iommu: Add universal DMA helper functions
[qemu/opensuse.git] / coroutine-sigaltstack.c
blob861e87805af61a6f13b49bf8b4aac5518c7f2763
1 /*
2 * sigaltstack coroutine initialization code
4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws>
5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
27 #endif
28 #include <stdlib.h>
29 #include <setjmp.h>
30 #include <stdint.h>
31 #include <pthread.h>
32 #include <signal.h>
33 #include "qemu-common.h"
34 #include "qemu-coroutine-int.h"
36 enum {
37 /* Maximum free pool size prevents holding too many freed coroutines */
38 POOL_MAX_SIZE = 64,
41 /** Free list to speed up creation */
42 static QSLIST_HEAD(, Coroutine) pool = QSLIST_HEAD_INITIALIZER(pool);
43 static unsigned int pool_size;
45 typedef struct {
46 Coroutine base;
47 void *stack;
48 jmp_buf env;
49 } CoroutineUContext;
51 /**
52 * Per-thread coroutine bookkeeping
54 typedef struct {
55 /** Currently executing coroutine */
56 Coroutine *current;
58 /** The default coroutine */
59 CoroutineUContext leader;
61 /** Information for the signal handler (trampoline) */
62 jmp_buf tr_reenter;
63 volatile sig_atomic_t tr_called;
64 void *tr_handler;
65 } CoroutineThreadState;
67 static pthread_key_t thread_state_key;
69 static CoroutineThreadState *coroutine_get_thread_state(void)
71 CoroutineThreadState *s = pthread_getspecific(thread_state_key);
73 if (!s) {
74 s = g_malloc0(sizeof(*s));
75 s->current = &s->leader.base;
76 pthread_setspecific(thread_state_key, s);
78 return s;
81 static void qemu_coroutine_thread_cleanup(void *opaque)
83 CoroutineThreadState *s = opaque;
85 g_free(s);
88 static void __attribute__((destructor)) coroutine_cleanup(void)
90 Coroutine *co;
91 Coroutine *tmp;
93 QSLIST_FOREACH_SAFE(co, &pool, pool_next, tmp) {
94 g_free(DO_UPCAST(CoroutineUContext, base, co)->stack);
95 g_free(co);
99 static void __attribute__((constructor)) coroutine_init(void)
101 int ret;
103 ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
104 if (ret != 0) {
105 fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
106 abort();
110 /* "boot" function
111 * This is what starts the coroutine, is called from the trampoline
112 * (from the signal handler when it is not signal handling, read ahead
113 * for more information).
115 static void coroutine_bootstrap(CoroutineUContext *self, Coroutine *co)
117 /* Initialize longjmp environment and switch back the caller */
118 if (!setjmp(self->env)) {
119 longjmp(*(jmp_buf *)co->entry_arg, 1);
122 while (true) {
123 co->entry(co->entry_arg);
124 qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
129 * This is used as the signal handler. This is called with the brand new stack
130 * (thanks to sigaltstack). We have to return, given that this is a signal
131 * handler and the sigmask and some other things are changed.
133 static void coroutine_trampoline(int signal)
135 CoroutineUContext *self;
136 Coroutine *co;
137 CoroutineThreadState *coTS;
139 /* Get the thread specific information */
140 coTS = coroutine_get_thread_state();
141 self = coTS->tr_handler;
142 coTS->tr_called = 1;
143 co = &self->base;
146 * Here we have to do a bit of a ping pong between the caller, given that
147 * this is a signal handler and we have to do a return "soon". Then the
148 * caller can reestablish everything and do a longjmp here again.
150 if (!setjmp(coTS->tr_reenter)) {
151 return;
155 * Ok, the caller has longjmp'ed back to us, so now prepare
156 * us for the real machine state switching. We have to jump
157 * into another function here to get a new stack context for
158 * the auto variables (which have to be auto-variables
159 * because the start of the thread happens later). Else with
160 * PIC (i.e. Position Independent Code which is used when PTH
161 * is built as a shared library) most platforms would
162 * horrible core dump as experience showed.
164 coroutine_bootstrap(self, co);
167 static Coroutine *coroutine_new(void)
169 const size_t stack_size = 1 << 20;
170 CoroutineUContext *co;
171 CoroutineThreadState *coTS;
172 struct sigaction sa;
173 struct sigaction osa;
174 struct sigaltstack ss;
175 struct sigaltstack oss;
176 sigset_t sigs;
177 sigset_t osigs;
178 jmp_buf old_env;
180 /* The way to manipulate stack is with the sigaltstack function. We
181 * prepare a stack, with it delivering a signal to ourselves and then
182 * put setjmp/longjmp where needed.
