2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
31 #include "hw/spapr_pci.h"
32 #include "exec-memory.h"
36 #include "hw/pci_internals.h"
38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39 #define RTAS_QUERY_FN 0
40 #define RTAS_CHANGE_FN 1
41 #define RTAS_RESET_FN 2
42 #define RTAS_CHANGE_MSI_FN 3
43 #define RTAS_CHANGE_MSIX_FN 4
45 /* Interrupt types to return on RTAS_CHANGE_* */
46 #define RTAS_TYPE_MSI 1
47 #define RTAS_TYPE_MSIX 2
49 static sPAPRPHBState
*find_phb(sPAPREnvironment
*spapr
, uint64_t buid
)
53 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
54 if (sphb
->buid
!= buid
) {
63 static PCIDevice
*find_dev(sPAPREnvironment
*spapr
, uint64_t buid
,
66 sPAPRPHBState
*sphb
= find_phb(spapr
, buid
);
67 PCIHostState
*phb
= PCI_HOST_BRIDGE(sphb
);
68 BusState
*bus
= BUS(phb
->bus
);
70 int devfn
= (config_addr
>> 8) & 0xFF;
76 QTAILQ_FOREACH(kid
, &bus
->children
, sibling
) {
77 PCIDevice
*dev
= (PCIDevice
*)kid
->child
;
78 if (dev
->devfn
== devfn
) {
86 static uint32_t rtas_pci_cfgaddr(uint32_t arg
)
88 /* This handles the encoding of extended config space addresses */
89 return ((arg
>> 20) & 0xf00) | (arg
& 0xff);
92 static void finish_read_pci_config(sPAPREnvironment
*spapr
, uint64_t buid
,
93 uint32_t addr
, uint32_t size
,
99 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
100 /* access must be 1, 2 or 4 bytes */
101 rtas_st(rets
, 0, -1);
105 pci_dev
= find_dev(spapr
, buid
, addr
);
106 addr
= rtas_pci_cfgaddr(addr
);
108 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
109 /* Access must be to a valid device, within bounds and
110 * naturally aligned */
111 rtas_st(rets
, 0, -1);
115 val
= pci_host_config_read_common(pci_dev
, addr
,
116 pci_config_size(pci_dev
), size
);
119 rtas_st(rets
, 1, val
);
122 static void rtas_ibm_read_pci_config(sPAPREnvironment
*spapr
,
123 uint32_t token
, uint32_t nargs
,
125 uint32_t nret
, target_ulong rets
)
130 if ((nargs
!= 4) || (nret
!= 2)) {
131 rtas_st(rets
, 0, -1);
135 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
136 size
= rtas_ld(args
, 3);
137 addr
= rtas_ld(args
, 0);
139 finish_read_pci_config(spapr
, buid
, addr
, size
, rets
);
142 static void rtas_read_pci_config(sPAPREnvironment
*spapr
,
143 uint32_t token
, uint32_t nargs
,
145 uint32_t nret
, target_ulong rets
)
149 if ((nargs
!= 2) || (nret
!= 2)) {
150 rtas_st(rets
, 0, -1);
154 size
= rtas_ld(args
, 1);
155 addr
= rtas_ld(args
, 0);
157 finish_read_pci_config(spapr
, 0, addr
, size
, rets
);
160 static void finish_write_pci_config(sPAPREnvironment
*spapr
, uint64_t buid
,
161 uint32_t addr
, uint32_t size
,
162 uint32_t val
, target_ulong rets
)
166 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
167 /* access must be 1, 2 or 4 bytes */
168 rtas_st(rets
, 0, -1);
172 pci_dev
= find_dev(spapr
, buid
, addr
);
173 addr
= rtas_pci_cfgaddr(addr
);
175 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
176 /* Access must be to a valid device, within bounds and
177 * naturally aligned */
178 rtas_st(rets
, 0, -1);
