Remove unused CONFIG_TCG_PASS_AREG0 and dead code
[qemu/opensuse.git] / hw / spapr_pci.c
blob661c05bc308635fa1c4d73ad183d985c8362a673
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pci.h"
27 #include "msi.h"
28 #include "msix.h"
29 #include "pci_host.h"
30 #include "hw/spapr.h"
31 #include "hw/spapr_pci.h"
32 #include "exec-memory.h"
33 #include <libfdt.h>
34 #include "trace.h"
36 #include "hw/pci_internals.h"
38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39 #define RTAS_QUERY_FN 0
40 #define RTAS_CHANGE_FN 1
41 #define RTAS_RESET_FN 2
42 #define RTAS_CHANGE_MSI_FN 3
43 #define RTAS_CHANGE_MSIX_FN 4
45 /* Interrupt types to return on RTAS_CHANGE_* */
46 #define RTAS_TYPE_MSI 1
47 #define RTAS_TYPE_MSIX 2
49 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
51 sPAPRPHBState *sphb;
53 QLIST_FOREACH(sphb, &spapr->phbs, list) {
54 if (sphb->buid != buid) {
55 continue;
57 return sphb;
60 return NULL;
63 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64 uint32_t config_addr)
66 sPAPRPHBState *sphb = find_phb(spapr, buid);
67 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68 BusState *bus = BUS(phb->bus);
69 BusChild *kid;
70 int devfn = (config_addr >> 8) & 0xFF;
72 if (!phb) {
73 return NULL;
76 QTAILQ_FOREACH(kid, &bus->children, sibling) {
77 PCIDevice *dev = (PCIDevice *)kid->child;
78 if (dev->devfn == devfn) {
79 return dev;
83 return NULL;
86 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
88 /* This handles the encoding of extended config space addresses */
89 return ((arg >> 20) & 0xf00) | (arg & 0xff);
92 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
93 uint32_t addr, uint32_t size,
94 target_ulong rets)
96 PCIDevice *pci_dev;
97 uint32_t val;
99 if ((size != 1) && (size != 2) && (size != 4)) {
100 /* access must be 1, 2 or 4 bytes */
101 rtas_st(rets, 0, -1);
102 return;
105 pci_dev = find_dev(spapr, buid, addr);
106 addr = rtas_pci_cfgaddr(addr);
108 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
109 /* Access must be to a valid device, within bounds and
110 * naturally aligned */
111 rtas_st(rets, 0, -1);
112 return;
115 val = pci_host_config_read_common(pci_dev, addr,
116 pci_config_size(pci_dev), size);
118 rtas_st(rets, 0, 0);
119 rtas_st(rets, 1, val);
122 static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
123 uint32_t token, uint32_t nargs,
124 target_ulong args,
125 uint32_t nret, target_ulong rets)
127 uint64_t buid;
128 uint32_t size, addr;
130 if ((nargs != 4) || (nret != 2)) {
131 rtas_st(rets, 0, -1);
132 return;
135 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
136 size = rtas_ld(args, 3);
137 addr = rtas_ld(args, 0);
139 finish_read_pci_config(spapr, buid, addr, size, rets);
142 static void rtas_read_pci_config(sPAPREnvironment *spapr,
143 uint32_t token, uint32_t nargs,
144 target_ulong args,
145 uint32_t nret, target_ulong rets)
147 uint32_t size, addr;
149 if ((nargs != 2) || (nret != 2)) {
150 rtas_st(rets, 0, -1);
151 return;
154 size = rtas_ld(args, 1);
155 addr = rtas_ld(args, 0);
157 finish_read_pci_config(spapr, 0, addr, size, rets);
160 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
161 uint32_t addr, uint32_t size,
162 uint32_t val, target_ulong rets)
164 PCIDevice *pci_dev;
166 if ((size != 1) && (size != 2) && (size != 4)) {
167 /* access must be 1, 2 or 4 bytes */
168 rtas_st(rets, 0, -1);
169 return;
172 pci_dev = find_dev(spapr, buid, addr);
173 addr = rtas_pci_cfgaddr(addr);
175 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
176 /* Access must be to a valid device, within bounds and
177 * naturally aligned */
178 rtas_st(rets, 0, -1);
179 return;
182 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
183 val, size);
185 rtas_st(rets, 0, 0);
