2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
18 #include <sys/types.h>
19 #include <sys/ioctl.h>
23 #include <linux/kvm.h>
25 #include "qemu-common.h"
26 #include "qemu/timer.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/kvm.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "hw/sysbus.h"
36 #include "hw/sysbus.h"
38 #include "hw/spapr_vio.h"
43 #define dprintf(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #define dprintf(fmt, ...) \
50 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
52 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
56 static int cap_interrupt_unset
= false;
57 static int cap_interrupt_level
= false;
58 static int cap_segstate
;
59 static int cap_booke_sregs
;
60 static int cap_ppc_smt
;
61 static int cap_ppc_rma
;
62 static int cap_spapr_tce
;
65 /* XXX We have a race condition where we actually have a level triggered
66 * interrupt, but the infrastructure can't expose that yet, so the guest
67 * takes but ignores it, goes to sleep and never gets notified that there's
68 * still an interrupt pending.
70 * As a quick workaround, let's just wake up again 20 ms after we injected
71 * an interrupt. That way we can assure that we're always reinjecting
72 * interrupts in case the guest swallowed them.
74 static QEMUTimer
*idle_timer
;
76 static void kvm_kick_cpu(void *opaque
)
78 PowerPCCPU
*cpu
= opaque
;
80 qemu_cpu_kick(CPU(cpu
));
83 int kvm_arch_init(KVMState
*s
)
85 cap_interrupt_unset
= kvm_check_extension(s
, KVM_CAP_PPC_UNSET_IRQ
);
86 cap_interrupt_level
= kvm_check_extension(s
, KVM_CAP_PPC_IRQ_LEVEL
);
87 cap_segstate
= kvm_check_extension(s
, KVM_CAP_PPC_SEGSTATE
);
88 cap_booke_sregs
= kvm_check_extension(s
, KVM_CAP_PPC_BOOKE_SREGS
);
89 cap_ppc_smt
= kvm_check_extension(s
, KVM_CAP_PPC_SMT
);
90 cap_ppc_rma
= kvm_check_extension(s
, KVM_CAP_PPC_RMA
);
91 cap_spapr_tce
= kvm_check_extension(s
, KVM_CAP_SPAPR_TCE
);
92 cap_hior
= kvm_check_extension(s
, KVM_CAP_PPC_HIOR
);
94 if (!cap_interrupt_level
) {
95 fprintf(stderr
, "KVM: Couldn't find level irq capability. Expect the "
96 "VM to stall at times!\n");
102 static int kvm_arch_sync_sregs(PowerPCCPU
*cpu
)
104 CPUPPCState
*cenv
= &cpu
->env
;
105 CPUState
*cs
= CPU(cpu
);
106 struct kvm_sregs sregs
;
109 if (cenv
->excp_model
== POWERPC_EXCP_BOOKE
) {
110 /* What we're really trying to say is "if we're on BookE, we use
111 the native PVR for now". This is the only sane way to check
112 it though, so we potentially confuse users that they can run
113 BookE guests on BookS. Let's hope nobody dares enough :) */
117 fprintf(stderr
, "kvm error: missing PVR setting capability\n");
122 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
127 sregs
.pvr
= cenv
->spr
[SPR_PVR
];
128 return kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
131 /* Set up a shared TLB array with KVM */
132 static int kvm_booke206_tlb_init(PowerPCCPU
*cpu
)
134 CPUPPCState
*env
= &cpu
->env
;
135 CPUState
*cs
= CPU(cpu
);
136 struct kvm_book3e_206_tlb_params params
= {};
137 struct kvm_config_tlb cfg
= {};
138 struct kvm_enable_cap encap
= {};
139 unsigned int entries
= 0;
142 if (!kvm_enabled() ||
143 !kvm_check_extension(cs
->kvm_state
, KVM_CAP_SW_TLB
)) {
147 assert(ARRAY_SIZE(params
.tlb_sizes
) == BOOKE206_MAX_TLBN
);
149 for (i
= 0; i
< BOOKE206_MAX_TLBN
; i
++) {
150 params
.tlb_sizes
[i
] = booke206_tlb_size(env
, i
);
151 params
.tlb_ways
[i
] = booke206_tlb_ways(env
, i
);
152 entries
+= params
.tlb_sizes
[i
];
155 assert(entries
== env
->nb_tlb
);
156 assert(sizeof(struct kvm_book3e_206_tlb_entry
) == sizeof(ppcmas_tlb_t
));
158 env
->tlb_dirty
= true;
160 cfg
.array
= (uintptr_t)env
->tlb
.tlbm
;
161 cfg
.array_len
= sizeof(ppcmas_tlb_t
) * entries
;
162 cfg
.params
= (uintptr_t)¶ms
;
163 cfg
.mmu_type
= KVM_MMU_FSL_BOOKE_NOHV
;
165 encap
.cap
= KVM_CAP_SW_TLB
;
166 encap
.args
[0] = (uintptr_t)&cfg
;
168 ret
= kvm_vcpu_ioctl(cs
, KVM_ENABLE_CAP
, &encap
);
170 fprintf(stderr
, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
171 __func__
, strerror(-ret
));
175 env
->kvm_sw_tlb
= true;
180 #if defined(TARGET_PPC64)
181 static void kvm_get_fallback_smmu_info(PowerPCCPU
*cpu
,
182 struct kvm_ppc_smmu_info
*info
)
184 CPUPPCState
*env
= &cpu
->env
;
185 CPUState
*cs
= CPU(cpu
);
187 memset(info
, 0, sizeof(*info
));
189 /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
190 * need to "guess" what the supported page sizes are.