182 pci_host_config_write_common(pci_dev
, addr
, pci_config_size(pci_dev
),
188 static void rtas_ibm_write_pci_config(sPAPREnvironment
*spapr
,
189 uint32_t token
, uint32_t nargs
,
191 uint32_t nret
, target_ulong rets
)
194 uint32_t val
, size
, addr
;
196 if ((nargs
!= 5) || (nret
!= 1)) {
197 rtas_st(rets
, 0, -1);
201 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
202 val
= rtas_ld(args
, 4);
203 size
= rtas_ld(args
, 3);
204 addr
= rtas_ld(args
, 0);
206 finish_write_pci_config(spapr
, buid
, addr
, size
, val
, rets
);
209 static void rtas_write_pci_config(sPAPREnvironment
*spapr
,
210 uint32_t token
, uint32_t nargs
,
212 uint32_t nret
, target_ulong rets
)
214 uint32_t val
, size
, addr
;
216 if ((nargs
!= 3) || (nret
!= 1)) {
217 rtas_st(rets
, 0, -1);
222 val
= rtas_ld(args
, 2);
223 size
= rtas_ld(args
, 1);
224 addr
= rtas_ld(args
, 0);
226 finish_write_pci_config(spapr
, 0, addr
, size
, val
, rets
);
230 * Find an entry with config_addr or returns the empty one if not found AND
232 * At the moment the msi_table entries are never released so there is
233 * no point to look till the end of the list if we need to find the free entry.
235 static int spapr_msicfg_find(sPAPRPHBState
*phb
, uint32_t config_addr
,
240 for (i
= 0; i
< SPAPR_MSIX_MAX_DEVS
; ++i
) {
241 if (!phb
->msi_table
[i
].nvec
) {
244 if (phb
->msi_table
[i
].config_addr
== config_addr
) {
248 if ((i
< SPAPR_MSIX_MAX_DEVS
) && alloc_new
) {
249 trace_spapr_pci_msi("Allocating new MSI config", i
, config_addr
);
257 * Set MSI/MSIX message data.
258 * This is required for msi_notify()/msix_notify() which
259 * will write at the addresses via spapr_msi_write().
261 static void spapr_msi_setmsg(PCIDevice
*pdev
, target_phys_addr_t addr
,
262 bool msix
, unsigned req_num
)
265 MSIMessage msg
= { .address
= addr
, .data
= 0 };
268 msi_set_message(pdev
, msg
);
269 trace_spapr_pci_msi_setup(pdev
->name
, 0, msg
.address
);
273 for (i
= 0; i
< req_num
; ++i
) {
274 msg
.address
= addr
| (i
<< 2);
275 msix_set_message(pdev
, i
, msg
);
276 trace_spapr_pci_msi_setup(pdev
->name
, i
, msg
.address
);
280 static void rtas_ibm_change_msi(sPAPREnvironment
*spapr
,
281 uint32_t token
, uint32_t nargs
,
282 target_ulong args
, uint32_t nret
,
285 uint32_t config_addr
= rtas_ld(args
, 0);
286 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
287 unsigned int func
= rtas_ld(args
, 3);
288 unsigned int req_num
= rtas_ld(args
, 4); /* 0 == remove all */
289 unsigned int seq_num
= rtas_ld(args
, 5);
290 unsigned int ret_intr_type
;
292 sPAPRPHBState
*phb
= NULL
;
293 PCIDevice
*pdev
= NULL
;
296 case RTAS_CHANGE_MSI_FN
:
298 ret_intr_type
= RTAS_TYPE_MSI
;
300 case RTAS_CHANGE_MSIX_FN
:
301 ret_intr_type
= RTAS_TYPE_MSIX
;
304 fprintf(stderr
, "rtas_ibm_change_msi(%u) is not implemented\n", func
);
305 rtas_st(rets
, 0, -3); /* Parameter error */
309 /* Fins sPAPRPHBState */
310 phb
= find_phb(spapr
, buid
);
312 pdev
= find_dev(spapr
, buid
, config_addr
);
315 rtas_st(rets
, 0, -3); /* Parameter error */
321 ndev
= spapr_msicfg_find(phb
