2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "hw/spapr_pci.h"
30 #include "exec-memory.h"
33 #include "hw/pci_internals.h"
35 static const uint32_t bars
[] = {
36 PCI_BASE_ADDRESS_0
, PCI_BASE_ADDRESS_1
,
37 PCI_BASE_ADDRESS_2
, PCI_BASE_ADDRESS_3
,
38 PCI_BASE_ADDRESS_4
, PCI_BASE_ADDRESS_5
42 static PCIDevice
*find_dev(sPAPREnvironment
*spapr
,
43 uint64_t buid
, uint32_t config_addr
)
46 int devfn
= (config_addr
>> 8) & 0xFF;
49 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
50 if (phb
->buid
!= buid
) {
54 QTAILQ_FOREACH(qdev
, &phb
->host_state
.bus
->qbus
.children
, sibling
) {
55 PCIDevice
*dev
= (PCIDevice
*)qdev
;
56 if (dev
->devfn
== devfn
) {
65 static uint32_t rtas_pci_cfgaddr(uint32_t arg
)
67 return ((arg
>> 20) & 0xf00) | (arg
& 0xff);
70 static uint32_t rtas_read_pci_config_do(PCIDevice
*pci_dev
, uint32_t addr
,
71 uint32_t limit
, uint32_t len
)
73 if ((addr
+ len
) <= limit
) {
74 return pci_host_config_read_common(pci_dev
, addr
, limit
, len
);
80 static void rtas_write_pci_config_do(PCIDevice
*pci_dev
, uint32_t addr
,
81 uint32_t limit
, uint32_t val
,
84 if ((addr
+ len
) <= limit
) {
85 pci_host_config_write_common(pci_dev
, addr
, limit
, val
, len
);
89 static void rtas_ibm_read_pci_config(sPAPREnvironment
*spapr
,
90 uint32_t token
, uint32_t nargs
,
92 uint32_t nret
, target_ulong rets
)
94 uint32_t val
, size
, addr
;
95 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
96 PCIDevice
*dev
= find_dev(spapr
, buid
, rtas_ld(args
, 0));
102 size
= rtas_ld(args
, 3);
103 addr
= rtas_pci_cfgaddr(rtas_ld(args
, 0));
104 val
= rtas_read_pci_config_do(dev
, addr
, pci_config_size(dev
), size
);
106 rtas_st(rets
, 1, val
);
109 static void rtas_read_pci_config(sPAPREnvironment
*spapr
,
110 uint32_t token
, uint32_t nargs
,
112 uint32_t nret
, target_ulong rets
)
114 uint32_t val
, size
, addr
;
115 PCIDevice
*dev
= find_dev(spapr
, 0, rtas_ld(args
, 0));
118 rtas_st(rets
, 0, -1);
121 size
= rtas_ld(args
, 1);
122 addr
= rtas_pci_cfgaddr(rtas_ld(args
, 0));
123 val
= rtas_read_pci_config_do(dev
, addr
, pci_config_size(dev
), size
);
125 rtas_st(rets
, 1, val
);
128 static void rtas_ibm_write_pci_config(sPAPREnvironment
*spapr
,
129 uint32_t token
, uint32_t nargs
,
131 uint32_t nret
, target_ulong rets
)
133 uint32_t val
, size
, addr
;
134 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
135 PCIDevice
*dev
= find_dev(spapr
, buid
, rtas_ld(args
, 0));
138 rtas_st(rets
, 0, -1);
141 val
= rtas_ld(args
, 4);
142 size
= rtas_ld(args
, 3);
143 addr
= rtas_pci_cfgaddr(rtas_ld(args
, 0));
144 rtas_write_pci_config_do(dev
, addr
, pci_config_size(dev
), val
, size
);
148 static void rtas_write_pci_config(sPAPREnvironment
*spapr
,
149 uint32_t token
, uint32_t nargs
,
151 uint32_t nret
, target_ulong rets
)
153 uint32_t val
, size
, addr
;
154 PCIDevice
*dev
= find_dev(spapr
, 0, rtas_ld(args
, 0));
157 rtas_st(rets
, 0, -1);
160 val
= rtas_ld(args
, 2);
161 size
= rtas_ld(args
, 1);
162 addr
= rtas_pci_cfgaddr(rtas_ld(args
, 0));
163 rtas_write_pci_config_do(dev
, addr
, pci_config_size(dev
), val
, size
);
167 static int pci_spapr_map_irq(PCIDevice
*pci_dev
, int irq_num
)
170 * Here we need to convert pci_dev + irq_num to some unique value
171 * which is less than number of IRQs on the specific bus (now it
172 * is 16). At the moment irq_num == device_id (number of the
174 * FIXME: we should swizzle in fn and irq_num
176 return (pci_dev
->devfn
>> 3) % SPAPR_PCI_NUM_LSI
;
179 static void pci_spapr_set_irq(void *opaque
, int irq_num
, int level
)
182 * Here we use the number returned by pci_spapr_map_irq to find a
183 * corresponding qemu_irq.
