4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
28 #include "host-utils.h"
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) \
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
48 #define BUS_MCEERR_AR 4
51 #define BUS_MCEERR_AO 5
54 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
55 KVM_CAP_INFO(SET_TSS_ADDR
),
56 KVM_CAP_INFO(EXT_CPUID
),
57 KVM_CAP_INFO(MP_STATE
),
61 static bool has_msr_star
;
62 static bool has_msr_hsave_pa
;
63 static bool has_msr_tsc_deadline
;
64 static bool has_msr_async_pf_en
;
65 static bool has_msr_misc_enable
;
66 static int lm_capable_kernel
;
68 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
70 struct kvm_cpuid2
*cpuid
;
73 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
74 cpuid
= (struct kvm_cpuid2
*)g_malloc0(size
);
76 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
77 if (r
== 0 && cpuid
->nent
>= max
) {
85 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
93 struct kvm_para_features
{
97 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
98 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
99 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
100 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
104 static int get_para_features(KVMState
*s
)
108 for (i
= 0; i
< ARRAY_SIZE(para_features
) - 1; i
++) {
109 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
110 features
|= (1 << para_features
[i
].feature
);
118 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
119 uint32_t index
, int reg
)
121 struct kvm_cpuid2
*cpuid
;
124 uint32_t cpuid_1_edx
;
125 int has_kvm_features
= 0;
128 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
132 for (i
= 0; i
< cpuid
->nent
; ++i
) {
133 if (cpuid
->entries
[i
].function
== function
&&
134 cpuid
->entries
[i
].index
== index
) {
135 if (cpuid
->entries
[i
].function
== KVM_CPUID_FEATURES
) {
136 has_kvm_features
= 1;
140 ret
= cpuid
->entries
[i
].eax
;
143 ret
= cpuid
->entries
[i
].ebx
;
146 ret
= cpuid
->entries
[i
].ecx
;
149 ret
= cpuid
->entries
[i
].edx
;
152 /* KVM before 2.6.30 misreports the following features */
153 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
156 /* On Intel, kvm returns cpuid according to the Intel spec,
157 * so add missing bits according to the AMD spec:
159 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
160 ret
|= cpuid_1_edx
& 0x183f7ff;
170 /* fallback for older kernels */
171 if (!has_kvm_features
&& (function
== KVM_CPUID_FEATURES
)) {
172 ret
= get_para_features(s
);
178 typedef struct HWPoisonPage
{
180 QLIST_ENTRY(HWPoisonPage
) list
;
183 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
184 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
186 static void kvm_unpoison_all(void *param
)
188 HWPoisonPage
*page
, *next_page
;
190 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
191 QLIST_REMOVE(page
, list
);
192 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
197 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
201 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
202 if (page
->ram_addr
== ram_addr
) {
206 page
= g_malloc(sizeof(HWPoisonPage
));
207 page
->ram_addr
= ram_addr
;
208 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
211 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
216 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
219 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
224 static void kvm_mce_inject(CPUX86State
*env
, target_phys_addr_t paddr
, int code
)
226 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
227 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
228 uint64_t mcg_status
= MCG_STATUS_MCIP
;
230 if (code
== BUS_MCEERR_AR
) {
231 status
|= MCI_STATUS_AR
| 0x134;
232 mcg_status
|= MCG_STATUS_EIPV
;
235 mcg_status
|= MCG_STATUS_RIPV
;
237 cpu_x86_inject_mce(NULL
, env
, 9, status
, mcg_status
, paddr
,
238 (MCM_ADDR_PHYS
<< 6) | 0xc,
239 cpu_x86_support_mca_broadcast(env
) ?
240 MCE_INJECT_BROADCAST
: 0);
243 static void hardware_memory_error(void)
245 fprintf(stderr
, "Hardware memory error!\n");
249 int kvm_arch_on_sigbus_vcpu(CPUX86State
*env
, int code
, void *addr
)
252 target_phys_addr_t paddr
;
254 if ((env
->mcg_cap
& MCG_SER_P
) && addr
255 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
256 if (qemu_ram_addr_from_host(addr
, &ram_addr
) ||
257 !kvm_physical_memory_addr_from_host(env
->kvm_state
, addr
, &paddr
)) {
258 fprintf(stderr
, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code
== BUS_MCEERR_AO
) {
264 hardware_memory_error();
267 kvm_hwpoison_page_add(ram_addr
);
268 kvm_mce_inject(env
, paddr
, code
);
270 if (code
== BUS_MCEERR_AO
) {
272 } else if (code
== BUS_MCEERR_AR
) {
273 hardware_memory_error();
281 int kvm_arch_on_sigbus(int code
, void *addr
)
283 if ((first_cpu
->mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
285 target_phys_addr_t paddr
;
287 /* Hope we are lucky for AO MCE */
288 if (qemu_ram_addr_from_host(addr
, &ram_addr
) ||
289 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
, addr
,
291 fprintf(stderr
, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr
);
295 kvm_hwpoison_page_add(ram_addr
);
296 kvm_mce_inject(first_cpu
, paddr
, code
);
298 if (code
== BUS_MCEERR_AO
) {
300 } else if (code
== BUS_MCEERR_AR
) {
301 hardware_memory_error();
309 static int kvm_inject_mce_oldstyle(CPUX86State
*env
)
311 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
312 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
313 struct kvm_x86_mce mce
;
315 env
->exception_injected
= -1;
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
321 for (bank
= 0; bank
< bank_num
; bank
++) {
322 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
