1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
38 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO
= 0x0100000,
42 ADDR_COMPAT_LAYOUT
= 0x0200000,
43 READ_IMPLIES_EXEC
= 0x0400000,
44 ADDR_LIMIT_32BIT
= 0x0800000,
45 SHORT_INODE
= 0x1000000,
46 WHOLE_SECONDS
= 0x2000000,
47 STICKY_TIMEOUTS
= 0x4000000,
48 ADDR_LIMIT_3GB
= 0x8000000,
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
59 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
60 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
61 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
62 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
63 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
64 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
65 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
66 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
68 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
69 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
71 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
72 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
73 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
74 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
76 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
77 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
78 PER_OSF4
= 0x000f, /* OSF/1 v4 */
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 /* this flag is uneffective under linux too, should be deleted */
90 #define MAP_DENYWRITE 0
93 /* should probably go in elf.h */
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
101 #define ELF_DATA ELFDATA2LSB
104 typedef target_ulong target_elf_greg_t
;
106 typedef target_ushort target_uid_t
;
107 typedef target_ushort target_gid_t
;
109 typedef target_uint target_uid_t
;
110 typedef target_uint target_gid_t
;
112 typedef target_int target_pid_t
;
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform
[] = "i386";
121 int family
= (thread_env
->cpuid_version
>> 8) & 0xff;
125 elf_platform
[1] = '0' + family
;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 return thread_env
->cpuid_features
;
137 #define ELF_START_MMAP 0x2aaaaab000ULL
138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
140 #define ELF_CLASS ELFCLASS64
141 #define ELF_ARCH EM_X86_64
143 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
146 regs
->rsp
= infop
->start_stack
;
147 regs
->rip
= infop
->entry
;
151 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
158 * See linux kernel: arch/x86/include/asm/elf.h
160 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
162 (*regs
)[0] = env
->regs
[15];
163 (*regs
)[1] = env
->regs
[14];
164 (*regs
)[2] = env
->regs
[13];
165 (*regs
)[3] = env
->regs
[12];
166 (*regs
)[4] = env
->regs
[R_EBP
];
167 (*regs
)[5] = env
->regs
[R_EBX
];
168 (*regs
)[6] = env
->regs
[11];
169 (*regs
)[7] = env
->regs
[10];
170 (*regs
)[8] = env
->regs
[9];
171 (*regs
)[9] = env
->regs
[8];
172 (*regs
)[10] = env
->regs
[R_EAX
];
173 (*regs
)[11] = env
->regs
[R_ECX
];
174 (*regs
)[12] = env
->regs
[R_EDX
];
175 (*regs
)[13] = env
->regs
[R_ESI
];
176 (*regs
)[14] = env
->regs
[R_EDI
];
177 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
178 (*regs
)[16] = env
->eip
;
179 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
180 (*regs
)[18] = env
->eflags
;
181 (*regs
)[19] = env
->regs
[R_ESP
];
182 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
183 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
184 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
185 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
186 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
187 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
188 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
193 #define ELF_START_MMAP 0x80000000
196 * This is used to ensure we don't load something for the wrong architecture.
198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
201 * These are used to set parameters in the core dumps.
203 #define ELF_CLASS ELFCLASS32
204 #define ELF_ARCH EM_386
206 static inline void init_thread(struct target_pt_regs
*regs
,
207 struct image_info
*infop
)
209 regs
->esp
= infop
->start_stack
;
210 regs
->eip
= infop
->entry
;
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
218 A value of 0 tells we have no such handler. */
223 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
230 * See linux kernel: arch/x86/include/asm/elf.h
232 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
234 (*regs
)[0] = env
->regs
[R_EBX
];
235 (*regs
)[1] = env
->regs
[R_ECX
];
236 (*regs
)[2] = env
->regs
[R_EDX
];
237 (*regs
)[3] = env
->regs
[R_ESI
];
238 (*regs
)[4] = env
->regs
[R_EDI
];
239 (*regs
)[5] = env
->regs
[R_EBP
];
240 (*regs
)[6] = env
->regs
[R_EAX
];
241 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
242 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
243 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
244 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
245 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
246 (*regs
)[12] = env
->eip
;
247 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
248 (*regs
)[14] = env
->eflags
;
249 (*regs
)[15] = env
->regs
[R_ESP
];
250 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
254 #define USE_ELF_CORE_DUMP
255 #define ELF_EXEC_PAGESIZE 4096
261 #define ELF_START_MMAP 0x80000000
263 #define elf_check_arch(x) ( (x) == EM_ARM )
265 #define ELF_CLASS ELFCLASS32
266 #define ELF_ARCH EM_ARM
268 static inline void init_thread(struct target_pt_regs
*regs
,
269 struct image_info
*infop
)
271 abi_long stack
= infop
->start_stack
;
272 memset(regs
, 0, sizeof(*regs
));
273 regs
->ARM_cpsr
= 0x10;
274 if (infop
->entry
& 1)
275 regs
->ARM_cpsr
|= CPSR_T
;
276 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
277 regs
->ARM_sp
= infop
->start_stack
;
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
280 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
281 /* XXX: it seems that r0 is zeroed after ! */
283 /* For uClinux PIC binaries. */
284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
285 regs
->ARM_r10
= infop
->start_data
;
289 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
291 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
293 (*regs
)[0] = tswapl(env
->regs
[0]);
294 (*regs
)[1] = tswapl(env
->regs
[1]);
295 (*regs
)[2] = tswapl(env
->regs
[2]);
296 (*regs
)[3] = tswapl(env
->regs
[3]);
297 (*regs
)[4] = tswapl(env
->regs
[4]);
298 (*regs
)[5] = tswapl(env
->regs
[5]);
299 (*regs
)[6] = tswapl(env
->regs
[6]);
300 (*regs
)[7] = tswapl(env
->regs
[7]);
301 (*regs
)[8] = tswapl(env
->regs
[8]);
302 (*regs
)[9] = tswapl(env
->regs
[9]);
303 (*regs
)[10] = tswapl(env
->regs
[10]);
304 (*regs
)[11] = tswapl(env
->regs
[11]);
305 (*regs
)[12] = tswapl(env
->regs
[12]);
306 (*regs
)[13] = tswapl(env
->regs
[13]);
307 (*regs
)[14] = tswapl(env
->regs
[14]);
308 (*regs
)[15] = tswapl(env
->regs
[15]);
310 (*regs
)[16] = tswapl(cpsr_read((CPUARMState
*)env
));
311 (*regs
)[17] = tswapl(env
->regs
[0]); /* XXX */
314 #define USE_ELF_CORE_DUMP
315 #define ELF_EXEC_PAGESIZE 4096
319 ARM_HWCAP_ARM_SWP
= 1 << 0,
320 ARM_HWCAP_ARM_HALF
= 1 << 1,
321 ARM_HWCAP_ARM_THUMB
= 1 << 2,
322 ARM_HWCAP_ARM_26BIT
= 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
324 ARM_HWCAP_ARM_FPA
= 1 << 5,
325 ARM_HWCAP_ARM_VFP
= 1 << 6,
326 ARM_HWCAP_ARM_EDSP
= 1 << 7,
327 ARM_HWCAP_ARM_JAVA
= 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE
= 1 << 10,
330 ARM_HWCAP_ARM_NEON
= 1 << 11,
331 ARM_HWCAP_ARM_VFPv3
= 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16
= 1 << 13,
335 #define TARGET_HAS_GUEST_VALIDATE_BASE
336 /* We want the opportunity to check the suggested base */
337 bool guest_validate_base(unsigned long guest_base
)
339 unsigned long real_start
, test_page_addr
;
341 /* We need to check that we can force a fault on access to the
342 * commpage at 0xffff0fxx
344 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
345 /* Note it needs to be writeable to let us initialise it */
346 real_start
= (unsigned long)