, config_addr
, false);
323 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr
);
324 rtas_st(rets
, 0, -1); /* Hardware error */
327 trace_spapr_pci_msi("Released MSIs", ndev
, config_addr
);
335 /* Find a device number in the map to add or reuse the existing one */
336 ndev
= spapr_msicfg_find(phb
, config_addr
, true);
337 if (ndev
>= SPAPR_MSIX_MAX_DEVS
|| ndev
< 0) {
338 fprintf(stderr
, "No free entry for a new MSI device\n");
339 rtas_st(rets
, 0, -1); /* Hardware error */
342 trace_spapr_pci_msi("Configuring MSI", ndev
, config_addr
);
344 /* Check if there is an old config and MSI number has not changed */
345 if (phb
->msi_table
[ndev
].nvec
&& (req_num
!= phb
->msi_table
[ndev
].nvec
)) {
346 /* Unexpected behaviour */
347 fprintf(stderr
, "Cannot reuse MSI config for device#%d", ndev
);
348 rtas_st(rets
, 0, -1); /* Hardware error */
352 /* There is no cached config, allocate MSIs */
353 if (!phb
->msi_table
[ndev
].nvec
) {
354 irq
= spapr_allocate_irq_block(req_num
, XICS_MSI
);
356 fprintf(stderr
, "Cannot allocate MSIs for device#%d", ndev
);
357 rtas_st(rets
, 0, -1); /* Hardware error */
360 phb
->msi_table
[ndev
].irq
= irq
;
361 phb
->msi_table
[ndev
].nvec
= req_num
;
362 phb
->msi_table
[ndev
].config_addr
= config_addr
;
365 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
366 spapr_msi_setmsg(pdev
, phb
->msi_win_addr
| (ndev
<< 16),
367 ret_intr_type
== RTAS_TYPE_MSIX
, req_num
);
370 rtas_st(rets
, 1, req_num
);
371 rtas_st(rets
, 2, ++seq_num
);
372 rtas_st(rets
, 3, ret_intr_type
);
374 trace_spapr_pci_rtas_ibm_change_msi(func
, req_num
);
377 static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment
*spapr
,
384 uint32_t config_addr
= rtas_ld(args
, 0);
385 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
386 unsigned int intr_src_num
= -1, ioa_intr_num
= rtas_ld(args
, 3);
388 sPAPRPHBState
*phb
= NULL
;
390 /* Fins sPAPRPHBState */
391 phb
= find_phb(spapr
, buid
);
393 rtas_st(rets
, 0, -3); /* Parameter error */
397 /* Find device descriptor and start IRQ */
398 ndev
= spapr_msicfg_find(phb
, config_addr
, false);
400 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr
);
401 rtas_st(rets
, 0, -1); /* Hardware error */
405 intr_src_num
= phb
->msi_table
[ndev
].irq
+ ioa_intr_num
;
406 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num
,
410 rtas_st(rets
, 1, intr_src_num
);
411 rtas_st(rets
, 2, 1);/* 0 == level; 1 == edge */
414 static int pci_spapr_swizzle(int slot
, int pin
)
416 return (slot
+ pin
) % PCI_NUM_PINS
;
419 static int pci_spapr_map_irq(PCIDevice
*pci_dev
, int irq_num
)
422 * Here we need to convert pci_dev + irq_num to some unique value
423 * which is less than number of IRQs on the specific bus (4). We
424 * use standard PCI swizzling, that is (slot number + pin number)
427 return pci_spapr_swizzle(PCI_SLOT(pci_dev
->devfn
), irq_num
);
430 static void pci_spapr_set_irq(void *opaque
, int irq_num
, int level
)
433 * Here we use the number returned by pci_spapr_map_irq to find a
434 * corresponding qemu_irq.