326 assert(bank
< bank_num
);
329 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
330 mce
.mcg_status
= env
->mcg_status
;
331 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
332 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
334 return kvm_vcpu_ioctl(env
, KVM_X86_SET_MCE
, &mce
);
339 static void cpu_update_state(void *opaque
, int running
, RunState state
)
341 CPUX86State
*env
= opaque
;
344 env
->tsc_valid
= false;
348 int kvm_arch_init_vcpu(CPUX86State
*env
)
351 struct kvm_cpuid2 cpuid
;
352 struct kvm_cpuid_entry2 entries
[100];
353 } QEMU_PACKED cpuid_data
;
354 KVMState
*s
= env
->kvm_state
;
355 uint32_t limit
, i
, j
, cpuid_i
;
357 struct kvm_cpuid_entry2
*c
;
358 uint32_t signature
[3];
361 env
->cpuid_features
&= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
363 i
= env
->cpuid_ext_features
& CPUID_EXT_HYPERVISOR
;
364 j
= env
->cpuid_ext_features
& CPUID_EXT_TSC_DEADLINE_TIMER
;
365 env
->cpuid_ext_features
&= kvm_arch_get_supported_cpuid(s
, 1, 0, R_ECX
);
366 env
->cpuid_ext_features
|= i
;
367 if (j
&& kvm_irqchip_in_kernel() &&
368 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
369 env
->cpuid_ext_features
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
372 env
->cpuid_ext2_features
&= kvm_arch_get_supported_cpuid(s
, 0x80000001,
374 env
->cpuid_ext3_features
&= kvm_arch_get_supported_cpuid(s
, 0x80000001,
376 env
->cpuid_svm_features
&= kvm_arch_get_supported_cpuid(s
, 0x8000000A,
381 /* Paravirtualization CPUIDs */
382 c
= &cpuid_data
.entries
[cpuid_i
++];
383 memset(c
, 0, sizeof(*c
));
384 c
->function
= KVM_CPUID_SIGNATURE
;
385 if (!hyperv_enabled()) {
386 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
389 memcpy(signature
, "Microsoft Hv", 12);
390 c
->eax
= HYPERV_CPUID_MIN
;
392 c
->ebx
= signature
[0];
393 c
->ecx
= signature
[1];
394 c
->edx
= signature
[2];
396 c
= &cpuid_data
.entries
[cpuid_i
++];
397 memset(c
, 0, sizeof(*c
));
398 c
->function
= KVM_CPUID_FEATURES
;
399 c
->eax
= env
->cpuid_kvm_features
&
400 kvm_arch_get_supported_cpuid(s
, KVM_CPUID_FEATURES
, 0, R_EAX
);
402 if (hyperv_enabled()) {
403 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
404 c
->eax
= signature
[0];
406 c
= &cpuid_data
.entries
[cpuid_i
++];
407 memset(c
, 0, sizeof(*c
));
408 c
->function
= HYPERV_CPUID_VERSION
;
412 c
= &cpuid_data
.entries
[cpuid_i
++];
413 memset(c
, 0, sizeof(*c
));
414 c
->function
= HYPERV_CPUID_FEATURES
;
415 if (hyperv_relaxed_timing_enabled()) {
416 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
418 if (hyperv_vapic_recommended()) {
419 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
420 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
423 c
= &cpuid_data
.entries
[cpuid_i
++];
424 memset(c
, 0, sizeof(*c
));
425 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
426 if (hyperv_relaxed_timing_enabled()) {
427 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
429 if (hyperv_vapic_recommended()) {
430 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
432 c
->ebx
= hyperv_get_spinlock_retries();
434 c
= &cpuid_data
.entries
[cpuid_i
++];
435 memset(c
, 0, sizeof(*c
));
436 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
440 c
= &cpuid_data
.entries
[cpuid_i
++];
441 memset(c
, 0, sizeof(*c
));
442 c
->function
= KVM_CPUID_SIGNATURE_NEXT
;
443 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
445 c
->ebx
= signature
[0];
446 c
->ecx
= signature
[1];
447 c
->edx
= signature
[2];
450 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
452 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
454 for (i
= 0; i
<= limit
; i
++) {
455 c
= &cpuid_data
.entries
[cpuid_i
++];
459 /* Keep reading function 2 till all the input is received */
463 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
464 KVM_CPUID_FLAG_STATE_READ_NEXT
;
465 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
466 times
= c
->eax
& 0xff;
468 for (j
= 1; j
< times
; ++j
) {
469 c
= &cpuid_data
.entries
[cpuid_i
++];
471 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
472 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
480 if (i
== 0xd && j
== 64) {
484 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
486 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
488 if (i
== 4 && c
->eax
== 0) {
491 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
494 if (i
== 0xd && c
->eax
== 0) {
497 c
= &cpuid_data
.entries
[cpuid_i
++];
503 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
507 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
509 for (i
= 0x80000000; i
<= limit
; i
++) {
510 c
= &cpuid_data
.entries
[cpuid_i
++];
514 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
517 /* Call Centaur's CPUID instructions they are supported. */
518 if (env
->cpuid_xlevel2
> 0) {
519 env
->cpuid_ext4_features
&=
520 kvm_arch_get_supported_cpuid(s
, 0xC0000001, 0, R_EDX
);
521 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
523 for (i
= 0xC0000000; i
<= limit
; i
++) {
524 c
= &cpuid_data
.entries
[cpuid_i
++];
528 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
532 cpuid_data
.cpuid
.nent
= cpuid_i
;
534 if (((env
->cpuid_version
>> 8)&0xF) >= 6
535 && (env
->cpuid_features
&(CPUID_MCE
|CPUID_MCA
)) == (CPUID_MCE
|CPUID_MCA
)
536 && kvm_check_extension(env
->kvm_state
, KVM_CAP_MCE
) > 0) {
541 ret
= kvm_get_mce_cap_supported(env
->kvm_state
, &mcg_cap
, &banks
);
543 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
547 if (banks
> MCE_BANKS_DEF
) {
548 banks
= MCE_BANKS_DEF
;
550 mcg_cap
&= MCE_CAP_DEF
;
552 ret
= kvm_vcpu_ioctl(env
, KVM_X86_SETUP_MCE
, &mcg_cap
);