347 mmap((void *)test_page_addr
, qemu_host_page_size
,
348 PROT_READ
| PROT_WRITE
,
349 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
351 /* If we can't map it then try another address */
352 if (real_start
== -1ul) {
356 if (real_start
!= test_page_addr
) {
357 /* OS didn't put the page where we asked - unmap and reject */
358 munmap((void *)real_start
, qemu_host_page_size
);
362 /* Leave the page mapped
363 * Populate it (mmap should have left it all 0'd)
366 /* Kernel helper versions */
367 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
369 /* Now it's populated make it RO */
370 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
371 perror("Protecting guest commpage");
375 return 1; /* All good */
379 #define ELF_HWCAP get_elf_hwcap()
381 static uint32_t get_elf_hwcap(void)
383 CPUARMState
*e
= thread_env
;
386 hwcaps
|= ARM_HWCAP_ARM_SWP
;
387 hwcaps
|= ARM_HWCAP_ARM_HALF
;
388 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
389 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
390 hwcaps
|= ARM_HWCAP_ARM_FPA
;
392 /* probe for the extra features */
393 #define GET_FEATURE(feat, hwcap) \
394 do {if (arm_feature(e, feat)) { hwcaps |= hwcap; } } while (0)
395 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
396 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
397 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
398 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
399 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
400 GET_FEATURE(ARM_FEATURE_VFP_FP16
, ARM_HWCAP_ARM_VFPv3D16
);
408 #ifdef TARGET_UNICORE32
410 #define ELF_START_MMAP 0x80000000
412 #define elf_check_arch(x) ((x) == EM_UNICORE32)
414 #define ELF_CLASS ELFCLASS32
415 #define ELF_DATA ELFDATA2LSB
416 #define ELF_ARCH EM_UNICORE32
418 static inline void init_thread(struct target_pt_regs
*regs
,
419 struct image_info
*infop
)
421 abi_long stack
= infop
->start_stack
;
422 memset(regs
, 0, sizeof(*regs
));
423 regs
->UC32_REG_asr
= 0x10;
424 regs
->UC32_REG_pc
= infop
->entry
& 0xfffffffe;
425 regs
->UC32_REG_sp
= infop
->start_stack
;
426 /* FIXME - what to for failure of get_user()? */
427 get_user_ual(regs
->UC32_REG_02
, stack
+ 8); /* envp */
428 get_user_ual(regs
->UC32_REG_01
, stack
+ 4); /* envp */
429 /* XXX: it seems that r0 is zeroed after ! */
430 regs
->UC32_REG_00
= 0;
434 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
436 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUUniCore32State
*env
)
438 (*regs
)[0] = env
->regs
[0];
439 (*regs
)[1] = env
->regs
[1];
440 (*regs
)[2] = env
->regs
[2];
441 (*regs
)[3] = env
->regs
[3];
442 (*regs
)[4] = env
->regs
[4];
443 (*regs
)[5] = env
->regs
[5];
444 (*regs
)[6] = env
->regs
[6];
445 (*regs
)[7] = env
->regs
[7];
446 (*regs
)[8] = env
->regs
[8];
447 (*regs
)[9] = env
->regs
[9];
448 (*regs
)[10] = env
->regs
[10];
449 (*regs
)[11] = env
->regs
[11];
450 (*regs
)[12] = env
->regs
[12];
451 (*regs
)[13] = env
->regs
[13];
452 (*regs
)[14] = env
->regs
[14];
453 (*regs
)[15] = env
->regs
[15];
454 (*regs
)[16] = env
->regs
[16];
455 (*regs
)[17] = env
->regs
[17];
456 (*regs
)[18] = env
->regs
[18];
457 (*regs
)[19] = env
->regs
[19];
458 (*regs
)[20] = env
->regs
[20];
459 (*regs
)[21] = env
->regs
[21];
460 (*regs
)[22] = env
->regs
[22];
461 (*regs
)[23] = env
->regs
[23];
462 (*regs
)[24] = env
->regs
[24];
463 (*regs
)[25] = env
->regs
[25];
464 (*regs
)[26] = env
->regs
[26];
465 (*regs
)[27] = env
->regs
[27];
466 (*regs
)[28] = env
->regs
[28];
467 (*regs
)[29] = env
->regs
[29];
468 (*regs
)[30] = env
->regs
[30];
469 (*regs
)[31] = env
->regs
[31];
471 (*regs
)[32] = cpu_asr_read((CPUUniCore32State
*)env
);
472 (*regs
)[33] = env
->regs
[0]; /* XXX */
475 #define USE_ELF_CORE_DUMP
476 #define ELF_EXEC_PAGESIZE 4096
478 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
483 #ifdef TARGET_SPARC64
485 #define ELF_START_MMAP 0x80000000
486 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
487 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
489 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
491 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
494 #define ELF_CLASS ELFCLASS64
495 #define ELF_ARCH EM_SPARCV9
497 #define STACK_BIAS 2047
499 static inline void init_thread(struct target_pt_regs
*regs
,
500 struct image_info
*infop
)
505 regs
->pc
= infop
->entry
;
506 regs
->npc
= regs
->pc
+ 4;
509 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
511 if (personality(infop
->personality
) == PER_LINUX32
)
512 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
514 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
519 #define ELF_START_MMAP 0x80000000
520 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
521 | HWCAP_SPARC_MULDIV)
522 #define elf_check_arch(x) ( (x) == EM_SPARC )
524 #define ELF_CLASS ELFCLASS32
525 #define ELF_ARCH EM_SPARC
527 static inline void init_thread(struct target_pt_regs
*regs
,
528 struct image_info
*infop
)
531 regs
->pc
= infop
->entry
;
532 regs
->npc
= regs
->pc
+ 4;
534 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
542 #define ELF_START_MMAP 0x80000000
544 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
546 #define elf_check_arch(x) ( (x) == EM_PPC64 )
548 #define ELF_CLASS ELFCLASS64
552 #define elf_check_arch(x) ( (x) == EM_PPC )
554 #define ELF_CLASS ELFCLASS32
558 #define ELF_ARCH EM_PPC
560 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
561 See arch/powerpc/include/asm/cputable.h. */
563 QEMU_PPC_FEATURE_32
= 0x80000000,
564 QEMU_PPC_FEATURE_64
= 0x40000000,
565 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
566 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
567 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
568 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
569 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
570 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
571 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
572 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
573 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
574 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
575 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
576 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
577 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
578 QEMU_PPC_FEATURE_CELL
= 0x00010000,
579 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
580 QEMU_PPC_FEATURE_SMT
= 0x00004000,
581 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
582 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
583 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
584 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
585 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
586 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
587 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
588 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
590 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
591 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
594 #define ELF_HWCAP get_elf_hwcap()
596 static uint32_t get_elf_hwcap(void)
598 CPUPPCState
*e
= thread_env
;
599 uint32_t features
= 0;
601 /* We don't have to be terribly complete here; the high points are
602 Altivec/FP/SPE support. Anything else is just a bonus. */
603 #define GET_FEATURE(flag, feature) \
604 do {if (e->insns_flags & flag) features |= feature; } while(0)
605 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
606 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
607 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
608 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
609 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
610 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
611 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
612 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
619 * The requirements here are:
620 * - keep the final alignment of sp (sp & 0xf)
621 * - make sure the 32-bit value at the first 16 byte aligned position of
622 * AUXV is greater than 16 for glibc compatibility.
623 * AT_IGNOREPPC is used for that.