185 sPAPRPHBState
*phb
= opaque
;
187 qemu_set_irq(phb
->lsi_table
[irq_num
].qirq
, level
);
190 static int spapr_phb_init(SysBusDevice
*s
)
192 sPAPRPHBState
*phb
= FROM_SYSBUS(sPAPRPHBState
, s
);
195 /* Initialize the LSI table */
196 for (i
= 0; i
< SPAPR_PCI_NUM_LSI
; i
++) {
200 qirq
= spapr_allocate_irq(0, &num
);
205 phb
->lsi_table
[i
].dt_irq
= num
;
206 phb
->lsi_table
[i
].qirq
= qirq
;
212 static int spapr_main_pci_host_init(PCIDevice
*d
)
217 static PCIDeviceInfo spapr_main_pci_host_info
= {
218 .qdev
.name
= "spapr-pci-host-bridge",
219 .qdev
.size
= sizeof(PCIDevice
),
220 .init
= spapr_main_pci_host_init
,
223 static void spapr_register_devices(void)
225 sysbus_register_dev("spapr-pci-host-bridge", sizeof(sPAPRPHBState
),
227 pci_qdev_register(&spapr_main_pci_host_info
);
230 device_init(spapr_register_devices
)
232 static uint64_t spapr_io_read(void *opaque
, target_phys_addr_t addr
,
237 return cpu_inb(addr
);
239 return cpu_inw(addr
);
241 return cpu_inl(addr
);
246 static void spapr_io_write(void *opaque
, target_phys_addr_t addr
,
247 uint64_t data
, unsigned size
)
251 cpu_outb(addr
, data
);
254 cpu_outw(addr
, data
);
257 cpu_outl(addr
, data
);
263 static MemoryRegionOps spapr_io_ops
= {
264 .endianness
= DEVICE_LITTLE_ENDIAN
,
265 .read
= spapr_io_read
,
266 .write
= spapr_io_write
269 void spapr_create_phb(sPAPREnvironment
*spapr
,
270 const char *busname
, uint64_t buid
,
271 uint64_t mem_win_addr
, uint64_t mem_win_size
,
272 uint64_t io_win_addr
)
278 char namebuf
[strlen(busname
)+11];
280 dev
= qdev_create(NULL
, "spapr-pci-host-bridge");
281 qdev_init_nofail(dev
);
282 s
= sysbus_from_qdev(dev
);
283 phb
= FROM_SYSBUS(sPAPRPHBState
, s
);
285 phb
->mem_win_addr
= mem_win_addr
;
287 sprintf(namebuf
, "%s-mem", busname
);
288 memory_region_init(&phb
->memspace
, namebuf
, INT64_MAX
);
290 sprintf(namebuf
, "%s-memwindow", busname
);
291 memory_region_init_alias(&phb
->memwindow
, namebuf
, &phb
->memspace
,
292 SPAPR_PCI_MEM_WIN_BUS_OFFSET
, mem_win_size
);
293 memory_region_add_subregion(get_system_memory(), mem_win_addr
,
296 phb
->io_win_addr
= io_win_addr
;
298 /* On ppc, we only have MMIO no specific IO space from the CPU
299 * perspective. In theory we ought to be able to embed the PCI IO
300 * memory region direction in the system memory space. However,
301 * if any of the IO BAR subregions use the old_portio mechanism,
302 * that won't be processed properly unless accessed from the
303 * system io address space. This hack to bounce things via
304 * system_io works around the problem until all the users of
305 * old_portion are updated */
306 sprintf(namebuf
, "%s-io", busname
);
307 memory_region_init(&phb
->iospace
, namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
308 /* FIXME: fix to support multiple PHBs */
309 memory_region_add_subregion(get_system_io(), 0, &phb
->iospace
);
311 sprintf(namebuf
, "%s-iowindow", busname
);
312 memory_region_init_io(&phb
->iowindow
, &spapr_io_ops
, phb
,
313 namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
314 memory_region_add_subregion(get_system_memory(), io_win_addr
,
317 phb
->host_state
.bus
= bus
= pci_register_bus(&phb
->busdev
.qdev
, busname
,
321 &phb
->memspace
, &phb
->iospace
,
325 spapr_rtas_register("read-pci-config", rtas_read_pci_config