554 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
558 env
->mcg_cap
= mcg_cap
;
561 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
563 cpuid_data
.cpuid
.padding
= 0;
564 r
= kvm_vcpu_ioctl(env
, KVM_SET_CPUID2
, &cpuid_data
);
569 r
= kvm_check_extension(env
->kvm_state
, KVM_CAP_TSC_CONTROL
);
570 if (r
&& env
->tsc_khz
) {
571 r
= kvm_vcpu_ioctl(env
, KVM_SET_TSC_KHZ
, env
->tsc_khz
);
573 fprintf(stderr
, "KVM_SET_TSC_KHZ failed\n");
578 if (kvm_has_xsave()) {
579 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
585 void kvm_arch_reset_vcpu(CPUX86State
*env
)
587 env
->exception_injected
= -1;
588 env
->interrupt_injected
= -1;
590 if (kvm_irqchip_in_kernel()) {
591 env
->mp_state
= cpu_is_bsp(env
) ? KVM_MP_STATE_RUNNABLE
:
592 KVM_MP_STATE_UNINITIALIZED
;
594 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
598 static int kvm_get_supported_msrs(KVMState
*s
)
600 static int kvm_supported_msrs
;
604 if (kvm_supported_msrs
== 0) {
605 struct kvm_msr_list msr_list
, *kvm_msr_list
;
607 kvm_supported_msrs
= -1;
609 /* Obtain MSR list from KVM. These are the MSRs that we must
612 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
613 if (ret
< 0 && ret
!= -E2BIG
) {
616 /* Old kernel modules had a bug and could write beyond the provided
617 memory. Allocate at least a safe amount of 1K. */
618 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
620 sizeof(msr_list
.indices
[0])));
622 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
623 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
627 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
628 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
632 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
633 has_msr_hsave_pa
= true;
636 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
637 has_msr_tsc_deadline
= true;
640 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
641 has_msr_misc_enable
= true;
647 g_free(kvm_msr_list
);
653 int kvm_arch_init(KVMState
*s
)
655 QemuOptsList
*list
= qemu_find_opts("machine");
656 uint64_t identity_base
= 0xfffbc000;
659 struct utsname utsname
;
661 ret
= kvm_get_supported_msrs(s
);
667 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
670 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
671 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
672 * Since these must be part of guest physical memory, we need to allocate
673 * them, both by setting their start addresses in the kernel and by
674 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
676 * Older KVM versions may not support setting the identity map base. In
677 * that case we need to stick with the default, i.e. a 256K maximum BIOS
680 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
681 /* Allows up to 16M BIOSes. */
682 identity_base
= 0xfeffc000;
684 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
690 /* Set TSS base one page after EPT identity map. */
691 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
696 /* Tell fw_cfg to notify the BIOS to reserve the range. */
697 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
699 fprintf(stderr
, "e820_add_entry() table is full\n");
702 qemu_register_reset(kvm_unpoison_all
, NULL
);
704 if (!QTAILQ_EMPTY(&list
->head
)) {
705 shadow_mem
= qemu_opt_get_size(QTAILQ_FIRST(&list
->head
),
706 "kvm_shadow_mem", -1);
707 if (shadow_mem
!= -1) {
709 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
718 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
720 lhs
->selector
= rhs
->selector
;
721 lhs
->base
= rhs
->base
;
722 lhs
->limit
= rhs
->limit
;
734 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
736 unsigned flags
= rhs
->flags
;
737 lhs
->selector
= rhs
->selector
;
738 lhs
->base
= rhs
->base
;
739 lhs
->limit
= rhs
->limit
;
740 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
741 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
742 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
743 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
744 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
745 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
746 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
747 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
752 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
754 lhs
->selector
= rhs
->selector
;
755 lhs
->base
= rhs
->base
;
756 lhs
->limit
= rhs
->limit
;
757 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
758 (rhs
->present
* DESC_P_MASK
) |
759 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
760 (rhs
->db
<< DESC_B_SHIFT
) |
761 (rhs
->s
* DESC_S_MASK
) |
762 (rhs
->l
<< DESC_L_SHIFT
) |
763 (rhs
->g
* DESC_G_MASK
) |
764 (rhs
->avl
* DESC_AVL_MASK
);
767 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
770 *kvm_reg
= *qemu_reg
;
772 *qemu_reg
= *kvm_reg
;
776 static int kvm_getput_regs(CPUX86State
*env
, int set
)
778 struct kvm_regs regs
;
782 ret
= kvm_vcpu_ioctl(env
, KVM_GET_REGS
, ®s
);
788 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
789 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
790 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
791 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
792 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
793 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
794 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
795 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
797 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
798 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
799 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
800 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