192 * For that to work we make a few assumptions:
194 * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
195 * KVM which only supports 4K and 16M pages, but supports them
196 * regardless of the backing store characteritics. We also don't
197 * support 1T segments.
199 * This is safe as if HV KVM ever supports that capability or PR
200 * KVM grows supports for more page/segment sizes, those versions
201 * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
202 * will not hit this fallback
204 * - Else we are running HV KVM. This means we only support page
205 * sizes that fit in the backing store. Additionally we only
206 * advertize 64K pages if the processor is ARCH 2.06 and we assume
207 * P7 encodings for the SLB and hash table. Here too, we assume
208 * support for any newer processor will mean a kernel that
209 * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
212 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_PPC_GET_PVINFO
)) {
217 /* Standard 4k base page size segment */
218 info
->sps
[0].page_shift
= 12;
219 info
->sps
[0].slb_enc
= 0;
220 info
->sps
[0].enc
[0].page_shift
= 12;
221 info
->sps
[0].enc
[0].pte_enc
= 0;
223 /* Standard 16M large page size segment */
224 info
->sps
[1].page_shift
= 24;
225 info
->sps
[1].slb_enc
= SLB_VSID_L
;
226 info
->sps
[1].enc
[0].page_shift
= 24;
227 info
->sps
[1].enc
[0].pte_enc
= 0;
231 /* HV KVM has backing store size restrictions */
232 info
->flags
= KVM_PPC_PAGE_SIZES_REAL
;
234 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
235 info
->flags
|= KVM_PPC_1T_SEGMENTS
;
238 if (env
->mmu_model
== POWERPC_MMU_2_06
) {
244 /* Standard 4k base page size segment */
245 info
->sps
[i
].page_shift
= 12;
246 info
->sps
[i
].slb_enc
= 0;
247 info
->sps
[i
].enc
[0].page_shift
= 12;
248 info
->sps
[i
].enc
[0].pte_enc
= 0;
251 /* 64K on MMU 2.06 */
252 if (env
->mmu_model
== POWERPC_MMU_2_06
) {
253 info
->sps
[i
].page_shift
= 16;
254 info
->sps
[i
].slb_enc
= 0x110;
255 info
->sps
[i
].enc
[0].page_shift
= 16;
256 info
->sps
[i
].enc
[0].pte_enc
= 1;
260 /* Standard 16M large page size segment */
261 info
->sps
[i
].page_shift
= 24;
262 info
->sps
[i
].slb_enc
= SLB_VSID_L
;
263 info
->sps
[i
].enc
[0].page_shift
= 24;
264 info
->sps
[i
].enc
[0].pte_enc
= 0;
268 static void kvm_get_smmu_info(PowerPCCPU
*cpu
, struct kvm_ppc_smmu_info
*info
)
270 CPUState
*cs
= CPU(cpu
);
273 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_PPC_GET_SMMU_INFO
)) {
274 ret
= kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_GET_SMMU_INFO
, info
);
280 kvm_get_fallback_smmu_info(cpu
, info
);
283 static long getrampagesize(void)
289 /* guest RAM is backed by normal anonymous pages */
290 return getpagesize();
294 ret
= statfs(mem_path
, &fs
);
295 } while (ret
!= 0 && errno
== EINTR
);
298 fprintf(stderr
, "Couldn't statfs() memory path: %s\n",
303 #define HUGETLBFS_MAGIC 0x958458f6
305 if (fs
.f_type
!= HUGETLBFS_MAGIC
) {
306 /* Explicit mempath, but it's ordinary pages */
307 return getpagesize();
310 /* It's hugepage, return the huge page size */
314 static bool kvm_valid_page_size(uint32_t flags
, long rampgsize
, uint32_t shift
)
316 if (!(flags
& KVM_PPC_PAGE_SIZES_REAL
)) {
320 return (1ul << shift
) <= rampgsize
;
323 static void kvm_fixup_page_sizes(PowerPCCPU
*cpu
)
325 static struct kvm_ppc_smmu_info smmu_info
;
326 static bool has_smmu_info
;
327 CPUPPCState