624 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
625 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
627 #define DLINFO_ARCH_ITEMS 5
628 #define ARCH_DLINFO \
630 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
631 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
632 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
634 * Now handle glibc compatibility. \
636 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
637 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
640 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
642 _regs
->gpr
[1] = infop
->start_stack
;
643 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
644 _regs
->gpr
[2] = ldq_raw(infop
->entry
+ 8) + infop
->load_bias
;
645 infop
->entry
= ldq_raw(infop
->entry
) + infop
->load_bias
;
647 _regs
->nip
= infop
->entry
;
650 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
652 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
654 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
657 target_ulong ccr
= 0;
659 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
660 (*regs
)[i
] = tswapl(env
->gpr
[i
]);
663 (*regs
)[32] = tswapl(env
->nip
);
664 (*regs
)[33] = tswapl(env
->msr
);
665 (*regs
)[35] = tswapl(env
->ctr
);
666 (*regs
)[36] = tswapl(env
->lr
);
667 (*regs
)[37] = tswapl(env
->xer
);
669 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
670 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
672 (*regs
)[38] = tswapl(ccr
);
675 #define USE_ELF_CORE_DUMP
676 #define ELF_EXEC_PAGESIZE 4096
682 #define ELF_START_MMAP 0x80000000
684 #define elf_check_arch(x) ( (x) == EM_MIPS )
687 #define ELF_CLASS ELFCLASS64
689 #define ELF_CLASS ELFCLASS32
691 #define ELF_ARCH EM_MIPS
693 static inline void init_thread(struct target_pt_regs
*regs
,
694 struct image_info
*infop
)
696 regs
->cp0_status
= 2 << CP0St_KSU
;
697 regs
->cp0_epc
= infop
->entry
;
698 regs
->regs
[29] = infop
->start_stack
;
701 /* See linux kernel: arch/mips/include/asm/elf.h. */
703 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
705 /* See linux kernel: arch/mips/include/asm/reg.h. */
712 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
713 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
714 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
715 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
716 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
717 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
718 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
719 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
722 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
723 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
727 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
730 (*regs
)[TARGET_EF_R0
] = 0;
732 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
733 (*regs
)[TARGET_EF_R0
+ i
] = tswapl(env
->active_tc
.gpr
[i
]);
736 (*regs
)[TARGET_EF_R26
] = 0;
737 (*regs
)[TARGET_EF_R27
] = 0;
738 (*regs
)[TARGET_EF_LO
] = tswapl(env
->active_tc
.LO
[0]);
739 (*regs
)[TARGET_EF_HI
] = tswapl(env
->active_tc
.HI
[0]);
740 (*regs
)[TARGET_EF_CP0_EPC
] = tswapl(env
->active_tc
.PC
);
741 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapl(env
->CP0_BadVAddr
);
742 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapl(env
->CP0_Status
);
743 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapl(env
->CP0_Cause
);
746 #define USE_ELF_CORE_DUMP
747 #define ELF_EXEC_PAGESIZE 4096
749 #endif /* TARGET_MIPS */
751 #ifdef TARGET_MICROBLAZE
753 #define ELF_START_MMAP 0x80000000
755 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
757 #define ELF_CLASS ELFCLASS32
758 #define ELF_ARCH EM_MICROBLAZE
760 static inline void init_thread(struct target_pt_regs
*regs
,
761 struct image_info
*infop
)
763 regs
->pc
= infop
->entry
;
764 regs
->r1
= infop
->start_stack
;
768 #define ELF_EXEC_PAGESIZE 4096
770 #define USE_ELF_CORE_DUMP
772 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
774 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
775 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
779 for (i
= 0; i
< 32; i
++) {
780 (*regs
)[pos
++] = tswapl(env
->regs
[i
]);
783 for (i
= 0; i
< 6; i
++) {
784 (*regs
)[pos
++] = tswapl(env
->sregs
[i
]);
788 #endif /* TARGET_MICROBLAZE */
790 #ifdef TARGET_OPENRISC
792 #define ELF_START_MMAP 0x08000000
794 #define elf_check_arch(x) ((x) == EM_OPENRISC)
796 #define ELF_ARCH EM_OPENRISC
797 #define ELF_CLASS ELFCLASS32
798 #define ELF_DATA ELFDATA2MSB
800 static inline void init_thread(struct target_pt_regs
*regs
,
801 struct image_info
*infop
)
803 regs
->pc
= infop
->entry
;
804 regs
->gpr
[1] = infop
->start_stack
;
807 #define USE_ELF_CORE_DUMP
808 #define ELF_EXEC_PAGESIZE 8192
810 /* See linux kernel arch/openrisc/include/asm/elf.h. */
811 #define ELF_NREG 34 /* gprs and pc, sr */
812 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
814 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
815 const CPUOpenRISCState
*env
)
819 for (i
= 0; i
< 32; i
++) {
820 (*regs
)[i
] = tswapl(env
->gpr
[i
]);
823 (*regs
)[32] = tswapl(env
->pc
);
824 (*regs
)[33] = tswapl(env
->sr
);
827 #define ELF_PLATFORM NULL
829 #endif /* TARGET_OPENRISC */
833 #define ELF_START_MMAP 0x80000000
835 #define elf_check_arch(x) ( (x) == EM_SH )
837 #define ELF_CLASS ELFCLASS32
838 #define ELF_ARCH EM_SH
840 static inline void init_thread(struct target_pt_regs
*regs
,
841 struct image_info
*infop
)
843 /* Check other registers XXXXX */
844 regs
->pc
= infop
->entry
;
845 regs
->regs
[15] = infop
->start_stack
;
848 /* See linux kernel: arch/sh/include/asm/elf.h. */
850 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
852 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
858 TARGET_REG_MACH
= 20,
859 TARGET_REG_MACL
= 21,
860 TARGET_REG_SYSCALL
= 22
863 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
864 const CPUSH4State
*env
)
868 for (i
= 0; i
< 16; i
++) {
869 (*regs
[i
]) = tswapl(env
->gregs
[i
]);
872 (*regs
)[TARGET_REG_PC
] = tswapl(env
->pc
);
873 (*regs
)[TARGET_REG_PR
] = tswapl(env
->pr
);
874 (*regs
)[TARGET_REG_SR
] = tswapl(env
->sr
);
875 (*regs
)[TARGET_REG_GBR
] = tswapl(env
->gbr
);
876 (*regs
)[TARGET_REG_MACH
] = tswapl(env
->mach
);
877 (*regs
)[TARGET_REG_MACL
] = tswapl(env
->macl
);
878 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
881 #define USE_ELF_CORE_DUMP
882 #define ELF_EXEC_PAGESIZE 4096
888 #define ELF_START_MMAP 0x80000000
890 #define elf_check_arch(x) ( (x) == EM_CRIS )
892 #define ELF_CLASS ELFCLASS32
893 #define ELF_ARCH EM_CRIS
895 static inline void init_thread(struct target_pt_regs
*regs
,
896 struct image_info
*infop
)
898 regs
->erp
= infop
->entry
;
901 #define ELF_EXEC_PAGESIZE 8192
907 #define ELF_START_MMAP 0x80000000
909 #define elf_check_arch(x) ( (x) == EM_68K )
911 #define ELF_CLASS ELFCLASS32
912 #define ELF_ARCH EM_68K
914 /* ??? Does this need to do anything?