801 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
802 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
803 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
804 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
807 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
808 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
811 ret
= kvm_vcpu_ioctl(env
, KVM_SET_REGS
, ®s
);
817 static int kvm_put_fpu(CPUX86State
*env
)
822 memset(&fpu
, 0, sizeof fpu
);
823 fpu
.fsw
= env
->fpus
& ~(7 << 11);
824 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
826 fpu
.last_opcode
= env
->fpop
;
827 fpu
.last_ip
= env
->fpip
;
828 fpu
.last_dp
= env
->fpdp
;
829 for (i
= 0; i
< 8; ++i
) {
830 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
832 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
833 memcpy(fpu
.xmm
, env
->xmm_regs
, sizeof env
->xmm_regs
);
834 fpu
.mxcsr
= env
->mxcsr
;
836 return kvm_vcpu_ioctl(env
, KVM_SET_FPU
, &fpu
);
839 #define XSAVE_FCW_FSW 0
840 #define XSAVE_FTW_FOP 1
841 #define XSAVE_CWD_RIP 2
842 #define XSAVE_CWD_RDP 4
843 #define XSAVE_MXCSR 6
844 #define XSAVE_ST_SPACE 8
845 #define XSAVE_XMM_SPACE 40
846 #define XSAVE_XSTATE_BV 128
847 #define XSAVE_YMMH_SPACE 144
849 static int kvm_put_xsave(CPUX86State
*env
)
851 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
852 uint16_t cwd
, swd
, twd
;
855 if (!kvm_has_xsave()) {
856 return kvm_put_fpu(env
);
859 memset(xsave
, 0, sizeof(struct kvm_xsave
));
861 swd
= env
->fpus
& ~(7 << 11);
862 swd
|= (env
->fpstt
& 7) << 11;
864 for (i
= 0; i
< 8; ++i
) {
865 twd
|= (!env
->fptags
[i
]) << i
;
867 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
868 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
869 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
870 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
871 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
873 memcpy(&xsave
->region
[XSAVE_XMM_SPACE
], env
->xmm_regs
,
874 sizeof env
->xmm_regs
);
875 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
876 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
877 memcpy(&xsave
->region
[XSAVE_YMMH_SPACE
], env
->ymmh_regs
,
878 sizeof env
->ymmh_regs
);
879 r
= kvm_vcpu_ioctl(env
, KVM_SET_XSAVE
, xsave
);
883 static int kvm_put_xcrs(CPUX86State
*env
)
885 struct kvm_xcrs xcrs
;
887 if (!kvm_has_xcrs()) {
893 xcrs
.xcrs
[0].xcr
= 0;
894 xcrs
.xcrs
[0].value
= env
->xcr0
;
895 return kvm_vcpu_ioctl(env
, KVM_SET_XCRS
, &xcrs
);
898 static int kvm_put_sregs(CPUX86State
*env
)
900 struct kvm_sregs sregs
;
902 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
903 if (env
->interrupt_injected
>= 0) {
904 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
905 (uint64_t)1 << (env
->interrupt_injected
% 64);
908 if ((env
->eflags
& VM_MASK
)) {
909 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
910 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
911 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
912 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
913 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
914 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
916 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
917 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
918 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
919 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
920 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
921 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
924 set_seg(&sregs
.tr
, &env
->tr
);
925 set_seg(&sregs
.ldt
, &env
->ldt
);
927 sregs
.idt
.limit
= env
->idt
.limit
;
928 sregs
.idt
.base
= env
->idt
.base
;
929 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
930 sregs
.gdt
.limit
= env
->gdt
.limit
;
931 sregs
.gdt
.base
= env
->gdt
.base
;
932 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
934 sregs
.cr0
= env
->cr
[0];
935 sregs
.cr2
= env
->cr
[2];
936 sregs
.cr3
= env
->cr
[3];
937 sregs
.cr4
= env
->cr
[4];
939 sregs
.cr8
= cpu_get_apic_tpr(env
->apic_state
);
940 sregs
.apic_base
= cpu_get_apic_base(env
->apic_state
);
942 sregs
.efer
= env
->efer
;
944 return kvm_vcpu_ioctl(env
, KVM_SET_SREGS
, &sregs
);
947 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
948 uint32_t index
, uint64_t value
)
950 entry
->index
= index
;
954 static int kvm_put_msrs(CPUX86State
*env
, int level
)
957 struct kvm_msrs info
;
958 struct kvm_msr_entry entries
[100];
960 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
963 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
964 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
965 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
966 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
968 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
970 if (has_msr_hsave_pa
) {
971 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
973 if (has_msr_tsc_deadline
) {
974 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
976 if (has_msr_misc_enable
) {
977 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
978 env
->msr_ia32_misc_enable
);
981 if (lm_capable_kernel
) {
982 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
983 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
984 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
985 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
988 if (level
== KVM_PUT_FULL_STATE
) {
990 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
991 * writeback. Until this is fixed, we only write the offset to SMP
992 * guests after migration, desynchronizing the VCPUs, but avoiding
993 * huge jump-backs that would occur without any writeback at all.