436 sPAPRPHBState
*phb
= opaque
;
438 trace_spapr_pci_lsi_set(phb
->busname
, irq_num
, phb
->lsi_table
[irq_num
].irq
);
439 qemu_set_irq(spapr_phb_lsi_qirq(phb
, irq_num
), level
);
442 static uint64_t spapr_io_read(void *opaque
, target_phys_addr_t addr
,
447 return cpu_inb(addr
);
449 return cpu_inw(addr
);
451 return cpu_inl(addr
);
456 static void spapr_io_write(void *opaque
, target_phys_addr_t addr
,
457 uint64_t data
, unsigned size
)
461 cpu_outb(addr
, data
);
464 cpu_outw(addr
, data
);
467 cpu_outl(addr
, data
);
473 static const MemoryRegionOps spapr_io_ops
= {
474 .endianness
= DEVICE_LITTLE_ENDIAN
,
475 .read
= spapr_io_read
,
476 .write
= spapr_io_write
480 * MSI/MSIX memory region implementation.
481 * The handler handles both MSI and MSIX.
482 * For MSI-X, the vector number is encoded as a part of the address,
484 * For MSI, the vector number is encoded in least bits in data.
486 static void spapr_msi_write(void *opaque
, target_phys_addr_t addr
,
487 uint64_t data
, unsigned size
)
489 sPAPRPHBState
*phb
= opaque
;
490 int ndev
= addr
>> 16;
491 int vec
= ((addr
& 0xFFFF) >> 2) | data
;
492 uint32_t irq
= phb
->msi_table
[ndev
].irq
+ vec
;
494 trace_spapr_pci_msi_write(addr
, data
, irq
);
496 qemu_irq_pulse(xics_get_qirq(spapr
->icp
, irq
));
499 static const MemoryRegionOps spapr_msi_ops
= {
500 /* There is no .read as the read result is undefined by PCI spec */
502 .write
= spapr_msi_write
,
503 .endianness
= DEVICE_LITTLE_ENDIAN
509 static DMAContext
*spapr_pci_dma_context_fn(PCIBus
*bus
, void *opaque
,
512 sPAPRPHBState
*phb
= opaque
;
517 static int spapr_phb_init(SysBusDevice
*s
)
519 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(s
);
520 PCIHostState
*phb
= PCI_HOST_BRIDGE(s
);
525 sphb
->dtbusname
= g_strdup_printf("pci@%" PRIx64
, sphb
->buid
);
526 namebuf
= alloca(strlen(sphb
->dtbusname
) + 32);
528 /* Initialize memory regions */
529 sprintf(namebuf
, "%s.mmio", sphb
->dtbusname
);
530 memory_region_init(&sphb
->memspace
, namebuf
, INT64_MAX
);
532 sprintf(namebuf
, "%s.mmio-alias", sphb
->dtbusname
);
533 memory_region_init_alias(&sphb
->memwindow
, namebuf
, &sphb
->memspace
,
534 SPAPR_PCI_MEM_WIN_BUS_OFFSET
, sphb
->mem_win_size
);
535 memory_region_add_subregion(get_system_memory(), sphb
->mem_win_addr
,
538 /* On ppc, we only have MMIO no specific IO space from the CPU
539 * perspective. In theory we ought to be able to embed the PCI IO
540 * memory region direction in the system memory space. However,
541 * if any of the IO BAR subregions use the old_portio mechanism,
542 * that won't be processed properly unless accessed from the
543 * system io address space. This hack to bounce things via
544 * system_io works around the problem until all the users of
545 * old_portion are updated */
546 sprintf(namebuf
, "%s.io", sphb
->dtbusname
);
547 memory_region_init(&sphb
->iospace
, namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
548 /* FIXME: fix to support multiple PHBs */
549 memory_region_add_subregion(get_system_io(), 0, &sphb
->iospace
);
551 sprintf(namebuf
, "%s.io-alias", sphb
->dtbusname
);
552 memory_region_init_io(&sphb
->iowindow
, &spapr_io_ops
, sphb
,
553 namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
554 memory_region_add_subregion(get_system_memory(), sphb
->io_win_addr
,
