glib: Add compat wrapper for g_poll on old glib
[qemu/pbrook.git] / target-sparc / ldst_helper.c
blob6d767fb45a643f6c74e8cc159abbe2e4d7d3a332
1 /*
2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "helper.h"
23 //#define DEBUG_MMU
24 //#define DEBUG_MXCC
25 //#define DEBUG_UNALIGNED
26 //#define DEBUG_UNASSIGNED
27 //#define DEBUG_ASI
28 //#define DEBUG_CACHE_CONTROL
30 #ifdef DEBUG_MMU
31 #define DPRINTF_MMU(fmt, ...) \
32 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
33 #else
34 #define DPRINTF_MMU(fmt, ...) do {} while (0)
35 #endif
37 #ifdef DEBUG_MXCC
38 #define DPRINTF_MXCC(fmt, ...) \
39 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
42 #endif
44 #ifdef DEBUG_ASI
45 #define DPRINTF_ASI(fmt, ...) \
46 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
47 #endif
49 #ifdef DEBUG_CACHE_CONTROL
50 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
51 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
52 #else
53 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
54 #endif
56 #ifdef TARGET_SPARC64
57 #ifndef TARGET_ABI32
58 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
59 #else
60 #define AM_CHECK(env1) (1)
61 #endif
62 #endif
64 #define QT0 (env->qt0)
65 #define QT1 (env->qt1)
67 #if !defined(CONFIG_USER_ONLY)
68 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
69 target_ulong addr, int is_write,
70 int is_user, uintptr_t retaddr);
71 #include "exec/softmmu_exec.h"
72 #define MMUSUFFIX _mmu
73 #define ALIGNED_ONLY
75 #define SHIFT 0
76 #include "exec/softmmu_template.h"
78 #define SHIFT 1
79 #include "exec/softmmu_template.h"
81 #define SHIFT 2
82 #include "exec/softmmu_template.h"
84 #define SHIFT 3
85 #include "exec/softmmu_template.h"
86 #endif
88 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
89 /* Calculates TSB pointer value for fault page size 8k or 64k */
90 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
91 uint64_t tag_access_register,
92 int page_size)
94 uint64_t tsb_base = tsb_register & ~0x1fffULL;
95 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
96 int tsb_size = tsb_register & 0xf;
98 /* discard lower 13 bits which hold tag access context */
99 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
101 /* now reorder bits */
102 uint64_t tsb_base_mask = ~0x1fffULL;
103 uint64_t va = tag_access_va;
105 /* move va bits to correct position */
106 if (page_size == 8*1024) {
107 va >>= 9;
108 } else if (page_size == 64*1024) {
109 va >>= 12;
112 if (tsb_size) {
113 tsb_base_mask <<= tsb_size;
116 /* calculate tsb_base mask and adjust va if split is in use */
117 if (tsb_split) {
118 if (page_size == 8*1024) {
119 va &= ~(1ULL << (13 + tsb_size));
120 } else if (page_size == 64*1024) {
121 va |= (1ULL << (13 + tsb_size));
123 tsb_base_mask <<= 1;
126 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
129 /* Calculates tag target register value by reordering bits
130 in tag access register */
131 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
133 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
136 static void replace_tlb_entry(SparcTLBEntry *tlb,
137 uint64_t tlb_tag, uint64_t tlb_tte,
138 CPUSPARCState *env1)
140 target_ulong mask, size, va, offset;
142 /* flush page range if translation is valid */
143 if (TTE_IS_VALID(tlb->tte)) {
145 mask = 0xffffffffffffe000ULL;
146 mask <<= 3 * ((tlb->tte >> 61) & 3);
147 size = ~mask + 1;
149 va = tlb->tag & mask;
151 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
152 tlb_flush_page(env1, va + offset);
156 tlb->tag = tlb_tag;
157 tlb->tte = tlb_tte;
160 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
161 const char *strmmu, CPUSPARCState *env1)
163 unsigned int i;
164 target_ulong mask;
165 uint64_t context;
167 int is_demap_context = (demap_addr >> 6) & 1;
169 /* demap context */
170 switch ((demap_addr >> 4) & 3) {
171 case 0: /* primary */
172 context = env1->dmmu.mmu_primary_context;
173 break;
174 case 1: /* secondary */
175 context = env1->dmmu.mmu_secondary_context;