*env
= &cpu
->env
;
331 /* We only handle page sizes for 64-bit server guests for now */
332 if (!(env
->mmu_model
& POWERPC_MMU_64
)) {
336 /* Collect MMU info from kernel if not already */
337 if (!has_smmu_info
) {
338 kvm_get_smmu_info(cpu
, &smmu_info
);
339 has_smmu_info
= true;
342 rampagesize
= getrampagesize();
344 /* Convert to QEMU form */
345 memset(&env
->sps
, 0, sizeof(env
->sps
));
347 for (ik
= iq
= 0; ik
< KVM_PPC_PAGE_SIZES_MAX_SZ
; ik
++) {
348 struct ppc_one_seg_page_size
*qsps
= &env
->sps
.sps
[iq
];
349 struct kvm_ppc_one_seg_page_size
*ksps
= &smmu_info
.sps
[ik
];
351 if (!kvm_valid_page_size(smmu_info
.flags
, rampagesize
,
355 qsps
->page_shift
= ksps
->page_shift
;
356 qsps
->slb_enc
= ksps
->slb_enc
;
357 for (jk
= jq
= 0; jk
< KVM_PPC_PAGE_SIZES_MAX_SZ
; jk
++) {
358 if (!kvm_valid_page_size(smmu_info
.flags
, rampagesize
,
359 ksps
->enc
[jk
].page_shift
)) {
362 qsps
->enc
[jq
].page_shift
= ksps
->enc
[jk
].page_shift
;
363 qsps
->enc
[jq
].pte_enc
= ksps
->enc
[jk
].pte_enc
;
364 if (++jq
>= PPC_PAGE_SIZES_MAX_SZ
) {
368 if (++iq
>= PPC_PAGE_SIZES_MAX_SZ
) {
372 env
->slb_nr
= smmu_info
.slb_size
;
373 if (smmu_info
.flags
& KVM_PPC_1T_SEGMENTS
) {
374 env
->mmu_model
|= POWERPC_MMU_1TSEG
;
376 env
->mmu_model
&= ~POWERPC_MMU_1TSEG
;
379 #else /* defined (TARGET_PPC64) */
381 static inline void kvm_fixup_page_sizes(PowerPCCPU
*cpu
)
385 #endif /* !defined (TARGET_PPC64) */
387 int kvm_arch_init_vcpu(CPUState
*cs
)
389 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
390 CPUPPCState
*cenv
= &cpu
->env
;
393 /* Gather server mmu info from KVM and update the CPU state */
394 kvm_fixup_page_sizes(cpu
);
396 /* Synchronize sregs with kvm */
397 ret
= kvm_arch_sync_sregs(cpu
);
402 idle_timer
= qemu_new_timer_ns(vm_clock
, kvm_kick_cpu
, cpu
);
404 /* Some targets support access to KVM's guest TLB. */
405 switch (cenv
->mmu_model
) {
406 case POWERPC_MMU_BOOKE206
:
407 ret
= kvm_booke206_tlb_init(cpu
);
416 void kvm_arch_reset_vcpu(CPUState
*cpu
)
420 static void kvm_sw_tlb_put(PowerPCCPU
*cpu
)
422 CPUPPCState
*env
= &cpu
->env
;
423 CPUState
*cs
= CPU(cpu
);
424 struct kvm_dirty_tlb dirty_tlb
;
425 unsigned char *bitmap
;
428 if (!env
->kvm_sw_tlb
) {
432 bitmap
= g_malloc((env
->nb_tlb
+ 7) / 8);
433 memset(bitmap
, 0xFF, (env
->nb_tlb
+ 7) / 8);
435 dirty_tlb
.bitmap
= (uintptr_t)bitmap
;
436 dirty_tlb
.num_dirty
= env
->nb_tlb
;
438 ret
= kvm_vcpu_ioctl(cs
, KVM_DIRTY_TLB
, &dirty_tlb
);
440 fprintf(stderr
, "%s: KVM_DIRTY_TLB: %s\n",
441 __func__
, strerror(-ret
));
447 int kvm_arch_put_registers(CPUState
*cs
, int level
)
449 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
450 CPUPPCState
*env
= &cpu
->env
;
451 struct kvm_regs regs
;
455 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
466 regs
.srr0
= env
->spr
[SPR_SRR0
];
467 regs
.srr1
= env
->spr
[SPR_SRR1
];
469 regs
.sprg0
= env
->spr
[SPR_SPRG0
];
470 regs
.sprg1
= env
->spr
[SPR_SPRG1
];
471 regs
.sprg2
= env
->spr
[SPR_SPRG2
];
472 regs
.sprg3
= env
->spr
[SPR_SPRG3
];
473 regs
.sprg4
= env
->spr
[SPR_SPRG4
];
474 regs
.sprg5
= env
->spr
[SPR_SPRG5
];
475 regs
.sprg6
= env
->spr
[SPR_SPRG6
];
476 regs
.sprg7
= env
->spr
[SPR_SPRG7
];
478 regs
.pid
= env
->spr
[SPR_BOOKE_PID
];
480 for (i
= 0;i
< 32; i
++)
481 regs
.gpr
[i
] = env
->gpr
[i
];
483 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
487 if (env