995 if (smp_cpus
== 1 || env
->tsc
!= 0) {
996 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1000 * The following paravirtual MSRs have side effects on the guest or are
1001 * too heavy for normal writeback. Limit them to reset or full state
1004 if (level
>= KVM_PUT_RESET_STATE
) {
1005 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1006 env
->system_time_msr
);
1007 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1008 if (has_msr_async_pf_en
) {
1009 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1010 env
->async_pf_en_msr
);
1012 if (hyperv_hypercall_available()) {
1013 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
, 0);
1014 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
, 0);
1016 if (hyperv_vapic_recommended()) {
1017 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
1023 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1024 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1025 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1026 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1030 msr_data
.info
.nmsrs
= n
;
1032 return kvm_vcpu_ioctl(env
, KVM_SET_MSRS
, &msr_data
);
1037 static int kvm_get_fpu(CPUX86State
*env
)
1042 ret
= kvm_vcpu_ioctl(env
, KVM_GET_FPU
, &fpu
);
1047 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1048 env
->fpus
= fpu
.fsw
;
1049 env
->fpuc
= fpu
.fcw
;
1050 env
->fpop
= fpu
.last_opcode
;
1051 env
->fpip
= fpu
.last_ip
;
1052 env
->fpdp
= fpu
.last_dp
;
1053 for (i
= 0; i
< 8; ++i
) {
1054 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1056 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1057 memcpy(env
->xmm_regs
, fpu
.xmm
, sizeof env
->xmm_regs
);
1058 env
->mxcsr
= fpu
.mxcsr
;
1063 static int kvm_get_xsave(CPUX86State
*env
)
1065 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1067 uint16_t cwd
, swd
, twd
;
1069 if (!kvm_has_xsave()) {
1070 return kvm_get_fpu(env
);
1073 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XSAVE
, xsave
);
1078 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1079 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1080 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1081 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1082 env
->fpstt
= (swd
>> 11) & 7;
1085 for (i
= 0; i
< 8; ++i
) {
1086 env
->fptags
[i
] = !((twd
>> i
) & 1);
1088 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1089 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1090 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1091 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1092 sizeof env
->fpregs
);
1093 memcpy(env
->xmm_regs
, &xsave
->region
[XSAVE_XMM_SPACE
],
1094 sizeof env
->xmm_regs
);
1095 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1096 memcpy(env
->ymmh_regs
, &xsave
->region
[XSAVE_YMMH_SPACE
],
1097 sizeof env
->ymmh_regs
);
1101 static int kvm_get_xcrs(CPUX86State
*env
)
1104 struct kvm_xcrs xcrs
;
1106 if (!kvm_has_xcrs()) {
1110 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XCRS
, &xcrs
);
1115 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1116 /* Only support xcr0 now */
1117 if (xcrs
.xcrs
[0].xcr
== 0) {
1118 env
->xcr0
= xcrs
.xcrs
[0].value
;
1125 static int kvm_get_sregs(CPUX86State
*env
)
1127 struct kvm_sregs sregs
;
1131 ret
= kvm_vcpu_ioctl(env
, KVM_GET_SREGS
, &sregs
);
1136 /* There can only be one pending IRQ set in the bitmap at a time, so try
1137 to find it and save its number instead (-1 for none). */
1138 env
->interrupt_injected
= -1;
1139 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1140 if (sregs
.interrupt_bitmap
[i
]) {
1141 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1142 env
->interrupt_injected
= i
* 64 + bit
;
1147 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1148 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1149 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1150 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1151 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1152 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1154 get_seg(&env
->tr
, &sregs
.tr
);
1155 get_seg(&env
->ldt
, &sregs
.ldt
);
1157 env
->idt
.limit
= sregs
.idt
.limit
;
1158 env
->idt
.base
= sregs
.idt
.base
;
1159 env
->gdt
.limit
= sregs
.gdt
.limit
;
1160 env
->gdt
.base
= sregs
.gdt
.base
;
1162 env
->cr
[0] = sregs
.cr0
;
1163 env
->cr
[2] = sregs
.cr2
;
1164 env
->cr
[3] = sregs
.cr3
;
1165 env
->cr
[4] = sregs
.cr4
;
1167 env
->efer
= sregs
.efer
;
1169 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1171 #define HFLAG_COPY_MASK \
1172 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1173 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1174 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1175 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1177 hflags
= (env
->segs
[R_CS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1178 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1179 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1180 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1181 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1182 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1183 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1185 if (env
->efer
& MSR_EFER_LMA
) {
1186 hflags
|= HF_LMA_MASK
;
1189 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1190 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1192 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1193 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1194 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1195 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1196 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1197 !(hflags
& HF_CS32_MASK
)) {
1198 hflags
|= HF_ADDSEG_MASK
;
1200 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1201 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1204 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1209 static int kvm_get_msrs(CPUX86State
*env
)
1212 struct kvm_msrs info
;
1213 struct kvm_msr_entry entries
[100];