557 /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
558 * we need to allocate some memory to catch those writes coming
559 * from msi_notify()/msix_notify() */
561 sprintf(namebuf
, "%s.msi", sphb
->dtbusname
);
562 memory_region_init_io(&sphb
->msiwindow
, &spapr_msi_ops
, sphb
,
563 namebuf
, SPAPR_MSIX_MAX_DEVS
* 0x10000);
564 memory_region_add_subregion(get_system_memory(), sphb
->msi_win_addr
,
568 bus
= pci_register_bus(DEVICE(s
),
569 sphb
->busname
? sphb
->busname
: sphb
->dtbusname
,
570 pci_spapr_set_irq
, pci_spapr_map_irq
, sphb
,
571 &sphb
->memspace
, &sphb
->iospace
,
572 PCI_DEVFN(0, 0), PCI_NUM_PINS
);
575 sphb
->dma_liobn
= SPAPR_PCI_BASE_LIOBN
| (pci_find_domain(bus
) << 16);
576 sphb
->dma_window_start
= 0;
577 sphb
->dma_window_size
= 0x40000000;
578 sphb
->dma
= spapr_tce_new_dma_context(sphb
->dma_liobn
, sphb
->dma_window_size
);
579 pci_setup_iommu(bus
, spapr_pci_dma_context_fn
, sphb
);
581 QLIST_INSERT_HEAD(&spapr
->phbs
, sphb
, list
);
583 /* Initialize the LSI table */
584 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
587 irq
= spapr_allocate_lsi(0);
592 sphb
->lsi_table
[i
].irq
= irq
;
598 static Property spapr_phb_properties
[] = {
599 DEFINE_PROP_HEX64("buid", sPAPRPHBState
, buid
, 0),
600 DEFINE_PROP_STRING("busname", sPAPRPHBState
, busname
),
601 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState
, mem_win_addr
, 0),
602 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState
, mem_win_size
, 0x20000000),
603 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState
, io_win_addr
, 0),
604 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState
, io_win_size
, 0x10000),
605 DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState
, msi_win_addr
, 0),
606 DEFINE_PROP_END_OF_LIST(),
609 static void spapr_phb_class_init(ObjectClass
*klass
, void *data
)
611 SysBusDeviceClass
*sdc
= SYS_BUS_DEVICE_CLASS(klass
);
612 DeviceClass
*dc
= DEVICE_CLASS(klass
);
614 sdc
->init
= spapr_phb_init
;
615 dc
->props
= spapr_phb_properties
;
618 static const TypeInfo spapr_phb_info
= {
619 .name
= TYPE_SPAPR_PCI_HOST_BRIDGE
,
620 .parent
= TYPE_PCI_HOST_BRIDGE
,
621 .instance_size
= sizeof(sPAPRPHBState
),
622 .class_init
= spapr_phb_class_init
,
625 void spapr_create_phb(sPAPREnvironment
*spapr
,
626 const char *busname
, uint64_t buid
,
627 uint64_t mem_win_addr
, uint64_t mem_win_size
,
628 uint64_t io_win_addr
, uint64_t msi_win_addr
)
632 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
635 qdev_prop_set_string(dev
, "busname", g_strdup(busname
));
637 qdev_prop_set_uint64(dev
, "buid", buid
);
638 qdev_prop_set_uint64(dev
, "mem_win_addr", mem_win_addr
);
639 qdev_prop_set_uint64(dev
, "mem_win_size", mem_win_size
);
640 qdev_prop_set_uint64(dev
, "io_win_addr", io_win_addr
);
641 qdev_prop_set_uint64(dev
, "msi_win_addr", msi_win_addr
);
643 qdev_init_nofail(dev
);
646 /* Macros to operate with address in OF binding to PCI */
647 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
648 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
649 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
650 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
651 #define b_ss(x) b_x((x), 24, 2) /* the space code */
652 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