176 break;
177 case 2: /* nucleus */
178 context = 0;
179 break;
180 case 3: /* reserved */
181 default:
182 return;
185 for (i = 0; i < 64; i++) {
186 if (TTE_IS_VALID(tlb[i].tte)) {
188 if (is_demap_context) {
189 /* will remove non-global entries matching context value */
190 if (TTE_IS_GLOBAL(tlb[i].tte) ||
191 !tlb_compare_context(&tlb[i], context)) {
192 continue;
194 } else {
195 /* demap page
196 will remove any entry matching VA */
197 mask = 0xffffffffffffe000ULL;
198 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
200 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
201 continue;
204 /* entry should be global or matching context value */
205 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
206 !tlb_compare_context(&tlb[i], context)) {
207 continue;
211 replace_tlb_entry(&tlb[i], 0, 0, env1);
212 #ifdef DEBUG_MMU
213 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
214 dump_mmu(stdout, fprintf, env1);
215 #endif
220 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
221 uint64_t tlb_tag, uint64_t tlb_tte,
222 const char *strmmu, CPUSPARCState *env1)
224 unsigned int i, replace_used;
226 /* Try replacing invalid entry */
227 for (i = 0; i < 64; i++) {
228 if (!TTE_IS_VALID(tlb[i].tte)) {
229 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
230 #ifdef DEBUG_MMU
231 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
232 dump_mmu(stdout, fprintf, env1);
233 #endif
234 return;
238 /* All entries are valid, try replacing unlocked entry */
240 for (replace_used = 0; replace_used < 2; ++replace_used) {
242 /* Used entries are not replaced on first pass */
244 for (i = 0; i < 64; i++) {
245 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
247 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248 #ifdef DEBUG_MMU
249 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
250 strmmu, (replace_used ? "used" : "unused"), i);
251 dump_mmu(stdout, fprintf, env1);
252 #endif
253 return;
257 /* Now reset used bit and search for unused entries again */
259 for (i = 0; i < 64; i++) {
260 TTE_SET_UNUSED(tlb[i].tte);
264 #ifdef DEBUG_MMU
265 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
266 #endif
267 /* error state? */
270 #endif
272 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
274 #ifdef TARGET_SPARC64
275 if (AM_CHECK(env1)) {
276 addr &= 0xffffffffULL;
278 #endif
279 return addr;
282 /* returns true if access using this ASI is to have address translated by MMU
283 otherwise access is to raw physical address */
284 static inline int is_translating_asi(int asi)
286 #ifdef TARGET_SPARC64
287 /* Ultrasparc IIi translating asi
288 - note this list is defined by cpu implementation
290 switch (asi) {
291 case 0x04 ... 0x11:
292 case 0x16 ... 0x19:
293 case 0x1E ... 0x1F:
294 case 0x24 ... 0x2C:
295 case 0x70 ... 0x73:
296 case 0x78 ... 0x79:
297 case 0x80 ... 0xFF:
298 return 1;
300 default:
301 return 0;
303 #else
304 /* TODO: check sparc32 bits */
305 return 0;
306 #endif
309 static inline target_ulong asi_address_mask(CPUSPARCState *env,
310 int asi, target_ulong addr)
312 if (is_translating_asi(asi)) {
313 return address_mask(env, addr);
314 } else {
315 return addr;
319 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
321 if (addr & align) {
322 #ifdef DEBUG_UNALIGNED
323 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
324 "\n", addr, env->pc);
325 #endif
326 helper_raise_exception(env, TT_UNALIGNED);
330 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
331 defined(DEBUG_MXCC)
332 static void dump_mxcc(CPUSPARCState *env)
334 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
335 "\n",
336 env->mxccdata[0], env->mxccdata[1],
337 env->mxccdata[2], env->mxccdata[3]);
338 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
339 "\n"
340 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
341 "\n",
342 env->mxccregs[0], env->mxccregs[1],
343 env->mxccregs[2], env->mxccregs[3],
344 env->mxccregs[4], env->mxccregs[5],
345 env->mxccregs[6], env->mxccregs[7]);