183 * This has been done keeping coroutine-ucontext as a model and with the
184 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
185 * of the coroutines and see pth_mctx.c (from the pth project) for the
186 * sigaltstack way of manipulating stacks.
189 co = g_malloc0(sizeof(*co));
190 co->stack = g_malloc(stack_size);
191 co->base.entry_arg = &old_env; /* stash away our jmp_buf */
193 coTS = coroutine_get_thread_state();
194 coTS->tr_handler = co;
197 * Preserve the SIGUSR2 signal state, block SIGUSR2,
198 * and establish our signal handler. The signal will
199 * later transfer control onto the signal stack.
201 sigemptyset(&sigs);
202 sigaddset(&sigs, SIGUSR2);
203 pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
204 sa.sa_handler = coroutine_trampoline;
205 sigfillset(&sa.sa_mask);
206 sa.sa_flags = SA_ONSTACK;
207 if (sigaction(SIGUSR2, &sa, &osa) != 0) {
208 abort();
212 * Set the new stack.
214 ss.ss_sp = co->stack;
215 ss.ss_size = stack_size;
216 ss.ss_flags = 0;
217 if (sigaltstack(&ss, &oss) < 0) {
218 abort();
222 * Now transfer control onto the signal stack and set it up.
223 * It will return immediately via "return" after the setjmp()
224 * was performed. Be careful here with race conditions. The
225 * signal can be delivered the first time sigsuspend() is
226 * called.
228 coTS->tr_called = 0;
229 pthread_kill(pthread_self(), SIGUSR2);
230 sigfillset(&sigs);
231 sigdelset(&sigs, SIGUSR2);
232 while (!coTS->tr_called) {
233 sigsuspend(&sigs);
237 * Inform the system that we are back off the signal stack by
238 * removing the alternative signal stack. Be careful here: It
239 * first has to be disabled, before it can be removed.
241 sigaltstack(NULL, &ss);
242 ss.ss_flags = SS_DISABLE;
243 if (sigaltstack(&ss, NULL) < 0) {
244 abort();
246 sigaltstack(NULL, &ss);
247 if (!(oss.ss_flags & SS_DISABLE)) {
248 sigaltstack(&oss, NULL);
252 * Restore the old SIGUSR2 signal handler and mask
254 sigaction(SIGUSR2, &osa, NULL);
255 pthread_sigmask(SIG_SETMASK, &osigs, NULL);
258 * Now enter the trampoline again, but this time not as a signal
259 * handler. Instead we jump into it directly. The functionally
260 * redundant ping-pong pointer arithmetic is necessary to avoid
261 * type-conversion warnings related to the `volatile' qualifier and
262 * the fact that `jmp_buf' usually is an array type.
264 if (!setjmp(old_env)) {
265 longjmp(coTS->tr_reenter, 1);
269 * Ok, we returned again, so now we're finished
272 return &co->base;
275 Coroutine *qemu_coroutine_new(void)
277 Coroutine *co;
279 co = QSLIST_FIRST(&pool);
280 if (co) {
281 QSLIST_REMOVE_HEAD(&pool, pool_next);
282 pool_size--;
283 } else {
284 co = coroutine_new();
286 return co;
289 void qemu_coroutine_delete(Coroutine *co_)
291 CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_);
293 if (pool_size < POOL_MAX_SIZE) {
294 QSLIST_INSERT_HEAD(&pool, &co->base, pool_next);
295 co->base.caller = NULL;
296 pool_size++;
297 return;
300 g_free(co->stack);
301 g_free(co);
304 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
305 CoroutineAction action)
307 CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_);
308 CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_);
309 CoroutineThreadState *s = coroutine_get_thread_state();
310 int ret;
312 s->current = to_;
314 ret = setjmp(from->env);
315 if (ret == 0) {
316 longjmp(to->env, action);
318 return ret;
321 Coroutine *qemu_coroutine_self(void)
323 CoroutineThreadState *s = coroutine_get_thread_state();
325 return s->current;
328 bool qemu_in_coroutine(void)
330 CoroutineThreadState *s = pthread_getspecific(thread_state_key);
332 return s && s->current->caller;