188 static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
189 uint32_t token, uint32_t nargs,
190 target_ulong args,
191 uint32_t nret, target_ulong rets)
193 uint64_t buid;
194 uint32_t val, size, addr;
196 if ((nargs != 5) || (nret != 1)) {
197 rtas_st(rets, 0, -1);
198 return;
201 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
202 val = rtas_ld(args, 4);
203 size = rtas_ld(args, 3);
204 addr = rtas_ld(args, 0);
206 finish_write_pci_config(spapr, buid, addr, size, val, rets);
209 static void rtas_write_pci_config(sPAPREnvironment *spapr,
210 uint32_t token, uint32_t nargs,
211 target_ulong args,
212 uint32_t nret, target_ulong rets)
214 uint32_t val, size, addr;
216 if ((nargs != 3) || (nret != 1)) {
217 rtas_st(rets, 0, -1);
218 return;
222 val = rtas_ld(args, 2);
223 size = rtas_ld(args, 1);
224 addr = rtas_ld(args, 0);
226 finish_write_pci_config(spapr, 0, addr, size, val, rets);
230 * Find an entry with config_addr or returns the empty one if not found AND
231 * alloc_new is set.
232 * At the moment the msi_table entries are never released so there is
233 * no point to look till the end of the list if we need to find the free entry.
235 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
236 bool alloc_new)
238 int i;
240 for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
241 if (!phb->msi_table[i].nvec) {
242 break;
244 if (phb->msi_table[i].config_addr == config_addr) {
245 return i;
248 if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
249 trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
250 return i;
253 return -1;
257 * Set MSI/MSIX message data.
258 * This is required for msi_notify()/msix_notify() which
259 * will write at the addresses via spapr_msi_write().
261 static void spapr_msi_setmsg(PCIDevice *pdev, target_phys_addr_t addr,
262 bool msix, unsigned req_num)
264 unsigned i;
265 MSIMessage msg = { .address = addr, .data = 0 };
267 if (!msix) {
268 msi_set_message(pdev, msg);
269 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
270 return;
273 for (i = 0; i < req_num; ++i) {
274 msg.address = addr | (i << 2);
275 msix_set_message(pdev, i, msg);
276 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
280 static void rtas_ibm_change_msi(sPAPREnvironment *spapr,
281 uint32_t token, uint32_t nargs,
282 target_ulong args, uint32_t nret,
283 target_ulong rets)
285 uint32_t config_addr = rtas_ld(args, 0);
286 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
287 unsigned int func = rtas_ld(args, 3);
288 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
289 unsigned int seq_num = rtas_ld(args, 5);
290 unsigned int ret_intr_type;
291 int ndev, irq;
292 sPAPRPHBState *phb = NULL;
293 PCIDevice *pdev = NULL;
295 switch (func) {
296 case RTAS_CHANGE_MSI_FN:
297 case RTAS_CHANGE_FN:
298 ret_intr_type = RTAS_TYPE_MSI;
299 break;
300 case RTAS_CHANGE_MSIX_FN:
301 ret_intr_type = RTAS_TYPE_MSIX;
302 break;
303 default:
304 fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
305 rtas_st(rets, 0, -3); /* Parameter error */
306 return;
309 /* Fins sPAPRPHBState */
310 phb = find_phb(spapr, buid);
311 if (phb) {
312 pdev = find_dev(spapr, buid, config_addr);
314 if (!phb || !pdev) {
315 rtas_st(rets, 0, -3); /* Parameter error */
316 return;
319 /* Releasing MSIs */
320 if (!req_num) {
321 ndev = spapr_msicfg_find(phb, config_addr, false);
322 if (ndev < 0) {
323 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
324 rtas_st(rets, 0, -1); /* Hardware error */
325 return;
327 trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
328 rtas_st(rets, 0, 0);
329 rtas_st(rets, 1, 0);
330 return;
333 /* Enabling MSI */
335 /* Find a device number in the map to add or reuse the existing one */
336 ndev = spapr_msicfg_find(phb, config_addr, true);