347 #endif
349 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
350 && defined(DEBUG_ASI)
351 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
352 uint64_t r1)
354 switch (size) {
355 case 1:
356 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
357 addr, asi, r1 & 0xff);
358 break;
359 case 2:
360 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
361 addr, asi, r1 & 0xffff);
362 break;
363 case 4:
364 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
365 addr, asi, r1 & 0xffffffff);
366 break;
367 case 8:
368 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
369 addr, asi, r1);
370 break;
373 #endif
375 #ifndef TARGET_SPARC64
376 #ifndef CONFIG_USER_ONLY
379 /* Leon3 cache control */
381 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
382 uint64_t val, int size)
384 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
385 addr, val, size);
387 if (size != 4) {
388 DPRINTF_CACHE_CONTROL("32bits only\n");
389 return;
392 switch (addr) {
393 case 0x00: /* Cache control */
395 /* These values must always be read as zeros */
396 val &= ~CACHE_CTRL_FD;
397 val &= ~CACHE_CTRL_FI;
398 val &= ~CACHE_CTRL_IB;
399 val &= ~CACHE_CTRL_IP;
400 val &= ~CACHE_CTRL_DP;
402 env->cache_control = val;
403 break;
404 case 0x04: /* Instruction cache configuration */
405 case 0x08: /* Data cache configuration */
406 /* Read Only */
407 break;
408 default:
409 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
410 break;
414 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
415 int size)
417 uint64_t ret = 0;
419 if (size != 4) {
420 DPRINTF_CACHE_CONTROL("32bits only\n");
421 return 0;
424 switch (addr) {
425 case 0x00: /* Cache control */
426 ret = env->cache_control;
427 break;
429 /* Configuration registers are read and only always keep those
430 predefined values */
432 case 0x04: /* Instruction cache configuration */
433 ret = 0x10220000;
434 break;
435 case 0x08: /* Data cache configuration */
436 ret = 0x18220000;
437 break;
438 default:
439 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
440 break;
442 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
443 addr, ret, size);
444 return ret;
447 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
448 int sign)
450 uint64_t ret = 0;
451 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
452 uint32_t last_addr = addr;
453 #endif
455 helper_check_align(env, addr, size - 1);
456 switch (asi) {
457 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
458 switch (addr) {
459 case 0x00: /* Leon3 Cache Control */
460 case 0x08: /* Leon3 Instruction Cache config */
461 case 0x0C: /* Leon3 Date Cache config */
462 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
463 ret = leon3_cache_control_ld(env, addr, size);
465 break;
466 case 0x01c00a00: /* MXCC control register */
467 if (size == 8) {
468 ret = env->mxccregs[3];
469 } else {
470 qemu_log_mask(LOG_UNIMP,
471 "%08x: unimplemented access size: %d\n", addr,
472 size);
474 break;
475 case 0x01c00a04: /* MXCC control register */
476 if (size == 4) {
477 ret = env->mxccregs[3];
478 } else {
479 qemu_log_mask(LOG_UNIMP,
480 "%08x: unimplemented access size: %d\n", addr,
481 size);
483 break;
484 case 0x01c00c00: /* Module reset register */
485 if (size == 8) {
486 ret = env->mxccregs[5];
487 /* should we do something here? */
488 } else {
489 qemu_log_mask(LOG_UNIMP,
490 "%08x: unimplemented access size: %d\n", addr,
491 size);
493 break;
494 case 0x01c00f00: /* MBus port address register */
495 if (size == 8) {
496 ret = env->mxccregs[7];
497 } else {
498 qemu_log_mask(LOG_UNIMP,
499 "%08x: unimplemented access size: %d\n", addr,
500 size);
502 break;
503 default:
504 qemu_log_mask(LOG_UNIMP,
505 "%08x: unimplemented address, size: %d\n", addr,
506 size);
507 break;
509 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
510 "addr = %08x -> ret = %" PRIx64 ","
511 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
512 #ifdef DEBUG_MXCC
513 dump_mxcc(env);
514 #endif