915 #define ELF_PLAT_INIT(_r) */
917 static inline void init_thread(struct target_pt_regs
*regs
,
918 struct image_info
*infop
)
920 regs
->usp
= infop
->start_stack
;
922 regs
->pc
= infop
->entry
;
925 /* See linux kernel: arch/m68k/include/asm/elf.h. */
927 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
929 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
931 (*regs
)[0] = tswapl(env
->dregs
[1]);
932 (*regs
)[1] = tswapl(env
->dregs
[2]);
933 (*regs
)[2] = tswapl(env
->dregs
[3]);
934 (*regs
)[3] = tswapl(env
->dregs
[4]);
935 (*regs
)[4] = tswapl(env
->dregs
[5]);
936 (*regs
)[5] = tswapl(env
->dregs
[6]);
937 (*regs
)[6] = tswapl(env
->dregs
[7]);
938 (*regs
)[7] = tswapl(env
->aregs
[0]);
939 (*regs
)[8] = tswapl(env
->aregs
[1]);
940 (*regs
)[9] = tswapl(env
->aregs
[2]);
941 (*regs
)[10] = tswapl(env
->aregs
[3]);
942 (*regs
)[11] = tswapl(env
->aregs
[4]);
943 (*regs
)[12] = tswapl(env
->aregs
[5]);
944 (*regs
)[13] = tswapl(env
->aregs
[6]);
945 (*regs
)[14] = tswapl(env
->dregs
[0]);
946 (*regs
)[15] = tswapl(env
->aregs
[7]);
947 (*regs
)[16] = tswapl(env
->dregs
[0]); /* FIXME: orig_d0 */
948 (*regs
)[17] = tswapl(env
->sr
);
949 (*regs
)[18] = tswapl(env
->pc
);
950 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
953 #define USE_ELF_CORE_DUMP
954 #define ELF_EXEC_PAGESIZE 8192
960 #define ELF_START_MMAP (0x30000000000ULL)
962 #define elf_check_arch(x) ( (x) == ELF_ARCH )
964 #define ELF_CLASS ELFCLASS64
965 #define ELF_ARCH EM_ALPHA
967 static inline void init_thread(struct target_pt_regs
*regs
,
968 struct image_info
*infop
)
970 regs
->pc
= infop
->entry
;
972 regs
->usp
= infop
->start_stack
;
975 #define ELF_EXEC_PAGESIZE 8192
977 #endif /* TARGET_ALPHA */
981 #define ELF_START_MMAP (0x20000000000ULL)
983 #define elf_check_arch(x) ( (x) == ELF_ARCH )
985 #define ELF_CLASS ELFCLASS64
986 #define ELF_DATA ELFDATA2MSB
987 #define ELF_ARCH EM_S390
989 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
991 regs
->psw
.addr
= infop
->entry
;
992 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
993 regs
->gprs
[15] = infop
->start_stack
;
996 #endif /* TARGET_S390X */
999 #define ELF_PLATFORM (NULL)
1008 #define ELF_CLASS ELFCLASS32
1010 #define bswaptls(ptr) bswap32s(ptr)
1017 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1018 unsigned int a_text
; /* length of text, in bytes */
1019 unsigned int a_data
; /* length of data, in bytes */
1020 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1021 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1022 unsigned int a_entry
; /* start address */
1023 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1024 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1028 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1034 /* Necessary parameters */
1035 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1036 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1037 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1039 #define DLINFO_ITEMS 13
1041 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1043 memcpy(to
, from
, n
);
1047 static void bswap_ehdr(struct elfhdr
*ehdr
)
1049 bswap16s(&ehdr
->e_type
); /* Object file type */
1050 bswap16s(&ehdr
->e_machine
); /* Architecture */
1051 bswap32s(&ehdr
->e_version
); /* Object file version */
1052 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1053 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1054 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1055 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1056 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1057 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1058 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1059 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1060 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1061 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1064 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1067 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1068 bswap32s(&phdr
->p_type
); /* Segment type */
1069 bswap32s(&phdr
->p_flags
); /* Segment flags */
1070 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1071 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1072 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1073 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1074 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1075 bswaptls(&phdr
->p_align
); /* Segment alignment */
1079 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1082 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1083 bswap32s(&shdr
->sh_name
);
1084 bswap32s(&shdr
->sh_type
);
1085 bswaptls(&shdr
->sh_flags
);
1086 bswaptls(&shdr
->sh_addr
);
1087 bswaptls(&shdr
->sh_offset
);
1088 bswaptls(&shdr
->sh_size
);
1089 bswap32s(&shdr
->sh_link
);
1090 bswap32s(&shdr
->sh_info
);
1091 bswaptls(&shdr
->sh_addralign
);
1092 bswaptls(&shdr
->sh_entsize
);
1096 static void bswap_sym(struct elf_sym
*sym
)
1098 bswap32s(&sym
->st_name
);
1099 bswaptls(&sym
->st_value
);
1100 bswaptls(&sym
->st_size
);
1101 bswap16s(&sym
->st_shndx
);
1104 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1105 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1106 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1107 static inline void bswap_sym(struct elf_sym
*sym
) { }
1110 #ifdef USE_ELF_CORE_DUMP
1111 static int elf_core_dump(int, const CPUArchState
*);
1112 #endif /* USE_ELF_CORE_DUMP */
1113 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1115 /* Verify the portions of EHDR within E_IDENT for the target.
1116 This can be performed before bswapping the entire header. */
1117 static bool elf_check_ident(struct elfhdr
*ehdr
)
1119 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1120 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1121 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1122 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1123 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1124 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1125 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1128 /* Verify the portions of EHDR outside of E_IDENT for the target.
1129 This has to wait until after bswapping the header. */
1130 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1132 return (elf_check_arch(ehdr
->e_machine
)
1133 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1134 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1135 && ehdr
->e_shentsize
== sizeof(struct elf_shdr
)
1136 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1140 * 'copy_elf_strings()' copies argument/envelope strings from user
1141 * memory to free pages in kernel mem. These are in a format ready
1142 * to be put directly into the top of new user memory.
1145 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
1148 char *tmp
, *tmp1
, *pag
= NULL
;
1149 int len
, offset
= 0;
1152 return 0; /* bullet-proofing */
1154 while (argc
-- > 0) {
1157 fprintf(stderr
, "VFS: argc is wrong");
1163 if (p
< len
) { /* this shouldn't happen - 128kB */
1169 offset
= p
% TARGET_PAGE_SIZE
;
1170 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
1172 pag
= g_try_malloc0(TARGET_PAGE_SIZE
);
1173 page
[p
/TARGET_PAGE_SIZE
] = pag
;
1178 if (len
== 0 || offset
== 0) {
1179 *(pag
+ offset
) = *tmp
;
1182 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1183 tmp
-= bytes_to_copy
;
1185 offset
-= bytes_to_copy
;
1186 len
-= bytes_to_copy
;
1187 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
1194 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
1195 struct image_info
*info
)
1197 abi_ulong stack_base
, size
, error
, guard
;
1200 /* Create enough stack to hold everything. If we don't use
1201 it for args, we'll use it for something else. */
1202 size
= guest_stack_size
;
1203 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
) {
1204 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1206 guard
= TARGET_PAGE_SIZE
;
1207 if (guard
< qemu_real_host_page_size
) {
1208 guard
= qemu_real_host_page_size
;
1211 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1212 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1214 perror("mmap stack");
1218 /* We reserve one extra page at the top of the stack as guard. */
1219 target_mprotect(error
, guard
, PROT_NONE
);
1221 info
->stack_limit
= error
+ guard
;
1222 stack_base
= info
->stack_limit
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1225 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1226 if (bprm
->page
[i
]) {
1228 /* FIXME - check return value of memcpy_to_target() for failure */
1229 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
1230 g_free(bprm
->page
[i
]);
1232 stack_base
+= TARGET_PAGE_SIZE
;
1237 /* Map and zero the bss. We need to explicitly zero any fractional pages
1238 after the data section (i.e. bss). */
1239 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1241 uintptr_t host_start
, host_map_start
, host_end
;
1243 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1245 /* ??? There is confusion between qemu_real_host_page_size and
1246 qemu_host_page_size here and elsewhere in target_mmap, which
1247 may lead to the end of the data section mapping from the file
1248 not being mapped. At least there was an explicit test and
1249 comment for that here, suggesting that "the file size must
1250 be known". The comment probably pre-dates the introduction
1251 of the fstat system call in target_mmap which does in fact
1252 find out the size. What isn't clear is if the workaround
1253 here is still actually needed. For now, continue with it,
1254 but merge it with the "normal" mmap that would allocate the bss. */
1256 host_start
= (uintptr_t) g2h(elf_bss
);
1257 host_end
= (uintptr_t) g2h(last_bss
);
1258 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1259 host_map_start
&= -qemu_real_host_page_size
;
1261 if (host_map_start
< host_end
) {
1262 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1263 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1264 if (p
== MAP_FAILED
) {
1265 perror("cannot mmap brk");
1269 /* Since we didn't use target_mmap, make sure to record
1270 the validity of the pages with qemu. */
1271 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
|PAGE_VALID
);
1274 if (host_start
< host_map_start
) {
1275 memset((void *)host_start
, 0, host_map_start
- host_start
);
1279 #ifdef CONFIG_USE_FDPIC
1280 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1283 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1285 /* elf32_fdpic_loadseg */
1289 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1290 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1291 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1294 /* elf32_fdpic_loadmap */
1296 put_user_u16(0, sp
+0); /* version */
1297 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1299 info
->personality
= PER_LINUX_FDPIC
;
1300 info
->loadmap_addr
= sp
;
1306 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1307 struct elfhdr
*exec
,
1308 struct image_info
*info
,
1309 struct image_info
*interp_info
)
1315 abi_ulong u_rand_bytes
;
1316 uint8_t k_rand_bytes
[16];
1317 abi_ulong u_platform
;
1318 const char *k_platform
;
1319 const int n
= sizeof(elf_addr_t
);
1323 #ifdef CONFIG_USE_FDPIC
1324 /* Needs to be before we load the env/argc/... */
1325 if (elf_is_fdpic(exec
)) {
1326 /* Need 4 byte alignment for these structs */
1328 sp
= loader_build_fdpic_loadmap(info
, sp
);
1329 info
->other_info
= interp_info
;
1331 interp_info
->other_info
= info
;
1332 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1338 k_platform
= ELF_PLATFORM
;
1340 size_t len
= strlen(k_platform
) + 1;
1341 sp
-= (len
+ n
- 1) & ~(n
- 1);
1343 /* FIXME - check return value of memcpy_to_target() for failure */
1344 memcpy_to_target(sp
, k_platform
, len
);
1348 * Generate 16 random bytes for userspace PRNG seeding (not
1349 * cryptically secure but it's not the aim of QEMU).