337 if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
338 fprintf(stderr, "No free entry for a new MSI device\n");
339 rtas_st(rets, 0, -1); /* Hardware error */
340 return;
342 trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
344 /* Check if there is an old config and MSI number has not changed */
345 if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
346 /* Unexpected behaviour */
347 fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
348 rtas_st(rets, 0, -1); /* Hardware error */
349 return;
352 /* There is no cached config, allocate MSIs */
353 if (!phb->msi_table[ndev].nvec) {
354 irq = spapr_allocate_irq_block(req_num, XICS_MSI);
355 if (irq < 0) {
356 fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
357 rtas_st(rets, 0, -1); /* Hardware error */
358 return;
360 phb->msi_table[ndev].irq = irq;
361 phb->msi_table[ndev].nvec = req_num;
362 phb->msi_table[ndev].config_addr = config_addr;
365 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
366 spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
367 ret_intr_type == RTAS_TYPE_MSIX, req_num);
369 rtas_st(rets, 0, 0);
370 rtas_st(rets, 1, req_num);
371 rtas_st(rets, 2, ++seq_num);
372 rtas_st(rets, 3, ret_intr_type);
374 trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
377 static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment *spapr,
378 uint32_t token,
379 uint32_t nargs,
380 target_ulong args,
381 uint32_t nret,
382 target_ulong rets)
384 uint32_t config_addr = rtas_ld(args, 0);
385 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
386 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
387 int ndev;
388 sPAPRPHBState *phb = NULL;
390 /* Fins sPAPRPHBState */
391 phb = find_phb(spapr, buid);
392 if (!phb) {
393 rtas_st(rets, 0, -3); /* Parameter error */
394 return;
397 /* Find device descriptor and start IRQ */
398 ndev = spapr_msicfg_find(phb, config_addr, false);
399 if (ndev < 0) {
400 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
401 rtas_st(rets, 0, -1); /* Hardware error */
402 return;
405 intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
406 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
407 intr_src_num);
409 rtas_st(rets, 0, 0);
410 rtas_st(rets, 1, intr_src_num);
411 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
414 static int pci_spapr_swizzle(int slot, int pin)
416 return (slot + pin) % PCI_NUM_PINS;
419 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
422 * Here we need to convert pci_dev + irq_num to some unique value
423 * which is less than number of IRQs on the specific bus (4). We
424 * use standard PCI swizzling, that is (slot number + pin number)
425 * % 4.
427 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
430 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
433 * Here we use the number returned by pci_spapr_map_irq to find a
434 * corresponding qemu_irq.
436 sPAPRPHBState *phb = opaque;
438 trace_spapr_pci_lsi_set(phb->busname, irq_num, phb->lsi_table[irq_num].irq);
439 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
442 static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
443 unsigned size)
445 switch (size) {
446 case 1:
447 return cpu_inb(addr);
448 case 2:
449 return cpu_inw(addr);
450 case 4:
451 return cpu_inl(addr);
453 assert(0);
456 static void spapr_io_write(void *opaque, target_phys_addr_t addr,
457 uint64_t data, unsigned size)
459 switch (size) {
460 case 1:
461 cpu_outb(addr, data);
462 return;
463 case 2:
464 cpu_outw(addr, data);
465 return;
466 case 4:
467 cpu_outl(addr, data);
468 return;
470 assert(0);
473 static const MemoryRegionOps spapr_io_ops = {
474 .endianness = DEVICE_LITTLE_ENDIAN,
475 .read = spapr_io_read,
476 .write = spapr_io_write
480 * MSI/MSIX memory region implementation.
