569 * Split virtual address into VPN (with index) and entry index
570 * for the given TLB way
572 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
573 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
575 bool varway56
= dtlb
?
576 env
->config
->dtlb
.varway56
:
577 env
->config
->itlb
.varway56
;
585 env
->config
->dtlb
.nrefillentries
:
586 env
->config
->itlb
.nrefillentries
) == 32;
587 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
592 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
593 *ei
= (v
>> eibase
) & 0x3;
599 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
600 *ei
= (v
>> eibase
) & 0x3;
602 *ei
= (v
>> 27) & 0x1;
608 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
609 *ei
= (v
>> eibase
) & 0x7;
611 *ei
= (v
>> 28) & 0x1;
620 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
624 * Split TLB address into TLB way, entry index and VPN (with index).
625 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
627 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
628 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
630 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
631 *wi
= v
& (dtlb
? 0xf : 0x7);
632 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
634 *vpn
= v
& REGION_PAGE_MASK
;
636 *ei
= (v
>> 29) & 0x7;
640 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
641 uint32_t v
, bool dtlb
, uint32_t *pwi
)
647 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
651 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
654 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
656 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
658 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
659 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
661 return v
& REGION_PAGE_MASK
;
665 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
667 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
668 return entry
->paddr
| entry
->attr
;
671 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
673 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
675 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
676 if (entry
->variable
&& entry
->asid
) {
677 tlb_flush_page(env
, entry
->vaddr
);
683 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
685 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
689 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
693 if (ring
>= xtensa_get_ring(env
)) {
694 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
698 case INST_TLB_MULTI_HIT_CAUSE
:
699 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
700 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
705 return (v
& REGION_PAGE_MASK
) | 0x1;
709 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
710 xtensa_tlb_entry
*entry
, bool dtlb
,
711 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
714 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
715 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
716 entry
->attr
= pte
& 0xf;
719 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
720 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
722 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
724 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
725 if (entry
->variable
) {
727 tlb_flush_page(env
, entry
->vaddr
);
729 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
730 tlb_flush_page(env
, entry
->vaddr
);
732 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
733 __func__
, dtlb
, wi
, ei
);
736 tlb_flush_page(env
, entry
->vaddr
);
737 if (xtensa_option_enabled(env
->config
,
738 XTENSA_OPTION_REGION_TRANSLATION
)) {
739 entry
->paddr
= pte
& REGION_PAGE_MASK
;
741 entry
->attr
= pte
& 0xf;
745 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
750 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
751 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
755 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
757 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
760 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
761 if (change
& (1 << i
)) {
762 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
765 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
768 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
770 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
771 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
772 tb_invalidate_virtual_addr(env
, v
);
774 env
->sregs
[IBREAKA
+ i
] = v
;
777 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
780 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
781 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
783 if (env
->cpu_watchpoint
[i
]) {
784 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
786 if (dbreakc
& DBREAKC_SB
) {
787 flags
|= BP_MEM_WRITE
;
789 if (dbreakc
& DBREAKC_LB
) {
790 flags
|= BP_MEM_READ
;
792 /* contiguous mask after inversion is one less than some power of 2 */
793 if ((~mask
+ 1) & ~mask
) {
794 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
795 /* cut mask after the first zero bit */
796 mask
= 0xffffffff << (32 - clo32(mask
));
798 if (cpu_watchpoint_insert(env
, dbreaka
& mask
, ~mask
+ 1,
799 flags
, &env
->cpu_watchpoint
[i
])) {
800 env
->cpu_watchpoint
[i
] = NULL
;
801 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
802 dbreaka
& mask
, ~mask
+ 1);
806 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
808 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
810 if ((dbreakc
& DBREAKC_SB_LB
) &&
811 env
->sregs
[DBREAKA
+ i
] != v
) {
812 set_dbreak(env
, i
, v
, dbreakc
);
814 env
->sregs
[DBREAKA
+ i
] = v
;
817 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
819 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
820 if (v
& DBREAKC_SB_LB
) {
821 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
823 if (env
->cpu_watchpoint
[i
]) {
824 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
825 env
->cpu_watchpoint
[i
] = NULL
;
829 env
->sregs
[DBREAKC
+ i
] = v
;
832 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
834 static const int rounding_mode
[] = {
835 float_round_nearest_even
,
841 env
->uregs
[FCR
] = v
& 0xfffff07f;
842 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
845 float32
HELPER(abs_s
)(float32 v
)
847 return float32_abs(v
);
850 float32
HELPER(neg_s
)(float32 v
)
852 return float32_chs(v
);
855 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
857 return float32_add(a
, b
, &env
->fp_status
);
860 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
862 return float32_sub(a
, b
, &env
->fp_status
);
865 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
867 return float32_mul(a
, b
, &env
->fp_status
);
870 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
872 return float32_muladd(b
, c
, a
, 0,
876 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
878 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
882 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
884 float_status fp_status
= {0};
886 set_float_rounding_mode(rounding_mode
, &fp_status
);
887 return float32_to_int32(
888 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
891 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
893 float_status fp_status
= {0};
896 set_float_rounding_mode(rounding_mode
, &fp_status
);
898 res
= float32_scalbn(v
, scale
, &fp_status
);
900 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
901 return float32_to_int32(res
, &fp_status
);
903 return float32_to_uint32(res
, &fp_status
);
907 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
909 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
910 (int32_t)scale
, &env
->fp_status
);
913 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
915 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
916 (int32_t)scale
, &env
->fp_status
);
919 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
922 env
->sregs
[BR
] |= br
;
924 env
->sregs
[BR
] &= ~br
;
928 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
930 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
933 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
935 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
938 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
940 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
941 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
944 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
946 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
949 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
951 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
952 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
955 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
957 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
960 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
962 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
963 set_br(env
, v
!= float_relation_greater
, br
);