515 break;
516 case 3: /* MMU probe */
517 case 0x18: /* LEON3 MMU probe */
519 int mmulev;
521 mmulev = (addr >> 8) & 15;
522 if (mmulev > 4) {
523 ret = 0;
524 } else {
525 ret = mmu_probe(env, addr, mmulev);
527 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
528 addr, mmulev, ret);
530 break;
531 case 4: /* read MMU regs */
532 case 0x19: /* LEON3 read MMU regs */
534 int reg = (addr >> 8) & 0x1f;
536 ret = env->mmuregs[reg];
537 if (reg == 3) { /* Fault status cleared on read */
538 env->mmuregs[3] = 0;
539 } else if (reg == 0x13) { /* Fault status read */
540 ret = env->mmuregs[3];
541 } else if (reg == 0x14) { /* Fault address read */
542 ret = env->mmuregs[4];
544 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
546 break;
547 case 5: /* Turbosparc ITLB Diagnostic */
548 case 6: /* Turbosparc DTLB Diagnostic */
549 case 7: /* Turbosparc IOTLB Diagnostic */
550 break;
551 case 9: /* Supervisor code access */
552 switch (size) {
553 case 1:
554 ret = cpu_ldub_code(env, addr);
555 break;
556 case 2:
557 ret = cpu_lduw_code(env, addr);
558 break;
559 default:
560 case 4:
561 ret = cpu_ldl_code(env, addr);
562 break;
563 case 8:
564 ret = cpu_ldq_code(env, addr);
565 break;
567 break;
568 case 0xa: /* User data access */
569 switch (size) {
570 case 1:
571 ret = cpu_ldub_user(env, addr);
572 break;
573 case 2:
574 ret = cpu_lduw_user(env, addr);
575 break;
576 default:
577 case 4:
578 ret = cpu_ldl_user(env, addr);
579 break;
580 case 8:
581 ret = cpu_ldq_user(env, addr);
582 break;
584 break;
585 case 0xb: /* Supervisor data access */
586 switch (size) {
587 case 1:
588 ret = cpu_ldub_kernel(env, addr);
589 break;
590 case 2:
591 ret = cpu_lduw_kernel(env, addr);
592 break;
593 default:
594 case 4:
595 ret = cpu_ldl_kernel(env, addr);
596 break;
597 case 8:
598 ret = cpu_ldq_kernel(env, addr);
599 break;
601 break;
602 case 0xc: /* I-cache tag */
603 case 0xd: /* I-cache data */
604 case 0xe: /* D-cache tag */
605 case 0xf: /* D-cache data */
606 break;
607 case 0x20: /* MMU passthrough */
608 case 0x1c: /* LEON MMU passthrough */
609 switch (size) {
610 case 1:
611 ret = ldub_phys(addr);
612 break;
613 case 2:
614 ret = lduw_phys(addr);
615 break;
616 default:
617 case 4:
618 ret = ldl_phys(addr);
619 break;
620 case 8:
621 ret = ldq_phys(addr);
622 break;
624 break;
625 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
626 switch (size) {
627 case 1:
628 ret = ldub_phys((hwaddr)addr
629 | ((hwaddr)(asi & 0xf) << 32));
630 break;
631 case 2:
632 ret = lduw_phys((hwaddr)addr
633 | ((hwaddr)(asi & 0xf) << 32));
634 break;
635 default:
636 case 4:
637 ret = ldl_phys((hwaddr)addr
638 | ((hwaddr)(asi & 0xf) << 32));
639 break;
640 case 8:
641 ret = ldq_phys((hwaddr)addr
642 | ((hwaddr)(asi & 0xf) << 32));
643 break;
645 break;
646 case 0x30: /* Turbosparc secondary cache diagnostic */
647 case 0x31: /* Turbosparc RAM snoop */
648 case 0x32: /* Turbosparc page table descriptor diagnostic */
649 case 0x39: /* data cache diagnostic register */
650 ret = 0;
651 break;
652 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
654 int reg = (addr >> 8) & 3;
656 switch (reg) {
657 case 0: /* Breakpoint Value (Addr) */
658 ret = env->mmubpregs[reg];
659 break;
660 case 1: /* Breakpoint Mask */
661 ret = env->mmubpregs[reg];
662 break;
663 case 2: /* Breakpoint Control */
664 ret = env->mmubpregs[reg];
665 break;
666 case 3: /* Breakpoint Status */
667 ret = env->mmubpregs[reg];
668 env->mmubpregs[reg] = 0ULL;
669 break;
671 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
672 ret);
674 break;
675 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
676 ret = env->mmubpctrv;
677 break;
678 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
679 ret = env->mmubpctrc;
680 break;
681 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
682 ret = env->mmubpctrs;
683 break;
684 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
685 ret = env->mmubpaction;
686 break;
687 case 8: /* User code access, XXX */