481 * The handler handles both MSI and MSIX.
482 * For MSI-X, the vector number is encoded as a part of the address,
483 * data is set to 0.
484 * For MSI, the vector number is encoded in least bits in data.
486 static void spapr_msi_write(void *opaque, target_phys_addr_t addr,
487 uint64_t data, unsigned size)
489 sPAPRPHBState *phb = opaque;
490 int ndev = addr >> 16;
491 int vec = ((addr & 0xFFFF) >> 2) | data;
492 uint32_t irq = phb->msi_table[ndev].irq + vec;
494 trace_spapr_pci_msi_write(addr, data, irq);
496 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
499 static const MemoryRegionOps spapr_msi_ops = {
500 /* There is no .read as the read result is undefined by PCI spec */
501 .read = NULL,
502 .write = spapr_msi_write,
503 .endianness = DEVICE_LITTLE_ENDIAN
507 * PHB PCI device
509 static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
510 int devfn)
512 sPAPRPHBState *phb = opaque;
514 return phb->dma;
517 static int spapr_phb_init(SysBusDevice *s)
519 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
520 PCIHostState *phb = PCI_HOST_BRIDGE(s);
521 char *namebuf;
522 int i;
523 PCIBus *bus;
525 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
526 namebuf = alloca(strlen(sphb->dtbusname) + 32);
528 /* Initialize memory regions */
529 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
530 memory_region_init(&sphb->memspace, namebuf, INT64_MAX);
532 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
533 memory_region_init_alias(&sphb->memwindow, namebuf, &sphb->memspace,
534 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
535 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
536 &sphb->memwindow);
538 /* On ppc, we only have MMIO no specific IO space from the CPU
539 * perspective. In theory we ought to be able to embed the PCI IO
540 * memory region direction in the system memory space. However,
541 * if any of the IO BAR subregions use the old_portio mechanism,
542 * that won't be processed properly unless accessed from the
543 * system io address space. This hack to bounce things via
544 * system_io works around the problem until all the users of
545 * old_portion are updated */
546 sprintf(namebuf, "%s.io", sphb->dtbusname);
547 memory_region_init(&sphb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
548 /* FIXME: fix to support multiple PHBs */
549 memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
551 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
552 memory_region_init_io(&sphb->iowindow, &spapr_io_ops, sphb,
553 namebuf, SPAPR_PCI_IO_WIN_SIZE);
554 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
555 &sphb->iowindow);
557 /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
558 * we need to allocate some memory to catch those writes coming
559 * from msi_notify()/msix_notify() */
560 if (msi_supported) {
561 sprintf(namebuf, "%s.msi", sphb->dtbusname);
562 memory_region_init_io(&sphb->msiwindow, &spapr_msi_ops, sphb,
563 namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
564 memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
565 &sphb->msiwindow);
568 bus = pci_register_bus(DEVICE(s),
569 sphb->busname ? sphb->busname : sphb->dtbusname,
570 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
571 &sphb->memspace, &sphb->iospace,
572 PCI_DEVFN(0, 0), PCI_NUM_PINS);
573 phb->bus = bus;
575 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16);
576 sphb->dma_window_start = 0;
577 sphb->dma_window_size = 0x40000000;
578 sphb->dma = spapr_tce_new_dma_context(sphb->dma_liobn, sphb->dma_window_size);
579 pci_setup_iommu(bus, spapr_pci_dma_context_fn, sphb);
581 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
583 /* Initialize the LSI table */
584 for (i = 0; i < PCI_NUM_PINS; i++) {
585 uint32_t irq;
587 irq = spapr_allocate_lsi(0);
588 if (!irq) {
589 return -1;
592 sphb->lsi_table[i].irq = irq;
595 return 0;
598 static Property spapr_phb_properties[] = {
599 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
600 DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
601 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
602 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
603 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
604 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
605 DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, 0),
606 DEFINE_PROP_END_OF_LIST(),
609 static void spapr_phb_class_init(ObjectClass *klass, void *data)
611 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
612 DeviceClass *dc = DEVICE_CLASS(klass);
614 sdc->init = spapr_phb_init;
615 dc->props = spapr_phb_properties;
618 static const TypeInfo spapr_phb_info = {