1215 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1219 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1220 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1221 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1222 msrs
[n
++].index
= MSR_PAT
;
1224 msrs
[n
++].index
= MSR_STAR
;
1226 if (has_msr_hsave_pa
) {
1227 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1229 if (has_msr_tsc_deadline
) {
1230 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1232 if (has_msr_misc_enable
) {
1233 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1236 if (!env
->tsc_valid
) {
1237 msrs
[n
++].index
= MSR_IA32_TSC
;
1238 env
->tsc_valid
= !runstate_is_running();
1241 #ifdef TARGET_X86_64
1242 if (lm_capable_kernel
) {
1243 msrs
[n
++].index
= MSR_CSTAR
;
1244 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1245 msrs
[n
++].index
= MSR_FMASK
;
1246 msrs
[n
++].index
= MSR_LSTAR
;
1249 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1250 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1251 if (has_msr_async_pf_en
) {
1252 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1256 msrs
[n
++].index
= MSR_MCG_STATUS
;
1257 msrs
[n
++].index
= MSR_MCG_CTL
;
1258 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1259 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1263 msr_data
.info
.nmsrs
= n
;
1264 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, &msr_data
);
1269 for (i
= 0; i
< ret
; i
++) {
1270 switch (msrs
[i
].index
) {
1271 case MSR_IA32_SYSENTER_CS
:
1272 env
->sysenter_cs
= msrs
[i
].data
;
1274 case MSR_IA32_SYSENTER_ESP
:
1275 env
->sysenter_esp
= msrs
[i
].data
;
1277 case MSR_IA32_SYSENTER_EIP
:
1278 env
->sysenter_eip
= msrs
[i
].data
;
1281 env
->pat
= msrs
[i
].data
;
1284 env
->star
= msrs
[i
].data
;
1286 #ifdef TARGET_X86_64
1288 env
->cstar
= msrs
[i
].data
;
1290 case MSR_KERNELGSBASE
:
1291 env
->kernelgsbase
= msrs
[i
].data
;
1294 env
->fmask
= msrs
[i
].data
;
1297 env
->lstar
= msrs
[i
].data
;
1301 env
->tsc
= msrs
[i
].data
;
1303 case MSR_IA32_TSCDEADLINE
:
1304 env
->tsc_deadline
= msrs
[i
].data
;
1306 case MSR_VM_HSAVE_PA
:
1307 env
->vm_hsave
= msrs
[i
].data
;
1309 case MSR_KVM_SYSTEM_TIME
:
1310 env
->system_time_msr
= msrs
[i
].data
;
1312 case MSR_KVM_WALL_CLOCK
:
1313 env
->wall_clock_msr
= msrs
[i
].data
;
1315 case MSR_MCG_STATUS
:
1316 env
->mcg_status
= msrs
[i
].data
;
1319 env
->mcg_ctl
= msrs
[i
].data
;
1321 case MSR_IA32_MISC_ENABLE
:
1322 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
1325 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
1326 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
1327 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
1330 case MSR_KVM_ASYNC_PF_EN
:
1331 env
->async_pf_en_msr
= msrs
[i
].data
;
1339 static int kvm_put_mp_state(CPUX86State
*env
)
1341 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
1343 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
1346 static int kvm_get_mp_state(CPUX86State
*env
)
1348 struct kvm_mp_state mp_state
;
1351 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
1355 env
->mp_state
= mp_state
.mp_state
;
1356 if (kvm_irqchip_in_kernel()) {
1357 env
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
1362 static int kvm_get_apic(CPUX86State
*env
)
1364 DeviceState
*apic
= env
->apic_state
;
1365 struct kvm_lapic_state kapic
;
1368 if (apic
&& kvm_irqchip_in_kernel()) {
1369 ret
= kvm_vcpu_ioctl(env
, KVM_GET_LAPIC
, &kapic
);
1374 kvm_get_apic_state(apic
, &kapic
);
1379 static int kvm_put_apic(CPUX86State
*env
)
1381 DeviceState
*apic
= env
->apic_state
;
1382 struct kvm_lapic_state kapic
;
1384 if (apic
&& kvm_irqchip_in_kernel()) {
1385 kvm_put_apic_state(apic
, &kapic
);
1387 return kvm_vcpu_ioctl(env
, KVM_SET_LAPIC
, &kapic
);
1392 static int kvm_put_vcpu_events(CPUX86State
*env
, int level
)
1394 struct kvm_vcpu_events events
;
1396 if (!kvm_has_vcpu_events()) {
1400 events
.exception
.injected
= (env
->exception_injected
>= 0);
1401 events
.exception
.nr
= env
->exception_injected
;
1402 events
.exception
.has_error_code
= env
->has_error_code
;
1403 events
.exception
.error_code
= env
->error_code
;
1404 events
.exception
.pad
= 0;
1406 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
1407 events
.interrupt
.nr
= env
->interrupt_injected
;
1408 events
.interrupt
.soft
= env
->soft_interrupt
;
1410 events
.nmi
.injected
= env
->nmi_injected
;
1411 events
.nmi
.pending
= env
->nmi_pending
;
1412 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
1415 events
.sipi_vector
= env
->sipi_vector
;
1418 if (level
>= KVM_PUT_RESET_STATE
) {
1420 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
1423 return kvm_vcpu_ioctl(env
, KVM_SET_VCPU_EVENTS
, &events
);
1426 static int kvm_get_vcpu_events(CPUX86State
*env
)
1428 struct kvm_vcpu_events events
;
1431 if (!kvm_has_vcpu_events()) {
1435 ret
= kvm_vcpu_ioctl(env
, KVM_GET_VCPU_EVENTS
, &events
);
1439 env
->exception_injected
=
1440 events
.exception
.injected
? events
.exception
.nr
: -1;
1441 env
->has_error_code
= events
.exception
.has_error_code
;
1442 env
->error_code
= events
.exception
.error_code
;
1444 env
->interrupt_injected
=
1445 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
1446 env
->soft_interrupt
= events
.interrupt
.soft
;
1448 env
->nmi_injected
= events
.nmi
.injected
;
1449 env
->nmi_pending
= events
.nmi
.pending
;
1450 if (events
.nmi
.masked
) {
1451 env
->hflags2
|= HF2_NMI_MASK
;
1453 env
->hflags2
&= ~HF2_NMI_MASK
;
1456 env
->sipi_vector
= events
.sipi_vector
;
1461 static int kvm_guest_debug_workarounds(CPUX86State
*env
)
1464 unsigned long reinject_trap
= 0;
1466 if (!kvm_has_vcpu_events()) {
1467 if (env
->exception_injected
== 1) {
1468 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
1469 } else if (env
->exception_injected
== 3) {
1470 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
1472 env
->exception_injected
= -1;
1476 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1477 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1478 * by updating the debug state once again if single-stepping is on.
1479 * Another reason to call kvm_update_guest_debug here is a pending debug
1480 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1481 * reinject them via SET_GUEST_DEBUG.