1351 srand((unsigned int) time(NULL
));
1352 for (i
= 0; i
< 16; i
++) {
1353 k_rand_bytes
[i
] = rand();
1357 /* FIXME - check return value of memcpy_to_target() for failure */
1358 memcpy_to_target(sp
, k_rand_bytes
, 16);
1361 * Force 16 byte _final_ alignment here for generality.
1363 sp
= sp
&~ (abi_ulong
)15;
1364 size
= (DLINFO_ITEMS
+ 1) * 2;
1367 #ifdef DLINFO_ARCH_ITEMS
1368 size
+= DLINFO_ARCH_ITEMS
* 2;
1370 size
+= envc
+ argc
+ 2;
1371 size
+= 1; /* argc itself */
1374 sp
-= 16 - (size
& 15);
1376 /* This is correct because Linux defines
1377 * elf_addr_t as Elf32_Off / Elf64_Off
1379 #define NEW_AUX_ENT(id, val) do { \
1380 sp -= n; put_user_ual(val, sp); \
1381 sp -= n; put_user_ual(id, sp); \
1385 NEW_AUX_ENT (AT_NULL
, 0);
1387 /* There must be exactly DLINFO_ITEMS entries here. */
1388 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1389 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1390 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1391 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1392 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1393 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1394 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1395 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1396 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1397 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1398 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1399 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1400 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1401 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1404 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1407 * ARCH_DLINFO must come last so platform specific code can enforce
1408 * special alignment requirements on the AUXV if necessary (eg. PPC).
1414 info
->saved_auxv
= sp
;
1415 info
->auxv_len
= sp_auxv
- sp
;
1417 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1421 #ifndef TARGET_HAS_GUEST_VALIDATE_BASE
1422 /* If the guest doesn't have a validation function just agree */
1423 bool guest_validate_base(unsigned long guest_base
)
1429 static void probe_guest_base(const char *image_name
,
1430 abi_ulong loaddr
, abi_ulong hiaddr
)
1432 /* Probe for a suitable guest base address, if the user has not set
1433 * it explicitly, and set guest_base appropriately.
1434 * In case of error we will print a suitable message and exit.
1436 #if defined(CONFIG_USE_GUEST_BASE)
1438 if (!have_guest_base
&& !reserved_va
) {
1439 unsigned long host_start
, real_start
, host_size
;
1441 /* Round addresses to page boundaries. */
1442 loaddr
&= qemu_host_page_mask
;
1443 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1445 if (loaddr
< mmap_min_addr
) {
1446 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1448 host_start
= loaddr
;
1449 if (host_start
!= loaddr
) {
1450 errmsg
= "Address overflow loading ELF binary";
1454 host_size
= hiaddr
- loaddr
;
1456 /* Do not use mmap_find_vma here because that is limited to the
1457 guest address space. We are going to make the
1458 guest address space fit whatever we're given. */
1459 real_start
= (unsigned long)
1460 mmap((void *)host_start
, host_size
, PROT_NONE
,
1461 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
, -1, 0);
1462 if (real_start
== (unsigned long)-1) {
1465 guest_base
= real_start
- loaddr
;
1466 if ((real_start
== host_start
) &&
1467 guest_validate_base(guest_base
)) {
1470 /* That address didn't work. Unmap and try a different one.
1471 The address the host picked because is typically right at
1472 the top of the host address space and leaves the guest with
1473 no usable address space. Resort to a linear search. We
1474 already compensated for mmap_min_addr, so this should not
1475 happen often. Probably means we got unlucky and host
1476 address space randomization put a shared library somewhere
1478 munmap((void *)real_start
, host_size
);
1479 host_start
+= qemu_host_page_size
;
1480 if (host_start
== loaddr
) {
1481 /* Theoretically possible if host doesn't have any suitably
1482 aligned areas. Normally the first mmap will fail. */
1483 errmsg
= "Unable to find space for application";
1487 qemu_log("Relocating guest address space from 0x"
1488 TARGET_ABI_FMT_lx
" to 0x%lx\n",
1489 loaddr
, real_start
);
1494 errmsg
= strerror(errno
);
1496 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1502 /* Load an ELF image into the address space.
1504 IMAGE_NAME is the filename of the image, to use in error messages.
1505 IMAGE_FD is the open file descriptor for the image.
1507 BPRM_BUF is a copy of the beginning of the file; this of course
1508 contains the elf file header at offset 0. It is assumed that this
1509 buffer is sufficiently aligned to present no problems to the host
1510 in accessing data at aligned offsets within the buffer.
1512 On return: INFO values will be filled in, as necessary or available. */
1514 static void load_elf_image(const char *image_name
, int image_fd
,
1515 struct image_info
*info
, char **pinterp_name
,
1516 char bprm_buf
[BPRM_BUF_SIZE
])
1518 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1519 struct elf_phdr
*phdr
;
1520 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1524 /* First of all, some simple consistency checks */
1525 errmsg
= "Invalid ELF image for this architecture";
1526 if (!elf_check_ident(ehdr
)) {
1530 if (!elf_check_ehdr(ehdr
)) {
1534 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1535 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1536 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1538 phdr
= (struct elf_phdr
*) alloca(i
);
1539 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1544 bswap_phdr(phdr
, ehdr
->e_phnum
);
1546 #ifdef CONFIG_USE_FDPIC
1548 info
->pt_dynamic_addr
= 0;
1551 /* Find the maximum size of the image and allocate an appropriate
1552 amount of memory to handle that. */
1553 loaddr
= -1, hiaddr
= 0;
1554 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1555 if (phdr
[i
].p_type
== PT_LOAD
) {
1556 abi_ulong a
= phdr
[i
].p_vaddr
;
1560 a
+= phdr
[i
].p_memsz
;
1564 #ifdef CONFIG_USE_FDPIC
1571 if (ehdr
->e_type
== ET_DYN
) {
1572 /* The image indicates that it can be loaded anywhere. Find a
1573 location that can hold the memory space required. If the
1574 image is pre-linked, LOADDR will be non-zero. Since we do
1575 not supply MAP_FIXED here we'll use that address if and
1576 only if it remains available. */
1577 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1578 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1580 if (load_addr
== -1) {
1583 } else if (pinterp_name
!= NULL
) {
1584 /* This is the main executable. Make sure that the low
1585 address does not conflict with MMAP_MIN_ADDR or the
1586 QEMU application itself. */
1587 probe_guest_base(image_name
, loaddr
, hiaddr
);
1589 load_bias
= load_addr
- loaddr
;
1591 #ifdef CONFIG_USE_FDPIC
1593 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
1594 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
1596 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1597 switch (phdr
[i
].p_type
) {
1599 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
1602 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
1603 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
1604 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
1612 info
->load_bias
= load_bias
;
1613 info
->load_addr
= load_addr
;
1614 info
->entry
= ehdr
->e_entry
+ load_bias
;
1615 info
->start_code
= -1;
1617 info
->start_data
= -1;
1620 info
->elf_flags
= ehdr
->e_flags
;
1622 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1623 struct elf_phdr
*eppnt
= phdr
+ i
;
1624 if (eppnt
->p_type
== PT_LOAD
) {
1625 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1628 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1629 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1630 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1632 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1633 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1634 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1636 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1637 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1638 image_fd
, eppnt
->p_offset
- vaddr_po
);
1643 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1644 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1646 /* If the load segment requests extra zeros (e.g. bss), map it. */
1647 if (vaddr_ef
< vaddr_em
) {
1648 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1651 /* Find the full program boundaries. */
1652 if (elf_prot
& PROT_EXEC
) {
1653 if (vaddr
< info
->start_code
) {
1654 info
->start_code
= vaddr
;
1656 if (vaddr_ef
> info
->end_code
) {
1657 info
->end_code
= vaddr_ef
;
1660 if (elf_prot
& PROT_WRITE
) {
1661 if (vaddr
< info
->start_data
) {
1662 info
->start_data
= vaddr
;
1664 if (vaddr_ef
> info
->end_data
) {
1665 info
->end_data
= vaddr_ef
;
1667 if (vaddr_em
> info
->brk
) {
1668 info
->brk
= vaddr_em
;
1671 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1674 if (*pinterp_name
) {
1675 errmsg
= "Multiple PT_INTERP entries";
1678 interp_name
= malloc(eppnt
->p_filesz
);
1683 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
1684 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
1687 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
1689 if (retval
!= eppnt
->p_filesz
) {
1693 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
1694 errmsg
= "Invalid PT_INTERP entry";
1697 *pinterp_name
= interp_name
;
1701 if (info
->end_data
== 0) {
1702 info
->start_data
= info
->end_code
;
1703 info
->end_data
= info
->end_code
;
1704 info
->brk
= info
->end_code
;
1707 if (qemu_log_enabled()) {