->tlb_dirty
) {
489 env
->tlb_dirty
= false;
492 if (cap_segstate
&& (level
>= KVM_PUT_RESET_STATE
)) {
493 struct kvm_sregs sregs
;
495 sregs
.pvr
= env
->spr
[SPR_PVR
];
497 sregs
.u
.s
.sdr1
= env
->spr
[SPR_SDR1
];
501 for (i
= 0; i
< 64; i
++) {
502 sregs
.u
.s
.ppc64
.slb
[i
].slbe
= env
->slb
[i
].esid
;
503 sregs
.u
.s
.ppc64
.slb
[i
].slbv
= env
->slb
[i
].vsid
;
508 for (i
= 0; i
< 16; i
++) {
509 sregs
.u
.s
.ppc32
.sr
[i
] = env
->sr
[i
];
513 for (i
= 0; i
< 8; i
++) {
514 /* Beware. We have to swap upper and lower bits here */
515 sregs
.u
.s
.ppc32
.dbat
[i
] = ((uint64_t)env
->DBAT
[0][i
] << 32)
517 sregs
.u
.s
.ppc32
.ibat
[i
] = ((uint64_t)env
->IBAT
[0][i
] << 32)
521 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
527 if (cap_hior
&& (level
>= KVM_PUT_RESET_STATE
)) {
528 uint64_t hior
= env
->spr
[SPR_HIOR
];
529 struct kvm_one_reg reg
= {
530 .id
= KVM_REG_PPC_HIOR
,
531 .addr
= (uintptr_t) &hior
,
534 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
543 int kvm_arch_get_registers(CPUState
*cs
)
545 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
546 CPUPPCState
*env
= &cpu
->env
;
547 struct kvm_regs regs
;
548 struct kvm_sregs sregs
;
552 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
557 for (i
= 7; i
>= 0; i
--) {
558 env
->crf
[i
] = cr
& 15;
568 env
->spr
[SPR_SRR0
] = regs
.srr0
;
569 env
->spr
[SPR_SRR1
] = regs
.srr1
;
571 env
->spr
[SPR_SPRG0
] = regs
.sprg0
;
572 env
->spr
[SPR_SPRG1
] = regs
.sprg1
;
573 env
->spr
[SPR_SPRG2
] = regs
.sprg2
;
574 env
->spr
[SPR_SPRG3
] = regs
.sprg3
;
575 env
->spr
[SPR_SPRG4
] = regs
.sprg4
;
576 env
->spr
[SPR_SPRG5
] = regs
.sprg5
;
577 env
->spr
[SPR_SPRG6
] = regs
.sprg6
;
578 env
->spr
[SPR_SPRG7
] = regs
.sprg7
;
580 env
->spr
[SPR_BOOKE_PID
] = regs
.pid
;
582 for (i
= 0;i
< 32; i
++)
583 env
->gpr
[i
] = regs
.gpr
[i
];
585 if (cap_booke_sregs
) {
586 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
591 if (sregs
.u
.e
.features
& KVM_SREGS_E_BASE
) {
592 env
->spr
[SPR_BOOKE_CSRR0
] = sregs
.u
.e
.csrr0
;
593 env
->spr
[SPR_BOOKE_CSRR1
] = sregs
.u
.e
.csrr1
;
594 env
->spr
[SPR_BOOKE_ESR
] = sregs
.u
.e
.esr
;
595 env
->spr
[SPR_BOOKE_DEAR
] = sregs
.u
.e
.dear
;
596 env
->spr
[SPR_BOOKE_MCSR
] = sregs
.u
.e
.mcsr
;
597 env
->spr
[SPR_BOOKE_TSR
] = sregs
.u
.e
.tsr
;
598 env
->spr
[SPR_BOOKE_TCR
] = sregs
.u
.e
.tcr
;
599 env
->spr
[SPR_DECR
] = sregs
.u
.e
.dec
;
600 env
->spr
[SPR_TBL
] = sregs
.u
.e
.tb
& 0xffffffff;
601 env
->spr
[SPR_TBU
] = sregs
.u
.e
.tb
>> 32;
602 env
->spr
[SPR_VRSAVE
] = sregs
.u
.e
.vrsave
;
605 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206
) {
606 env
->spr
[SPR_BOOKE_PIR
] = sregs
.u
.e
.pir
;
607 env
->spr
[SPR_BOOKE_MCSRR0
] = sregs
.u
.e
.mcsrr0
;
608 env
->spr
[SPR_BOOKE_MCSRR1
] = sregs
.u
.e
.mcsrr1
;
609 env
->spr
[SPR_BOOKE_DECAR
] = sregs
.u
.e
.decar
;
610 env
->spr
[SPR_BOOKE_IVPR
] = sregs
.u
.e
.ivpr
;
613 if (sregs
.u
.e
.features
& KVM_SREGS_E_64
) {
614 env
->spr
[SPR_BOOKE_EPCR
] = sregs
.u
.e
.epcr
;
617 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPRG8
) {
618 env
->spr
[SPR_BOOKE_SPRG8
] = sregs
.u
.e
.sprg8
;
621 if (sregs
.u
.e
.features
& KVM_SREGS_E_IVOR
) {
622 env
->spr
[SPR_BOOKE_IVOR0
] = sregs
.u
.e
.ivor_low
[0];
623 env
->spr
[SPR_BOOKE_IVOR1
] = sregs
.u
.e
.ivor_low
[1];
624 env
->spr
[SPR_BOOKE_IVOR2
] = sregs
.u
.e
.ivor_low
[2];