1483 if (reinject_trap
||
1484 (!kvm_has_robust_singlestep() && env
->singlestep_enabled
)) {
1485 ret
= kvm_update_guest_debug(env
, reinject_trap
);
1490 static int kvm_put_debugregs(CPUX86State
*env
)
1492 struct kvm_debugregs dbgregs
;
1495 if (!kvm_has_debugregs()) {
1499 for (i
= 0; i
< 4; i
++) {
1500 dbgregs
.db
[i
] = env
->dr
[i
];
1502 dbgregs
.dr6
= env
->dr
[6];
1503 dbgregs
.dr7
= env
->dr
[7];
1506 return kvm_vcpu_ioctl(env
, KVM_SET_DEBUGREGS
, &dbgregs
);
1509 static int kvm_get_debugregs(CPUX86State
*env
)
1511 struct kvm_debugregs dbgregs
;
1514 if (!kvm_has_debugregs()) {
1518 ret
= kvm_vcpu_ioctl(env
, KVM_GET_DEBUGREGS
, &dbgregs
);
1522 for (i
= 0; i
< 4; i
++) {
1523 env
->dr
[i
] = dbgregs
.db
[i
];
1525 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
1526 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
1531 int kvm_arch_put_registers(CPUX86State
*env
, int level
)
1535 assert(cpu_is_stopped(env
) || qemu_cpu_is_self(env
));
1537 ret
= kvm_getput_regs(env
, 1);
1541 ret
= kvm_put_xsave(env
);
1545 ret
= kvm_put_xcrs(env
);
1549 ret
= kvm_put_sregs(env
);
1553 /* must be before kvm_put_msrs */
1554 ret
= kvm_inject_mce_oldstyle(env
);
1558 ret
= kvm_put_msrs(env
, level
);
1562 if (level
>= KVM_PUT_RESET_STATE
) {
1563 ret
= kvm_put_mp_state(env
);
1567 ret
= kvm_put_apic(env
);
1572 ret
= kvm_put_vcpu_events(env
, level
);
1576 ret
= kvm_put_debugregs(env
);
1581 ret
= kvm_guest_debug_workarounds(env
);
1588 int kvm_arch_get_registers(CPUX86State
*env
)
1592 assert(cpu_is_stopped(env
) || qemu_cpu_is_self(env
));
1594 ret
= kvm_getput_regs(env
, 0);
1598 ret
= kvm_get_xsave(env
);
1602 ret
= kvm_get_xcrs(env
);
1606 ret
= kvm_get_sregs(env
);
1610 ret
= kvm_get_msrs(env
);
1614 ret
= kvm_get_mp_state(env
);
1618 ret
= kvm_get_apic(env
);
1622 ret
= kvm_get_vcpu_events(env
);
1626 ret
= kvm_get_debugregs(env
);
1633 void kvm_arch_pre_run(CPUX86State
*env
, struct kvm_run
*run
)
1638 if (env
->interrupt_request
& CPU_INTERRUPT_NMI
) {
1639 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
1640 DPRINTF("injected NMI\n");
1641 ret
= kvm_vcpu_ioctl(env
, KVM_NMI
);
1643 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
1648 if (!kvm_irqchip_in_kernel()) {
1649 /* Force the VCPU out of its inner loop to process any INIT requests
1650 * or pending TPR access reports. */
1651 if (env
->interrupt_request
&
1652 (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
1653 env
->exit_request
= 1;
1656 /* Try to inject an interrupt if the guest can accept it */
1657 if (run
->ready_for_interrupt_injection
&&
1658 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1659 (env
->eflags
& IF_MASK
)) {
1662 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
1663 irq
= cpu_get_pic_interrupt(env
);
1665 struct kvm_interrupt intr
;
1668 DPRINTF("injected interrupt %d\n", irq
);
1669 ret
= kvm_vcpu_ioctl(env
, KVM_INTERRUPT
, &intr
);
1672 "KVM: injection failed, interrupt lost (%s)\n",
1678 /* If we have an interrupt but the guest is not ready to receive an
1679 * interrupt, request an interrupt window exit. This will
1680 * cause a return to userspace as soon as the guest is ready to
1681 * receive interrupts. */
1682 if ((env
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
1683 run
->request_interrupt_window
= 1;
1685 run
->request_interrupt_window
= 0;
1688 DPRINTF("setting tpr\n");
1689 run
->cr8
= cpu_get_apic_tpr(env
->apic_state
);
1693 void kvm_arch_post_run(CPUX86State
*env
, struct kvm_run
*run
)
1696 env
->eflags
|= IF_MASK
;
1698 env
->eflags
&= ~IF_MASK
;
1700 cpu_set_apic_tpr(env
->apic_state
, run
->cr8
);
1701 cpu_set_apic_base(env
->apic_state
, run
->apic_base
);
1704 int kvm_arch_process_async_events(CPUX86State
*env
)
1706 X86CPU
*cpu
= x86_env_get_cpu(env
);
1708 if (env
->interrupt_request
& CPU_INTERRUPT_MCE
) {
1709 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1710 assert(env
->mcg_cap
);
1712 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
1714 kvm_cpu_synchronize_state(env
);
1716 if (env
->exception_injected
== EXCP08_DBLE
) {
1717 /* this means triple fault */
1718 qemu_system_reset_request();
1719 env
->exit_request
= 1;
1722 env
->exception_injected
= EXCP12_MCHK
;
1723 env
->has_error_code
= 0;
1726 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
1727 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1731 if (kvm_irqchip_in_kernel()) {
1735 if (env
->interrupt_request
& CPU_INTERRUPT_POLL
) {
1736 env
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
1737 apic_poll_irq(env
->apic_state
);
1739 if (((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1740 (env
->eflags
& IF_MASK
)) ||
1741 (env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1744 if (env
->interrupt_request
& CPU_INTERRUPT_INIT
) {
1745 kvm_cpu_synchronize_state(env
);
1748 if (env
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
1749 kvm_cpu_synchronize_state(env
);
1752 if (env
->interrupt_request
& CPU_INTERRUPT_TPR
) {
1753 env
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
1754 kvm_cpu_synchronize_state(env
);
1755 apic_handle_tpr_access_report(env
->apic_state
, env
->eip
,
1756 env
->tpr_access_type
);
1762 static int kvm_handle_halt(CPUX86State
*env
)
1764 if (!((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1765 (env
->eflags
& IF_MASK
)) &&
1766 !(env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1774 static int kvm_handle_tpr_access(CPUX86State