1708 load_symbols(ehdr
, image_fd
, load_bias
);
1716 errmsg
= "Incomplete read of file header";
1720 errmsg
= strerror(errno
);
1722 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1726 static void load_elf_interp(const char *filename
, struct image_info
*info
,
1727 char bprm_buf
[BPRM_BUF_SIZE
])
1731 fd
= open(path(filename
), O_RDONLY
);
1736 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
1740 if (retval
< BPRM_BUF_SIZE
) {
1741 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
1744 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
1748 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
1752 static int symfind(const void *s0
, const void *s1
)
1754 target_ulong addr
= *(target_ulong
*)s0
;
1755 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
1757 if (addr
< sym
->st_value
) {
1759 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
1765 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
1767 #if ELF_CLASS == ELFCLASS32
1768 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
1770 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
1774 struct elf_sym
*sym
;
1776 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
1778 return s
->disas_strtab
+ sym
->st_name
;
1784 /* FIXME: This should use elf_ops.h */
1785 static int symcmp(const void *s0
, const void *s1
)
1787 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
1788 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
1789 return (sym0
->st_value
< sym1
->st_value
)
1791 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
1794 /* Best attempt to load symbols from this ELF object. */
1795 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
1797 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
1798 struct elf_shdr
*shdr
;
1799 char *strings
= NULL
;
1800 struct syminfo
*s
= NULL
;
1801 struct elf_sym
*new_syms
, *syms
= NULL
;
1803 shnum
= hdr
->e_shnum
;
1804 i
= shnum
* sizeof(struct elf_shdr
);
1805 shdr
= (struct elf_shdr
*)alloca(i
);
1806 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
1810 bswap_shdr(shdr
, shnum
);
1811 for (i
= 0; i
< shnum
; ++i
) {
1812 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
1814 str_idx
= shdr
[i
].sh_link
;
1819 /* There will be no symbol table if the file was stripped. */
1823 /* Now know where the strtab and symtab are. Snarf them. */
1824 s
= malloc(sizeof(*s
));
1829 i
= shdr
[str_idx
].sh_size
;
1830 s
->disas_strtab
= strings
= malloc(i
);
1831 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
1835 i
= shdr
[sym_idx
].sh_size
;
1837 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
1841 nsyms
= i
/ sizeof(struct elf_sym
);
1842 for (i
= 0; i
< nsyms
; ) {
1843 bswap_sym(syms
+ i
);
1844 /* Throw away entries which we do not need. */
1845 if (syms
[i
].st_shndx
== SHN_UNDEF
1846 || syms
[i
].st_shndx
>= SHN_LORESERVE
1847 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
1849 syms
[i
] = syms
[nsyms
];
1852 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1853 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1854 syms
[i
].st_value
&= ~(target_ulong
)1;
1856 syms
[i
].st_value
+= load_bias
;
1861 /* No "useful" symbol. */
1866 /* Attempt to free the storage associated with the local symbols
1867 that we threw away. Whether or not this has any effect on the
1868 memory allocation depends on the malloc implementation and how
1869 many symbols we managed to discard. */
1870 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
1871 if (new_syms
== NULL
) {
1876 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
1878 s
->disas_num_syms
= nsyms
;
1879 #if ELF_CLASS == ELFCLASS32
1880 s
->disas_symtab
.elf32
= syms
;
1882 s
->disas_symtab
.elf64
= syms
;
1884 s
->lookup_symbol
= lookup_symbolxx
;
1896 int load_elf_binary(struct linux_binprm
* bprm
, struct target_pt_regs
* regs
,
1897 struct image_info
* info
)
1899 struct image_info interp_info
;
1900 struct elfhdr elf_ex
;
1901 char *elf_interpreter
= NULL
;
1903 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
1907 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
1908 &elf_interpreter
, bprm
->buf
);
1910 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1911 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1912 when we load the interpreter. */
1913 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
1915 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
1916 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
1917 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
1919 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
1923 /* Do this so that we can load the interpreter, if need be. We will
1924 change some of these later */
1925 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
1927 if (elf_interpreter
) {
1928 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
1930 /* If the program interpreter is one of these two, then assume
1931 an iBCS2 image. Otherwise assume a native linux image. */
1933 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
1934 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
1935 info
->personality
= PER_SVR4
;
1937 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1938 and some applications "depend" upon this behavior. Since
1939 we do not have the power to recompile these, we emulate
1940 the SVr4 behavior. Sigh. */
1941 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
1942 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
1946 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
1947 info
, (elf_interpreter
? &interp_info
: NULL
));
1948 info
->start_stack
= bprm
->p
;
1950 /* If we have an interpreter, set that as the program's entry point.
1951 Copy the load_bias as well, to help PPC64 interpret the entry
1952 point as a function descriptor. Do this after creating elf tables
1953 so that we copy the original program entry point into the AUXV. */
1954 if (elf_interpreter
) {
1955 info
->load_bias
= interp_info
.load_bias
;
1956 info
->entry
= interp_info
.entry
;
1957 free(elf_interpreter
);
1960 #ifdef USE_ELF_CORE_DUMP
1961 bprm
->core_dump
= &elf_core_dump
;
1967 #ifdef USE_ELF_CORE_DUMP
1969 * Definitions to generate Intel SVR4-like core files.
1970 * These mostly have the same names as the SVR4 types with "target_elf_"
1971 * tacked on the front to prevent clashes with linux definitions,
1972 * and the typedef forms have been avoided. This is mostly like
1973 * the SVR4 structure, but more Linuxy, with things that Linux does
1974 * not support and which gdb doesn't really use excluded.
1976 * Fields we don't dump (their contents is zero) in linux-user qemu
1977 * are marked with XXX.
1979 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1981 * Porting ELF coredump for target is (quite) simple process. First you
1982 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1983 * the target resides):
1985 * #define USE_ELF_CORE_DUMP
1987 * Next you define type of register set used for dumping. ELF specification
1988 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1990 * typedef <target_regtype> target_elf_greg_t;
1991 * #define ELF_NREG <number of registers>
1992 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1994 * Last step is to implement target specific function that copies registers
1995 * from given cpu into just specified register set. Prototype is:
1997 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1998 * const CPUArchState *env);
2001 * regs - copy register values into here (allocated and zeroed by caller)
2002 * env - copy registers from here
2004 * Example for ARM target is provided in this file.
2007 /* An ELF note in memory */
2011 size_t namesz_rounded
;
2014 size_t datasz_rounded
;
2019 struct target_elf_siginfo
{
2020 target_int si_signo
; /* signal number */
2021 target_int si_code
; /* extra code */
2022 target_int si_errno
; /* errno */
2025 struct target_elf_prstatus
{
2026 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2027 target_short pr_cursig
; /* Current signal */
2028 target_ulong pr_sigpend
; /* XXX */
2029 target_ulong pr_sighold
; /* XXX */
2030 target_pid_t pr_pid
;
2031 target_pid_t pr_ppid
;
2032 target_pid_t pr_pgrp
;
2033 target_pid_t pr_sid
;
2034 struct target_timeval pr_utime
; /* XXX User time */
2035 struct target_timeval pr_stime
; /* XXX System time */
2036 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2037 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2038 target_elf_gregset_t pr_reg
; /* GP registers */
2039 target_int pr_fpvalid
; /* XXX */
2042 #define ELF_PRARGSZ (80) /* Number of chars for args */
2044 struct target_elf_prpsinfo
{
2045 char pr_state
; /* numeric process state */
2046 char pr_sname
; /* char for pr_state */
2047 char pr_zomb
; /* zombie */
2048 char pr_nice
; /* nice val */
2049 target_ulong pr_flag
; /* flags */
2050 target_uid_t pr_uid
;
2051 target_gid_t pr_gid
;
2052 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2054 char pr_fname
[16]; /* filename of executable */
2055 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2058 /* Here is the structure in which status of each thread is captured. */
2059 struct elf_thread_status
{
2060 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2061 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2063 elf_fpregset_t fpu
; /* NT_PRFPREG */
2064 struct task_struct
*thread
;
2065 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2067 struct memelfnote notes
[1];
2071 struct elf_note_info
{
2072 struct memelfnote
*notes
;
2073 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2074 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2076 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2079 * Current version of ELF coredump doesn't support
2080 * dumping fp regs etc.