653 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
654 #define b_fff(x) b_x((x), 8, 3) /* function number */
655 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
657 int spapr_populate_pci_dt(sPAPRPHBState
*phb
,
658 uint32_t xics_phandle
,
663 uint32_t bus_range
[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
669 } QEMU_PACKED ranges
[] = {
671 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
672 cpu_to_be64(phb
->io_win_addr
),
673 cpu_to_be64(memory_region_size(&phb
->iospace
)),
676 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET
),
677 cpu_to_be64(phb
->mem_win_addr
),
678 cpu_to_be64(memory_region_size(&phb
->memwindow
)),
681 uint64_t bus_reg
[] = { cpu_to_be64(phb
->buid
), 0 };
682 uint32_t interrupt_map_mask
[] = {
683 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
684 uint32_t interrupt_map
[PCI_SLOT_MAX
* PCI_NUM_PINS
][7];
686 /* Start populating the FDT */
687 sprintf(nodename
, "pci@%" PRIx64
, phb
->buid
);
688 bus_off
= fdt_add_subnode(fdt
, 0, nodename
);
701 /* Write PHB properties */
702 _FDT(fdt_setprop_string(fdt
, bus_off
, "device_type", "pci"));
703 _FDT(fdt_setprop_string(fdt
, bus_off
, "compatible", "IBM,Logical_PHB"));
704 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#address-cells", 0x3));
705 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#size-cells", 0x2));
706 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#interrupt-cells", 0x1));
707 _FDT(fdt_setprop(fdt
, bus_off
, "used-by-rtas", NULL
, 0));
708 _FDT(fdt_setprop(fdt
, bus_off
, "bus-range", &bus_range
, sizeof(bus_range
)));
709 _FDT(fdt_setprop(fdt
, bus_off
, "ranges", &ranges
, sizeof(ranges
)));
710 _FDT(fdt_setprop(fdt
, bus_off
, "reg", &bus_reg
, sizeof(bus_reg
)));
711 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pci-config-space-type", 0x1));
713 /* Build the interrupt-map, this must matches what is done
714 * in pci_spapr_map_irq
716 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map-mask",
717 &interrupt_map_mask
, sizeof(interrupt_map_mask
)));
718 for (i
= 0; i
< PCI_SLOT_MAX
; i
++) {
719 for (j
= 0; j
< PCI_NUM_PINS
; j
++) {
720 uint32_t *irqmap
= interrupt_map
[i
*PCI_NUM_PINS
+ j
];
721 int lsi_num
= pci_spapr_swizzle(i
, j
);
723 irqmap
[0] = cpu_to_be32(b_ddddd(i
)|b_fff(0));
726 irqmap
[3] = cpu_to_be32(j
+1);
727 irqmap
[4] = cpu_to_be32(xics_phandle
);
728 irqmap
[5] = cpu_to_be32(phb
->lsi_table
[lsi_num
].irq
);
729 irqmap
[6] = cpu_to_be32(0x8);
732 /* Write interrupt map */
733 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map", &interrupt_map
,
734 sizeof(interrupt_map
)));
736 spapr_dma_dt(fdt
, bus_off
, "ibm,dma-window",
737 phb
->dma_liobn
, phb
->dma_window_start
,
738 phb
->dma_window_size
);
743 void spapr_pci_rtas_init(void)
745 spapr_rtas_register("read-pci-config", rtas_read_pci_config
);
746 spapr_rtas_register("write-pci-config", rtas_write_pci_config
);
747 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config
);
748 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config
);
750 spapr_rtas_register("ibm,query-interrupt-source-number",
751 rtas_ibm_query_interrupt_source_number
);
752 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi
);
756 static void spapr_pci_register_types(void)
758 type_register_static(&spapr_phb_info
);
761 type_init(spapr_pci_register_types
)