625 env
->spr
[SPR_BOOKE_IVOR3
] = sregs
.u
.e
.ivor_low
[3];
626 env
->spr
[SPR_BOOKE_IVOR4
] = sregs
.u
.e
.ivor_low
[4];
627 env
->spr
[SPR_BOOKE_IVOR5
] = sregs
.u
.e
.ivor_low
[5];
628 env
->spr
[SPR_BOOKE_IVOR6
] = sregs
.u
.e
.ivor_low
[6];
629 env
->spr
[SPR_BOOKE_IVOR7
] = sregs
.u
.e
.ivor_low
[7];
630 env
->spr
[SPR_BOOKE_IVOR8
] = sregs
.u
.e
.ivor_low
[8];
631 env
->spr
[SPR_BOOKE_IVOR9
] = sregs
.u
.e
.ivor_low
[9];
632 env
->spr
[SPR_BOOKE_IVOR10
] = sregs
.u
.e
.ivor_low
[10];
633 env
->spr
[SPR_BOOKE_IVOR11
] = sregs
.u
.e
.ivor_low
[11];
634 env
->spr
[SPR_BOOKE_IVOR12
] = sregs
.u
.e
.ivor_low
[12];
635 env
->spr
[SPR_BOOKE_IVOR13
] = sregs
.u
.e
.ivor_low
[13];
636 env
->spr
[SPR_BOOKE_IVOR14
] = sregs
.u
.e
.ivor_low
[14];
637 env
->spr
[SPR_BOOKE_IVOR15
] = sregs
.u
.e
.ivor_low
[15];
639 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPE
) {
640 env
->spr
[SPR_BOOKE_IVOR32
] = sregs
.u
.e
.ivor_high
[0];
641 env
->spr
[SPR_BOOKE_IVOR33
] = sregs
.u
.e
.ivor_high
[1];
642 env
->spr
[SPR_BOOKE_IVOR34
] = sregs
.u
.e
.ivor_high
[2];
645 if (sregs
.u
.e
.features
& KVM_SREGS_E_PM
) {
646 env
->spr
[SPR_BOOKE_IVOR35
] = sregs
.u
.e
.ivor_high
[3];
649 if (sregs
.u
.e
.features
& KVM_SREGS_E_PC
) {
650 env
->spr
[SPR_BOOKE_IVOR36
] = sregs
.u
.e
.ivor_high
[4];
651 env
->spr
[SPR_BOOKE_IVOR37
] = sregs
.u
.e
.ivor_high
[5];
655 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206_MMU
) {
656 env
->spr
[SPR_BOOKE_MAS0
] = sregs
.u
.e
.mas0
;
657 env
->spr
[SPR_BOOKE_MAS1
] = sregs
.u
.e
.mas1
;
658 env
->spr
[SPR_BOOKE_MAS2
] = sregs
.u
.e
.mas2
;
659 env
->spr
[SPR_BOOKE_MAS3
] = sregs
.u
.e
.mas7_3
& 0xffffffff;
660 env
->spr
[SPR_BOOKE_MAS4
] = sregs
.u
.e
.mas4
;
661 env
->spr
[SPR_BOOKE_MAS6
] = sregs
.u
.e
.mas6
;
662 env
->spr
[SPR_BOOKE_MAS7
] = sregs
.u
.e
.mas7_3
>> 32;
663 env
->spr
[SPR_MMUCFG
] = sregs
.u
.e
.mmucfg
;
664 env
->spr
[SPR_BOOKE_TLB0CFG
] = sregs
.u
.e
.tlbcfg
[0];
665 env
->spr
[SPR_BOOKE_TLB1CFG
] = sregs
.u
.e
.tlbcfg
[1];
668 if (sregs
.u
.e
.features
& KVM_SREGS_EXP
) {
669 env
->spr
[SPR_BOOKE_EPR
] = sregs
.u
.e
.epr
;
672 if (sregs
.u
.e
.features
& KVM_SREGS_E_PD
) {
673 env
->spr
[SPR_BOOKE_EPLC
] = sregs
.u
.e
.eplc
;
674 env
->spr
[SPR_BOOKE_EPSC
] = sregs
.u
.e
.epsc
;
677 if (sregs
.u
.e
.impl_id
== KVM_SREGS_E_IMPL_FSL
) {
678 env
->spr
[SPR_E500_SVR
] = sregs
.u
.e
.impl
.fsl
.svr
;
679 env
->spr
[SPR_Exxx_MCAR
] = sregs
.u
.e
.impl
.fsl
.mcar
;
680 env
->spr
[SPR_HID0
] = sregs
.u
.e
.impl
.fsl
.hid0
;
682 if (sregs
.u
.e
.impl
.fsl
.features
& KVM_SREGS_E_FSL_PIDn
) {
683 env
->spr
[SPR_BOOKE_PID1
] = sregs
.u
.e
.impl
.fsl
.pid1
;
684 env
->spr
[SPR_BOOKE_PID2
] = sregs
.u
.e
.impl
.fsl
.pid2
;
690 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
695 ppc_store_sdr1(env
, sregs
.u
.s
.sdr1
);
699 for (i
= 0; i
< 64; i
++) {
700 ppc_store_slb(env
, sregs
.u
.s
.ppc64
.slb
[i
].slbe
,
701 sregs
.u
.s
.ppc64
.slb
[i
].slbv
);
706 for (i
= 0; i
< 16; i
++) {
707 env
->sr
[i
] = sregs
.u
.s
.ppc32
.sr
[i
];
711 for (i
= 0; i
< 8; i
++) {
712 env
->DBAT
[0][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] & 0xffffffff;
713 env
->DBAT
[1][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] >> 32;
714 env
->IBAT
[0][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] & 0xffffffff;
715 env
->IBAT
[1][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] >> 32;