2082 elf_fpregset_t
*fpu
;
2083 elf_fpxregset_t
*xfpu
;
2084 int thread_status_size
;
2090 struct vm_area_struct
{
2091 abi_ulong vma_start
; /* start vaddr of memory region */
2092 abi_ulong vma_end
; /* end vaddr of memory region */
2093 abi_ulong vma_flags
; /* protection etc. flags for the region */
2094 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2098 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2099 int mm_count
; /* number of mappings */
2102 static struct mm_struct
*vma_init(void);
2103 static void vma_delete(struct mm_struct
*);
2104 static int vma_add_mapping(struct mm_struct
*, abi_ulong
,
2105 abi_ulong
, abi_ulong
);
2106 static int vma_get_mapping_count(const struct mm_struct
*);
2107 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2108 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2109 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2110 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
2111 unsigned long flags
);
2113 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2114 static void fill_note(struct memelfnote
*, const char *, int,
2115 unsigned int, void *);
2116 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2117 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2118 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2119 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2120 static size_t note_size(const struct memelfnote
*);
2121 static void free_note_info(struct elf_note_info
*);
2122 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2123 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2124 static int core_dump_filename(const TaskState
*, char *, size_t);
2126 static int dump_write(int, const void *, size_t);
2127 static int write_note(struct memelfnote
*, int);
2128 static int write_note_info(struct elf_note_info
*, int);
2131 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2133 prstatus
->pr_info
.si_signo
= tswapl(prstatus
->pr_info
.si_signo
);
2134 prstatus
->pr_info
.si_code
= tswapl(prstatus
->pr_info
.si_code
);
2135 prstatus
->pr_info
.si_errno
= tswapl(prstatus
->pr_info
.si_errno
);
2136 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2137 prstatus
->pr_sigpend
= tswapl(prstatus
->pr_sigpend
);
2138 prstatus
->pr_sighold
= tswapl(prstatus
->pr_sighold
);
2139 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2140 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2141 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2142 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2143 /* cpu times are not filled, so we skip them */
2144 /* regs should be in correct format already */
2145 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2148 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2150 psinfo
->pr_flag
= tswapl(psinfo
->pr_flag
);
2151 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2152 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2153 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2154 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2155 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2156 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2159 static void bswap_note(struct elf_note
*en
)
2161 bswap32s(&en
->n_namesz
);
2162 bswap32s(&en
->n_descsz
);
2163 bswap32s(&en
->n_type
);
2166 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2167 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2168 static inline void bswap_note(struct elf_note
*en
) { }
2169 #endif /* BSWAP_NEEDED */
2172 * Minimal support for linux memory regions. These are needed
2173 * when we are finding out what memory exactly belongs to
2174 * emulated process. No locks needed here, as long as
2175 * thread that received the signal is stopped.
2178 static struct mm_struct
*vma_init(void)
2180 struct mm_struct
*mm
;
2182 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2186 QTAILQ_INIT(&mm
->mm_mmap
);
2191 static void vma_delete(struct mm_struct
*mm
)
2193 struct vm_area_struct
*vma
;
2195 while ((vma
= vma_first(mm
)) != NULL
) {
2196 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2202 static int vma_add_mapping(struct mm_struct
*mm
, abi_ulong start
,
2203 abi_ulong end
, abi_ulong flags
)
2205 struct vm_area_struct
*vma
;
2207 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2210 vma
->vma_start
= start
;
2212 vma
->vma_flags
= flags
;
2214 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2220 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2222 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2225 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2227 return (QTAILQ_NEXT(vma
, vma_link
));
2230 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2232 return (mm
->mm_count
);
2236 * Calculate file (dump) size of given memory region.
2238 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2240 /* if we cannot even read the first page, skip it */
2241 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2245 * Usually we don't dump executable pages as they contain
2246 * non-writable code that debugger can read directly from
2247 * target library etc. However, thread stacks are marked
2248 * also executable so we read in first page of given region
2249 * and check whether it contains elf header. If there is
2250 * no elf header, we dump it.
2252 if (vma
->vma_flags
& PROT_EXEC
) {
2253 char page
[TARGET_PAGE_SIZE
];
2255 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2256 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2257 (page
[EI_MAG1
] == ELFMAG1
) &&
2258 (page
[EI_MAG2
] == ELFMAG2
) &&
2259 (page
[EI_MAG3
] == ELFMAG3
)) {
2261 * Mappings are possibly from ELF binary. Don't dump
2268 return (vma
->vma_end
- vma
->vma_start
);
2271 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
2272 unsigned long flags
)
2274 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2276 vma_add_mapping(mm
, start
, end
, flags
);
2280 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2281 unsigned int sz
, void *data
)
2283 unsigned int namesz
;
2285 namesz
= strlen(name
) + 1;
2287 note
->namesz
= namesz
;
2288 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2291 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2296 * We calculate rounded up note size here as specified by
2299 note
->notesz
= sizeof (struct elf_note
) +
2300 note
->namesz_rounded
+ note
->datasz_rounded
;
2303 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2306 (void) memset(elf
, 0, sizeof(*elf
));
2308 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2309 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2310 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2311 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2312 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2314 elf
->e_type
= ET_CORE
;
2315 elf
->e_machine
= machine
;
2316 elf
->e_version
= EV_CURRENT
;
2317 elf
->e_phoff
= sizeof(struct elfhdr
);
2318 elf
->e_flags
= flags
;
2319 elf
->e_ehsize
= sizeof(struct elfhdr
);
2320 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2321 elf
->e_phnum
= segs
;
2326 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2328 phdr
->p_type
= PT_NOTE
;
2329 phdr
->p_offset
= offset
;
2332 phdr
->p_filesz
= sz
;
2337 bswap_phdr(phdr
, 1);
2340 static size_t note_size(const struct memelfnote
*note
)
2342 return (note
->notesz
);
2345 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2346 const TaskState
*ts
, int signr
)
2348 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2349 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2350 prstatus
->pr_pid
= ts
->ts_tid
;
2351 prstatus
->pr_ppid
= getppid();
2352 prstatus
->pr_pgrp
= getpgrp();
2353 prstatus
->pr_sid
= getsid(0);
2355 bswap_prstatus(prstatus
);
2358 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2360 char *filename
, *base_filename
;
2361 unsigned int i
, len
;
2363 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2365 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2366 if (len
>= ELF_PRARGSZ
)
2367 len
= ELF_PRARGSZ
- 1;
2368 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2370 for (i
= 0; i
< len
; i
++)
2371 if (psinfo
->pr_psargs
[i
] == 0)
2372 psinfo
->pr_psargs
[i
] = ' ';
2373 psinfo
->pr_psargs
[len
] = 0;
2375 psinfo
->pr_pid
= getpid();
2376 psinfo
->pr_ppid
= getppid();
2377 psinfo
->pr_pgrp
= getpgrp();
2378 psinfo
->pr_sid
= getsid(0);
2379 psinfo
->pr_uid
= getuid();
2380 psinfo
->pr_gid
= getgid();
2382 filename
= strdup(ts
->bprm
->filename
);
2383 base_filename
= strdup(basename(filename
));
2384 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2385 sizeof(psinfo
->pr_fname
));
2386 free(base_filename
);
2389 bswap_psinfo(psinfo
);
2393 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2395 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2396 elf_addr_t orig_auxv
= auxv
;
2398 int len
= ts
->info
->auxv_len
;
2401 * Auxiliary vector is stored in target process stack. It contains
2402 * {type, value} pairs that we need to dump into note. This is not
2403 * strictly necessary but we do it here for sake of completeness.
2406 /* read in whole auxv vector and copy it to memelfnote */
2407 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2409 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2410 unlock_user(ptr
, auxv
, len
);
2415 * Constructs name of coredump file. We have following convention
2417 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2419 * Returns 0 in case of success, -1 otherwise (errno is set).