688 default:
689 cpu_unassigned_access(env, addr, 0, 0, asi, size);
690 ret = 0;
691 break;
693 if (sign) {
694 switch (size) {
695 case 1:
696 ret = (int8_t) ret;
697 break;
698 case 2:
699 ret = (int16_t) ret;
700 break;
701 case 4:
702 ret = (int32_t) ret;
703 break;
704 default:
705 break;
708 #ifdef DEBUG_ASI
709 dump_asi("read ", last_addr, asi, size, ret);
710 #endif
711 return ret;
714 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
715 int size)
717 helper_check_align(env, addr, size - 1);
718 switch (asi) {
719 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
720 switch (addr) {
721 case 0x00: /* Leon3 Cache Control */
722 case 0x08: /* Leon3 Instruction Cache config */
723 case 0x0C: /* Leon3 Date Cache config */
724 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
725 leon3_cache_control_st(env, addr, val, size);
727 break;
729 case 0x01c00000: /* MXCC stream data register 0 */
730 if (size == 8) {
731 env->mxccdata[0] = val;
732 } else {
733 qemu_log_mask(LOG_UNIMP,
734 "%08x: unimplemented access size: %d\n", addr,
735 size);
737 break;
738 case 0x01c00008: /* MXCC stream data register 1 */
739 if (size == 8) {
740 env->mxccdata[1] = val;
741 } else {
742 qemu_log_mask(LOG_UNIMP,
743 "%08x: unimplemented access size: %d\n", addr,
744 size);
746 break;
747 case 0x01c00010: /* MXCC stream data register 2 */
748 if (size == 8) {
749 env->mxccdata[2] = val;
750 } else {
751 qemu_log_mask(LOG_UNIMP,
752 "%08x: unimplemented access size: %d\n", addr,
753 size);
755 break;
756 case 0x01c00018: /* MXCC stream data register 3 */
757 if (size == 8) {
758 env->mxccdata[3] = val;
759 } else {
760 qemu_log_mask(LOG_UNIMP,
761 "%08x: unimplemented access size: %d\n", addr,
762 size);
764 break;
765 case 0x01c00100: /* MXCC stream source */
766 if (size == 8) {
767 env->mxccregs[0] = val;
768 } else {
769 qemu_log_mask(LOG_UNIMP,
770 "%08x: unimplemented access size: %d\n", addr,
771 size);
773 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
775 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
777 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
778 16);
779 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
780 24);
781 break;
782 case 0x01c00200: /* MXCC stream destination */
783 if (size == 8) {
784 env->mxccregs[1] = val;
785 } else {
786 qemu_log_mask(LOG_UNIMP,
787 "%08x: unimplemented access size: %d\n", addr,
788 size);
790 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
791 env->mxccdata[0]);
792 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
793 env->mxccdata[1]);
794 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
795 env->mxccdata[2]);
796 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
797 env->mxccdata[3]);
798 break;
799 case 0x01c00a00: /* MXCC control register */
800 if (size == 8) {
801 env->mxccregs[3] = val;
802 } else {
803 qemu_log_mask(LOG_UNIMP,
804 "%08x: unimplemented access size: %d\n", addr,
805 size);
807 break;
808 case 0x01c00a04: /* MXCC control register */
809 if (size == 4) {
810 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
811 | val;
812 } else {
813 qemu_log_mask(LOG_UNIMP,
814 "%08x: unimplemented access size: %d\n", addr,
815 size);
817 break;
818 case 0x01c00e00: /* MXCC error register */
819 /* writing a 1 bit clears the error */
820 if (size == 8) {
821 env->mxccregs[6] &= ~val;
822 } else {
823 qemu_log_mask(LOG_UNIMP,
824 "%08x: unimplemented access size: %d\n", addr,
825 size);
827 break;
828 case 0x01c00f00: /* MBus port address register */
829 if (size == 8) {
830 env->mxccregs[7] = val;
831 } else {
832 qemu_log_mask(LOG_UNIMP,
833 "%08x: unimplemented access size: %d\n", addr,
834 size);
836 break;
837 default:
838 qemu_log_mask(LOG_UNIMP,
839 "%08x: unimplemented address, size: %d\n", addr,
840 size);
841 break;
843 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
844 asi, size, addr, val);
845 #ifdef DEBUG_MXCC
846 dump_mxcc(env);
847 #endif
848 break;
849 case 3: /* MMU flush */