722 int kvmppc_set_interrupt(PowerPCCPU
*cpu
, int irq
, int level
)
724 unsigned virq
= level
? KVM_INTERRUPT_SET_LEVEL
: KVM_INTERRUPT_UNSET
;
726 if (irq
!= PPC_INTERRUPT_EXT
) {
730 if (!kvm_enabled() || !cap_interrupt_unset
|| !cap_interrupt_level
) {
734 kvm_vcpu_ioctl(CPU(cpu
), KVM_INTERRUPT
, &virq
);
739 #if defined(TARGET_PPCEMB)
740 #define PPC_INPUT_INT PPC40x_INPUT_INT
741 #elif defined(TARGET_PPC64)
742 #define PPC_INPUT_INT PPC970_INPUT_INT
744 #define PPC_INPUT_INT PPC6xx_INPUT_INT
747 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
749 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
750 CPUPPCState
*env
= &cpu
->env
;
754 /* PowerPC QEMU tracks the various core input pins (interrupt, critical
755 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
756 if (!cap_interrupt_level
&&
757 run
->ready_for_interrupt_injection
&&
758 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
759 (env
->irq_input_state
& (1<<PPC_INPUT_INT
)))
761 /* For now KVM disregards the 'irq' argument. However, in the
762 * future KVM could cache it in-kernel to avoid a heavyweight exit
763 * when reading the UIC.
765 irq
= KVM_INTERRUPT_SET
;
767 dprintf("injected interrupt %d\n", irq
);
768 r
= kvm_vcpu_ioctl(cs
, KVM_INTERRUPT
, &irq
);
770 printf("cpu %d fail inject %x\n", cs
->cpu_index
, irq
);
773 /* Always wake up soon in case the interrupt was level based */
774 qemu_mod_timer(idle_timer
, qemu_get_clock_ns(vm_clock
) +
775 (get_ticks_per_sec() / 50));
778 /* We don't know if there are more interrupts pending after this. However,
779 * the guest will return to userspace in the course of handling this one
780 * anyways, so we will get a chance to deliver the rest. */
783 void kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
787 int kvm_arch_process_async_events(CPUState
*cs
)
789 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
790 return cpu
->env
.halted
;
793 static int kvmppc_handle_halt(CPUPPCState
*env
)
795 if (!(env
->interrupt_request
& CPU_INTERRUPT_HARD
) && (msr_ee
)) {
797 env
->exception_index
= EXCP_HLT
;
803 /* map dcr access to existing qemu dcr emulation */
804 static int kvmppc_handle_dcr_read(CPUPPCState
*env
, uint32_t dcrn
, uint32_t *data
)
806 if (ppc_dcr_read(env
->dcr_env
, dcrn
, data
) < 0)
807 fprintf(stderr
, "Read to unhandled DCR (0x%x)\n", dcrn
);
812 static int kvmppc_handle_dcr_write(CPUPPCState
*env
, uint32_t dcrn
, uint32_t data
)
814 if (ppc_dcr_write(env
->dcr_env
, dcrn
, data
) < 0)
815 fprintf(stderr
, "Write to unhandled DCR (0x%x)\n", dcrn
);
820 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
822 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
823 CPUPPCState
*env
= &cpu
->env
;
826 switch (run
->exit_reason
) {
828 if (run
->dcr
.is_write
) {
829 dprintf("handle dcr write\n");
830 ret
= kvmppc_handle_dcr_write(env
, run
->dcr
.dcrn
, run
->dcr
.data
);
832 dprintf("handle dcr read\n");
833 ret
= kvmppc_handle_dcr_read(env
, run
->dcr
.dcrn
, &run
->dcr
.data
);
837 dprintf("handle halt\n");
838 ret
= kvmppc_handle_halt(env
);
840 #ifdef CONFIG_PSERIES
841 case KVM_EXIT_PAPR_HCALL
:
842 dprintf("handle PAPR hypercall\n");
843 run
->papr_hcall
.ret
= spapr_hypercall(cpu
,
845 run
->papr_hcall
.args
);
850 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
858 static int read_cpuinfo(const char *field
, char *value
, int len