619 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
620 .parent = TYPE_PCI_HOST_BRIDGE,
621 .instance_size = sizeof(sPAPRPHBState),
622 .class_init = spapr_phb_class_init,
625 void spapr_create_phb(sPAPREnvironment *spapr,
626 const char *busname, uint64_t buid,
627 uint64_t mem_win_addr, uint64_t mem_win_size,
628 uint64_t io_win_addr, uint64_t msi_win_addr)
630 DeviceState *dev;
632 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
634 if (busname) {
635 qdev_prop_set_string(dev, "busname", g_strdup(busname));
637 qdev_prop_set_uint64(dev, "buid", buid);
638 qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
639 qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
640 qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
641 qdev_prop_set_uint64(dev, "msi_win_addr", msi_win_addr);
643 qdev_init_nofail(dev);
646 /* Macros to operate with address in OF binding to PCI */
647 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
648 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
649 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
650 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
651 #define b_ss(x) b_x((x), 24, 2) /* the space code */
652 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
653 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
654 #define b_fff(x) b_x((x), 8, 3) /* function number */
655 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
657 int spapr_populate_pci_dt(sPAPRPHBState *phb,
658 uint32_t xics_phandle,
659 void *fdt)
661 int bus_off, i, j;
662 char nodename[256];
663 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
664 struct {
665 uint32_t hi;
666 uint64_t child;
667 uint64_t parent;
668 uint64_t size;
669 } QEMU_PACKED ranges[] = {
671 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
672 cpu_to_be64(phb->io_win_addr),
673 cpu_to_be64(memory_region_size(&phb->iospace)),
676 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
677 cpu_to_be64(phb->mem_win_addr),
678 cpu_to_be64(memory_region_size(&phb->memwindow)),
681 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
682 uint32_t interrupt_map_mask[] = {
683 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
684 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
686 /* Start populating the FDT */
687 sprintf(nodename, "pci@%" PRIx64, phb->buid);
688 bus_off = fdt_add_subnode(fdt, 0, nodename);
689 if (bus_off < 0) {
690 return bus_off;
693 #define _FDT(exp) \
694 do { \
695 int ret = (exp); \
696 if (ret < 0) { \
697 return ret; \
699 } while (0)
701 /* Write PHB properties */
702 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
703 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
704 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
705 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
706 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
707 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
708 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
709 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
710 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
711 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
713 /* Build the interrupt-map, this must matches what is done
714 * in pci_spapr_map_irq
716 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
717 &interrupt_map_mask, sizeof(interrupt_map_mask)));
718 for (i = 0; i < PCI_SLOT_MAX; i++) {
719 for (j = 0; j < PCI_NUM_PINS; j++) {
720 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
721 int lsi_num = pci_spapr_swizzle(i, j);
723 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
724 irqmap[1] = 0;
725 irqmap[2] = 0;
726 irqmap[3] = cpu_to_be32(j+1);
727 irqmap[4] = cpu_to_be32(xics_phandle);
728 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
729 irqmap[6] = cpu_to_be32(0x8);
732 /* Write interrupt map */
733 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
734 sizeof(interrupt_map)));
736 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
737 phb->dma_liobn, phb->dma_window_start,
738 phb->dma_window_size);
740 return 0;
743 void spapr_pci_rtas_init(void)
745 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
746 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
747 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
748 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
749 if (msi_supported) {
750 spapr_rtas_register("ibm,query-interrupt-source-number",
751 rtas_ibm_query_interrupt_source_number);
752 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
756 static void spapr_pci_register_types(void)
758 type_register_static(&spapr_phb_info);
761 type_init(spapr_pci_register_types)