2421 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2425 char *filename
= NULL
;
2426 char *base_filename
= NULL
;
2430 assert(bufsize
>= PATH_MAX
);
2432 if (gettimeofday(&tv
, NULL
) < 0) {
2433 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2438 filename
= strdup(ts
->bprm
->filename
);
2439 base_filename
= strdup(basename(filename
));
2440 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2441 localtime_r(&tv
.tv_sec
, &tm
));
2442 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2443 base_filename
, timestamp
, (int)getpid());
2444 free(base_filename
);
2450 static int dump_write(int fd
, const void *ptr
, size_t size
)
2452 const char *bufp
= (const char *)ptr
;
2453 ssize_t bytes_written
, bytes_left
;
2454 struct rlimit dumpsize
;
2458 getrlimit(RLIMIT_CORE
, &dumpsize
);
2459 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2460 if (errno
== ESPIPE
) { /* not a seekable stream */
2466 if (dumpsize
.rlim_cur
<= pos
) {
2468 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2471 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2472 bytes_left
= limit_left
>= size
? size
: limit_left
;
2477 * In normal conditions, single write(2) should do but
2478 * in case of socket etc. this mechanism is more portable.
2481 bytes_written
= write(fd
, bufp
, bytes_left
);
2482 if (bytes_written
< 0) {
2486 } else if (bytes_written
== 0) { /* eof */
2489 bufp
+= bytes_written
;
2490 bytes_left
-= bytes_written
;
2491 } while (bytes_left
> 0);
2496 static int write_note(struct memelfnote
*men
, int fd
)
2500 en
.n_namesz
= men
->namesz
;
2501 en
.n_type
= men
->type
;
2502 en
.n_descsz
= men
->datasz
;
2506 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2508 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2510 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
2516 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
2518 TaskState
*ts
= (TaskState
*)env
->opaque
;
2519 struct elf_thread_status
*ets
;
2521 ets
= g_malloc0(sizeof (*ets
));
2522 ets
->num_notes
= 1; /* only prstatus is dumped */
2523 fill_prstatus(&ets
->prstatus
, ts
, 0);
2524 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2525 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2528 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2530 info
->notes_size
+= note_size(&ets
->notes
[0]);
2533 static int fill_note_info(struct elf_note_info
*info
,
2534 long signr
, const CPUArchState
*env
)
2537 CPUArchState
*cpu
= NULL
;
2538 TaskState
*ts
= (TaskState
*)env
->opaque
;
2541 (void) memset(info
, 0, sizeof (*info
));
2543 QTAILQ_INIT(&info
->thread_list
);
2545 info
->notes
= g_malloc0(NUMNOTES
* sizeof (struct memelfnote
));
2546 if (info
->notes
== NULL
)
2548 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
2549 if (info
->prstatus
== NULL
)
2551 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
2552 if (info
->prstatus
== NULL
)
2556 * First fill in status (and registers) of current thread
2557 * including process info & aux vector.
2559 fill_prstatus(info
->prstatus
, ts
, signr
);
2560 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2561 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2562 sizeof (*info
->prstatus
), info
->prstatus
);
2563 fill_psinfo(info
->psinfo
, ts
);
2564 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2565 sizeof (*info
->psinfo
), info
->psinfo
);
2566 fill_auxv_note(&info
->notes
[2], ts
);
2569 info
->notes_size
= 0;
2570 for (i
= 0; i
< info
->numnote
; i
++)
2571 info
->notes_size
+= note_size(&info
->notes
[i
]);
2573 /* read and fill status of all threads */
2575 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2576 if (cpu
== thread_env
)
2578 fill_thread_info(info
, cpu
);
2585 static void free_note_info(struct elf_note_info
*info
)
2587 struct elf_thread_status
*ets
;
2589 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2590 ets
= QTAILQ_FIRST(&info
->thread_list
);
2591 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2595 g_free(info
->prstatus
);
2596 g_free(info
->psinfo
);
2597 g_free(info
->notes
);
2600 static int write_note_info(struct elf_note_info
*info
, int fd
)
2602 struct elf_thread_status
*ets
;
2605 /* write prstatus, psinfo and auxv for current thread */
2606 for (i
= 0; i
< info
->numnote
; i
++)
2607 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2610 /* write prstatus for each thread */
2611 for (ets
= info
->thread_list
.tqh_first
; ets
!= NULL
;
2612 ets
= ets
->ets_link
.tqe_next
) {
2613 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2621 * Write out ELF coredump.
2623 * See documentation of ELF object file format in:
2624 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2626 * Coredump format in linux is following:
2628 * 0 +----------------------+ \
2629 * | ELF header | ET_CORE |
2630 * +----------------------+ |
2631 * | ELF program headers | |--- headers
2632 * | - NOTE section | |
2633 * | - PT_LOAD sections | |
2634 * +----------------------+ /
2639 * +----------------------+ <-- aligned to target page
2640 * | Process memory dump |
2645 * +----------------------+
2647 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2648 * NT_PRSINFO -> struct elf_prpsinfo
2649 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2651 * Format follows System V format as close as possible. Current
2652 * version limitations are as follows:
2653 * - no floating point registers are dumped
2655 * Function returns 0 in case of success, negative errno otherwise.
2657 * TODO: make this work also during runtime: it should be
2658 * possible to force coredump from running process and then
2659 * continue processing. For example qemu could set up SIGUSR2
2660 * handler (provided that target process haven't registered
2661 * handler for that) that does the dump when signal is received.
2663 static int elf_core_dump(int signr
, const CPUArchState
*env
)
2665 const TaskState
*ts
= (const TaskState
*)env
->opaque
;
2666 struct vm_area_struct
*vma
= NULL
;
2667 char corefile
[PATH_MAX
];
2668 struct elf_note_info info
;
2670 struct elf_phdr phdr
;
2671 struct rlimit dumpsize
;
2672 struct mm_struct
*mm
= NULL
;
2673 off_t offset
= 0, data_offset
= 0;
2678 getrlimit(RLIMIT_CORE
, &dumpsize
);
2679 if (dumpsize
.rlim_cur
== 0)
2682 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2685 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
2686 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
2690 * Walk through target process memory mappings and
2691 * set up structure containing this information. After
2692 * this point vma_xxx functions can be used.
2694 if ((mm
= vma_init()) == NULL
)
2697 walk_memory_regions(mm
, vma_walker
);
2698 segs
= vma_get_mapping_count(mm
);
2701 * Construct valid coredump ELF header. We also
2702 * add one more segment for notes.
2704 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
2705 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
2708 /* fill in in-memory version of notes */
2709 if (fill_note_info(&info
, signr
, env
) < 0)
2712 offset
+= sizeof (elf
); /* elf header */
2713 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
2715 /* write out notes program header */
2716 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
2718 offset
+= info
.notes_size
;
2719 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
2723 * ELF specification wants data to start at page boundary so
2726 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2729 * Write program headers for memory regions mapped in
2730 * the target process.
2732 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2733 (void) memset(&phdr
, 0, sizeof (phdr
));
2735 phdr
.p_type
= PT_LOAD
;
2736 phdr
.p_offset
= offset
;
2737 phdr
.p_vaddr
= vma
->vma_start
;
2739 phdr
.p_filesz
= vma_dump_size(vma
);
2740 offset
+= phdr
.p_filesz
;
2741 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
2742 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
2743 if (vma
->vma_flags
& PROT_WRITE
)
2744 phdr
.p_flags
|= PF_W
;
2745 if (vma
->vma_flags
& PROT_EXEC
)
2746 phdr
.p_flags
|= PF_X
;
2747 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2749 bswap_phdr(&phdr
, 1);
2750 dump_write(fd
, &phdr
, sizeof (phdr
));
2754 * Next we write notes just after program headers. No
2755 * alignment needed here.
2757 if (write_note_info(&info
, fd
) < 0)
2760 /* align data to page boundary */
2761 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
2765 * Finally we can dump process memory into corefile as well.
2767 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2771 end
= vma
->vma_start
+ vma_dump_size(vma
);
2773 for (addr
= vma
->vma_start
; addr
< end
;
2774 addr
+= TARGET_PAGE_SIZE
) {
2775 char page
[TARGET_PAGE_SIZE
];
2779 * Read in page from target process memory and
2780 * write it to coredump file.
2782 error
= copy_from_user(page
, addr
, sizeof (page
));
2784 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
2789 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
2795 free_note_info(&info
);
2804 #endif /* USE_ELF_CORE_DUMP */
2806 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
2808 init_thread(regs
, infop
);