)
862 int field_len
= strlen(field
);
865 f
= fopen("/proc/cpuinfo", "r");
871 if(!fgets(line
, sizeof(line
), f
)) {
874 if (!strncmp(line
, field
, field_len
)) {
875 pstrcpy(value
, len
, line
);
886 uint32_t kvmppc_get_tbfreq(void)
890 uint32_t retval
= get_ticks_per_sec();
892 if (read_cpuinfo("timebase", line
, sizeof(line
))) {
896 if (!(ns
= strchr(line
, ':'))) {
906 /* Try to find a device tree node for a CPU with clock-frequency property */
907 static int kvmppc_find_cpu_dt(char *buf
, int buf_len
)
912 if ((dp
= opendir(PROC_DEVTREE_CPU
)) == NULL
) {
913 printf("Can't open directory " PROC_DEVTREE_CPU
"\n");
918 while ((dirp
= readdir(dp
)) != NULL
) {
920 snprintf(buf
, buf_len
, "%s%s/clock-frequency", PROC_DEVTREE_CPU
,
924 snprintf(buf
, buf_len
, "%s%s", PROC_DEVTREE_CPU
, dirp
->d_name
);
931 if (buf
[0] == '\0') {
932 printf("Unknown host!\n");
939 /* Read a CPU node property from the host device tree that's a single
940 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
941 * (can't find or open the property, or doesn't understand the
943 static uint64_t kvmppc_read_int_cpu_dt(const char *propname
)
953 if (kvmppc_find_cpu_dt(buf
, sizeof(buf
))) {
957 strncat(buf
, "/", sizeof(buf
) - strlen(buf
));
958 strncat(buf
, propname
, sizeof(buf
) - strlen(buf
));
960 f
= fopen(buf
, "rb");
965 len
= fread(&u
, 1, sizeof(u
), f
);
969 /* property is a 32-bit quantity */
970 return be32_to_cpu(u
.v32
);
972 return be64_to_cpu(u
.v64
);
978 uint64_t kvmppc_get_clockfreq(void)
980 return kvmppc_read_int_cpu_dt("clock-frequency");
983 uint32_t kvmppc_get_vmx(void)
985 return kvmppc_read_int_cpu_dt("ibm,vmx");
988 uint32_t kvmppc_get_dfp(void)
990 return kvmppc_read_int_cpu_dt("ibm,dfp");
993 static int kvmppc_get_pvinfo(CPUPPCState
*env
, struct kvm_ppc_pvinfo
*pvinfo
)
995 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
996 CPUState
*cs
= CPU(cpu
);
998 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_PPC_GET_PVINFO
) &&
999 !kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_GET_PVINFO
, pvinfo
)) {
1006 int kvmppc_get_hasidle(CPUPPCState
*env
)
1008 struct kvm_ppc_pvinfo pvinfo
;
1010 if (!kvmppc_get_pvinfo(env
, &pvinfo
) &&
1011 (pvinfo
.flags
& KVM_PPC_PVINFO_FLAGS_EV_IDLE
)) {
1018 int kvmppc_get_hypercall(CPUPPCState
*env
, uint8_t *buf
, int buf_len
)
1020 uint32_t *hc
= (uint32_t*)buf
;
1021 struct kvm_ppc_pvinfo pvinfo
;
1023 if (!kvmppc_get_pvinfo(env
, &pvinfo
)) {
1024 memcpy(buf
, pvinfo
.hcall
, buf_len
);
1029 * Fallback to always fail hypercalls:
1045 void kvmppc_set_papr(PowerPCCPU
*cpu
)
1047 CPUPPCState
*env
= &cpu
->env
;
1048 CPUState
*cs
= CPU(cpu
);
1049 struct kvm_enable_cap cap
= {};
1052 cap
.cap
= KVM_CAP_PPC_PAPR
;
1053 ret
= kvm_vcpu_ioctl(cs
, KVM_ENABLE_CAP
, &cap
);
1056 cpu_abort(env
, "This KVM version does not support PAPR\n");
1060 int kvmppc_smt_threads(void)
1062 return cap_ppc_smt
? cap_ppc_smt
: 1;
1066 off_t
kvmppc_alloc_rma(const char *name
, MemoryRegion
*sysmem
)
1071 struct kvm_allocate_rma ret
;
1072 MemoryRegion
*rma_region
;
1074 /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
1075 * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
1076 * not necessary on this hardware
1077 * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
1079 * FIXME: We should allow the user to force contiguous RMA
1080 * allocation in the cap_ppc_rma==1 case.