*env
)
1776 struct kvm_run
*run
= env
->kvm_run
;
1778 apic_handle_tpr_access_report(env
->apic_state
, run
->tpr_access
.rip
,
1779 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
1784 int kvm_arch_insert_sw_breakpoint(CPUX86State
*env
, struct kvm_sw_breakpoint
*bp
)
1786 static const uint8_t int3
= 0xcc;
1788 if (cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
1789 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
1795 int kvm_arch_remove_sw_breakpoint(CPUX86State
*env
, struct kvm_sw_breakpoint
*bp
)
1799 if (cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
1800 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
1812 static int nb_hw_breakpoint
;
1814 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
1818 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1819 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
1820 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
1827 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1828 target_ulong len
, int type
)
1831 case GDB_BREAKPOINT_HW
:
1834 case GDB_WATCHPOINT_WRITE
:
1835 case GDB_WATCHPOINT_ACCESS
:
1842 if (addr
& (len
- 1)) {
1854 if (nb_hw_breakpoint
== 4) {
1857 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
1860 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
1861 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
1862 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
1868 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1869 target_ulong len
, int type
)
1873 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
1878 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
1883 void kvm_arch_remove_all_hw_breakpoints(void)
1885 nb_hw_breakpoint
= 0;
1888 static CPUWatchpoint hw_watchpoint
;
1890 static int kvm_handle_debug(struct kvm_debug_exit_arch
*arch_info
)
1895 if (arch_info
->exception
== 1) {
1896 if (arch_info
->dr6
& (1 << 14)) {
1897 if (cpu_single_env
->singlestep_enabled
) {
1901 for (n
= 0; n
< 4; n
++) {
1902 if (arch_info
->dr6
& (1 << n
)) {
1903 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
1909 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1910 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1911 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1915 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1916 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1917 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
1923 } else if (kvm_find_sw_breakpoint(cpu_single_env
, arch_info
->pc
)) {
1927 cpu_synchronize_state(cpu_single_env
);
1928 assert(cpu_single_env
->exception_injected
== -1);
1931 cpu_single_env
->exception_injected
= arch_info
->exception
;
1932 cpu_single_env
->has_error_code
= 0;
1938 void kvm_arch_update_guest_debug(CPUX86State
*env
, struct kvm_guest_debug
*dbg
)
1940 const uint8_t type_code
[] = {
1941 [GDB_BREAKPOINT_HW
] = 0x0,
1942 [GDB_WATCHPOINT_WRITE
] = 0x1,
1943 [GDB_WATCHPOINT_ACCESS
] = 0x3
1945 const uint8_t len_code
[] = {
1946 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1950 if (kvm_sw_breakpoints_active(env
)) {
1951 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1953 if (nb_hw_breakpoint
> 0) {
1954 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1955 dbg
->arch
.debugreg
[7] = 0x0600;
1956 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1957 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
1958 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
1959 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
1960 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
1965 static bool host_supports_vmx(void)
1967 uint32_t ecx
, unused
;
1969 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
1970 return ecx
& CPUID_EXT_VMX
;
1973 #define VMX_INVALID_GUEST_STATE 0x80000021
1975 int kvm_arch_handle_exit(CPUX86State
*env
, struct kvm_run
*run
)
1980 switch (run
->exit_reason
) {
1982 DPRINTF("handle_hlt\n");
1983 ret
= kvm_handle_halt(env
);
1985 case KVM_EXIT_SET_TPR
:
1988 case KVM_EXIT_TPR_ACCESS
:
1989 ret
= kvm_handle_tpr_access(env
);
1991 case KVM_EXIT_FAIL_ENTRY
:
1992 code
= run
->fail_entry
.hardware_entry_failure_reason
;
1993 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
1995 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
1997 "\nIf you're running a guest on an Intel machine without "
1998 "unrestricted mode\n"
1999 "support, the failure can be most likely due to the guest "
2000 "entering an invalid\n"
2001 "state for Intel VT. For example, the guest maybe running "
2002 "in big real mode\n"
2003 "which is not supported on less recent Intel processors."
2008 case KVM_EXIT_EXCEPTION
:
2009 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
2010 run
->ex
.exception
, run
->ex
.error_code
);
2013 case KVM_EXIT_DEBUG
:
2014 DPRINTF("kvm_exit_debug\n");
2015 ret
= kvm_handle_debug(&run
->debug
.arch
);
2018 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
2026 bool kvm_arch_stop_on_emulation_error(CPUX86State
*env
)
2028 kvm_cpu_synchronize_state(env
);
2029 return !(env
->cr
[0] & CR0_PE_MASK
) ||
2030 ((env
->segs
[R_CS
].selector
& 3) != 3);
2033 void kvm_arch_init_irq_routing(KVMState
*s
)
2035 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2036 /* If kernel can't do irq routing, interrupt source
2037 * override 0->2 cannot be set up as required by HPET.
2038 * So we have to disable it.