);
326 spapr_rtas_register("write-pci-config", rtas_write_pci_config
);
327 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config
);
328 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config
);
330 QLIST_INSERT_HEAD(&spapr
->phbs
, phb
, list
);
332 /* pci_bus_set_mem_base(bus, mem_va_start - SPAPR_PCI_MEM_BAR_START); */
335 /* Macros to operate with address in OF binding to PCI */
336 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
337 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
338 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
339 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
340 #define b_ss(x) b_x((x), 24, 2) /* the space code */
341 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
342 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
343 #define b_fff(x) b_x((x), 8, 3) /* function number */
344 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
346 int spapr_populate_pci_devices(sPAPRPHBState
*phb
,
347 uint32_t xics_phandle
,
350 PCIBus
*bus
= phb
->host_state
.bus
;
353 uint32_t bus_range
[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
359 } __attribute__((packed
)) ranges
[] = {
361 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
362 cpu_to_be64(phb
->io_win_addr
),
363 cpu_to_be64(memory_region_size(&phb
->iospace
)),
366 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET
),
367 cpu_to_be64(phb
->mem_win_addr
),
368 cpu_to_be64(memory_region_size(&phb
->memwindow
)),
371 uint64_t bus_reg
[] = { cpu_to_be64(phb
->buid
), 0 };
372 uint32_t interrupt_map_mask
[] = {
373 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, 0x0};
374 uint32_t interrupt_map
[bus
->nirq
][7];
376 /* Start populating the FDT */
377 sprintf(nodename
, "pci@%" PRIx64
, phb
->buid
);
378 bus_off
= fdt_add_subnode(fdt
, 0, nodename
);
391 /* Write PHB properties */
392 _FDT(fdt_setprop_string(fdt
, bus_off
, "device_type", "pci"));
393 _FDT(fdt_setprop_string(fdt
, bus_off
, "compatible", "IBM,Logical_PHB"));
394 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#address-cells", 0x3));
395 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#size-cells", 0x2));
396 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#interrupt-cells", 0x1));
397 _FDT(fdt_setprop(fdt
, bus_off
, "used-by-rtas", NULL
, 0));
398 _FDT(fdt_setprop(fdt
, bus_off
, "bus-range", &bus_range
, sizeof(bus_range
)));
399 _FDT(fdt_setprop(fdt
, bus_off
, "ranges", &ranges
, sizeof(ranges
)));
400 _FDT(fdt_setprop(fdt
, bus_off
, "reg", &bus_reg
, sizeof(bus_reg
)));
401 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pci-config-space-type", 0x1));
403 /* Build the interrupt-map, this must matches what is done
404 * in pci_spapr_map_irq
406 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map-mask",
407 &interrupt_map_mask
, sizeof(interrupt_map_mask
)));
408 for (i
= 0; i
< 7; i
++) {
409 uint32_t *irqmap
= interrupt_map
[i
];
410 irqmap
[0] = cpu_to_be32(b_ddddd(i
)|b_fff(0));
414 irqmap
[4] = cpu_to_be32(xics_phandle
);
415 irqmap
[5] = cpu_to_be32(phb
->lsi_table
[i
% SPAPR_PCI_NUM_LSI
].dt_irq
);
416 irqmap
[6] = cpu_to_be32(0x8);
418 /* Write interrupt map */
419 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map", &interrupt_map
,
420 7 * sizeof(interrupt_map
[0])));