1082 if (cap_ppc_rma
< 2) {
1086 fd
= kvm_vm_ioctl(kvm_state
, KVM_ALLOCATE_RMA
, &ret
);
1088 fprintf(stderr
, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
1093 size
= MIN(ret
.rma_size
, 256ul << 20);
1095 rma
= mmap(NULL
, size
, PROT_READ
|PROT_WRITE
, MAP_SHARED
, fd
, 0);
1096 if (rma
== MAP_FAILED
) {
1097 fprintf(stderr
, "KVM: Error mapping RMA: %s\n", strerror(errno
));
1101 rma_region
= g_new(MemoryRegion
, 1);
1102 memory_region_init_ram_ptr(rma_region
, name
, size
, rma
);
1103 vmstate_register_ram_global(rma_region
);
1104 memory_region_add_subregion(sysmem
, 0, rma_region
);
1109 uint64_t kvmppc_rma_size(uint64_t current_size
, unsigned int hash_shift
)
1111 if (cap_ppc_rma
>= 2) {
1112 return current_size
;
1114 return MIN(current_size
,
1115 getrampagesize() << (hash_shift
- 7));
1119 void *kvmppc_create_spapr_tce(uint32_t liobn
, uint32_t window_size
, int *pfd
)
1121 struct kvm_create_spapr_tce args
= {
1123 .window_size
= window_size
,
1129 /* Must set fd to -1 so we don't try to munmap when called for
1130 * destroying the table, which the upper layers -will- do
1133 if (!cap_spapr_tce
) {
1137 fd
= kvm_vm_ioctl(kvm_state
, KVM_CREATE_SPAPR_TCE
, &args
);
1139 fprintf(stderr
, "KVM: Failed to create TCE table for liobn 0x%x\n",
1144 len
= (window_size
/ SPAPR_TCE_PAGE_SIZE
) * sizeof(sPAPRTCE
);
1145 /* FIXME: round this up to page size */
1147 table
= mmap(NULL
, len
, PROT_READ
|PROT_WRITE
, MAP_SHARED
, fd
, 0);
1148 if (table
== MAP_FAILED
) {
1149 fprintf(stderr
, "KVM: Failed to map TCE table for liobn 0x%x\n",
1159 int kvmppc_remove_spapr_tce(void *table
, int fd
, uint32_t window_size
)
1167 len
= (window_size
/ SPAPR_TCE_PAGE_SIZE
)*sizeof(sPAPRTCE
);
1168 if ((munmap(table
, len
) < 0) ||
1170 fprintf(stderr
, "KVM: Unexpected error removing TCE table: %s",
1172 /* Leak the table */
1178 int kvmppc_reset_htab(int shift_hint
)
1180 uint32_t shift
= shift_hint
;
1182 if (!kvm_enabled()) {
1183 /* Full emulation, tell caller to allocate htab itself */
1186 if (kvm_check_extension(kvm_state
, KVM_CAP_PPC_ALLOC_HTAB
)) {
1188 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_ALLOCATE_HTAB
, &shift
);
1189 if (ret
== -ENOTTY
) {
1190 /* At least some versions of PR KVM advertise the
1191 * capability, but don't implement the ioctl(). Oops.
1192 * Return 0 so that we allocate the htab in qemu, as is
1193 * correct for PR. */
1195 } else if (ret
< 0) {
1201 /* We have a kernel that predates the htab reset calls. For PR
1202 * KVM, we need to allocate the htab ourselves, for an HV KVM of
1203 * this era, it has allocated a 16MB fixed size hash table
1204 * already. Kernels of this era have the GET_PVINFO capability
1205 * only on PR, so we use this hack to determine the right
1207 if (kvm_check_extension(kvm_state
, KVM_CAP_PPC_GET_PVINFO
)) {
1208 /* PR - tell caller to allocate htab */
1211 /* HV - assume 16MB kernel allocated htab */
1216 static inline uint32_t mfpvr(void)
1225 static void alter_insns(uint64_t *word
, uint64_t flags
, bool on
)
1234 static void kvmppc_host_cpu_initfn(Object
*obj
)
1236 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(obj
);
1238 assert(kvm_enabled());
1240 if (pcc
->info
->pvr
!= mfpvr()) {
1241 fprintf(stderr
, "Your host CPU is unsupported.\n"
1242 "Please choose a supported model instead, see -cpu ?.\n");
1247 static void kvmppc_host_cpu_class_init(ObjectClass
*oc
, void *data
)
1249 PowerPCCPUClass
*pcc
= POWERPC_CPU_CLASS(oc
);
1250 uint32_t host_pvr
= mfpvr();
1251 PowerPCCPUClass
*pvr_pcc
;
1253 uint32_t vmx
= kvmppc_get_vmx();
1254 uint32_t dfp
= kvmppc_get_dfp();
1256 spec
= g_malloc0(sizeof(*spec
));
1258 pvr_pcc
= ppc_cpu_class_by_pvr(host_pvr
);
1259 if (pvr_pcc
!= NULL
) {
1260 memcpy(spec
, pvr_pcc
->info
, sizeof(*spec
));
1263 /* Override the display name for -cpu ? and QMP */
1264 pcc
->info
->name
= "host";
1266 /* Now fix up the spec with information we can query from the host */
1269 /* Only override when we know what the host supports */
1270 alter_insns(&spec
->insns_flags
, PPC_ALTIVEC
, vmx
> 0);
1271 alter_insns(&spec
->insns_flags2
, PPC2_VSX
, vmx
> 1);
1274 /* Only override when we know what the host supports */
1275 alter_insns(&spec
->insns_flags2
, PPC2_DFP
, dfp
);
1279 int kvmppc_fixup_cpu(PowerPCCPU
*cpu
)
1281 CPUState
*cs
= CPU(cpu
);
1284 /* Adjust cpu index for SMT */
1285 smt
= kvmppc_smt_threads();
1286 cs
->cpu_index
= (cs
->cpu_index
/ smp_threads
) * smt
1287 + (cs
->cpu_index
% smp_threads
);
1293 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
1298 int kvm_arch_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
1303 int kvm_arch_on_sigbus(int code
, void *addr
)
1308 static const TypeInfo kvm_host_cpu_type_info
= {
1309 .name
= TYPE_HOST_POWERPC_CPU
,
1310 .parent
= TYPE_POWERPC_CPU
,
1311 .instance_init
= kvmppc_host_cpu_initfn
,
1312 .class_init
= kvmppc_host_cpu_class_init
,
1315 static void kvm_ppc_register_types(void)
1317 type_register_static(&kvm_host_cpu_type_info
);
1320 type_init(kvm_ppc_register_types
)