850 case 0x18: /* LEON3 MMU flush */
852 int mmulev;
854 mmulev = (addr >> 8) & 15;
855 DPRINTF_MMU("mmu flush level %d\n", mmulev);
856 switch (mmulev) {
857 case 0: /* flush page */
858 tlb_flush_page(env, addr & 0xfffff000);
859 break;
860 case 1: /* flush segment (256k) */
861 case 2: /* flush region (16M) */
862 case 3: /* flush context (4G) */
863 case 4: /* flush entire */
864 tlb_flush(env, 1);
865 break;
866 default:
867 break;
869 #ifdef DEBUG_MMU
870 dump_mmu(stdout, fprintf, env);
871 #endif
873 break;
874 case 4: /* write MMU regs */
875 case 0x19: /* LEON3 write MMU regs */
877 int reg = (addr >> 8) & 0x1f;
878 uint32_t oldreg;
880 oldreg = env->mmuregs[reg];
881 switch (reg) {
882 case 0: /* Control Register */
883 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
884 (val & 0x00ffffff);
885 /* Mappings generated during no-fault mode or MMU
886 disabled mode are invalid in normal mode */
887 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
888 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
889 tlb_flush(env, 1);
891 break;
892 case 1: /* Context Table Pointer Register */
893 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
894 break;
895 case 2: /* Context Register */
896 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
897 if (oldreg != env->mmuregs[reg]) {
898 /* we flush when the MMU context changes because
899 QEMU has no MMU context support */
900 tlb_flush(env, 1);
902 break;
903 case 3: /* Synchronous Fault Status Register with Clear */
904 case 4: /* Synchronous Fault Address Register */
905 break;
906 case 0x10: /* TLB Replacement Control Register */
907 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
908 break;
909 case 0x13: /* Synchronous Fault Status Register with Read
910 and Clear */
911 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
912 break;
913 case 0x14: /* Synchronous Fault Address Register */
914 env->mmuregs[4] = val;
915 break;
916 default:
917 env->mmuregs[reg] = val;
918 break;
920 if (oldreg != env->mmuregs[reg]) {
921 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
922 reg, oldreg, env->mmuregs[reg]);
924 #ifdef DEBUG_MMU
925 dump_mmu(stdout, fprintf, env);
926 #endif
928 break;
929 case 5: /* Turbosparc ITLB Diagnostic */
930 case 6: /* Turbosparc DTLB Diagnostic */
931 case 7: /* Turbosparc IOTLB Diagnostic */
932 break;
933 case 0xa: /* User data access */
934 switch (size) {
935 case 1:
936 cpu_stb_user(env, addr, val);
937 break;
938 case 2:
939 cpu_stw_user(env, addr, val);
940 break;
941 default:
942 case 4:
943 cpu_stl_user(env, addr, val);
944 break;
945 case 8:
946 cpu_stq_user(env, addr, val);
947 break;
949 break;
950 case 0xb: /* Supervisor data access */
951 switch (size) {
952 case 1:
953 cpu_stb_kernel(env, addr, val);
954 break;
955 case 2:
956 cpu_stw_kernel(env, addr, val);
957 break;
958 default:
959 case 4:
960 cpu_stl_kernel(env, addr, val);
961 break;
962 case 8:
963 cpu_stq_kernel(env, addr, val);
964 break;
966 break;
967 case 0xc: /* I-cache tag */
968 case 0xd: /* I-cache data */
969 case 0xe: /* D-cache tag */
970 case 0xf: /* D-cache data */
971 case 0x10: /* I/D-cache flush page */
972 case 0x11: /* I/D-cache flush segment */
973 case 0x12: /* I/D-cache flush region */
974 case 0x13: /* I/D-cache flush context */
975 case 0x14: /* I/D-cache flush user */
976 break;
977 case 0x17: /* Block copy, sta access */
979 /* val = src
980 addr = dst
981 copy 32 bytes */
982 unsigned int i;
983 uint32_t src = val & ~3, dst = addr & ~3, temp;
985 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
986 temp = cpu_ldl_kernel(env, src);
987 cpu_stl_kernel(env, dst, temp);
990 break;
991 case 0x1f: /* Block fill, stda access */
993 /* addr = dst
994 fill 32 bytes with val */
995 unsigned int i;
996 uint32_t dst = addr & 7;
998 for (i = 0; i < 32; i += 8, dst += 8) {
999 cpu_stq_kernel(env, dst, val);
1002 break;
1003 case 0x20: /* MMU passthrough */
1004 case 0x1c: /* LEON MMU passthrough */
1006 switch (size) {
1007 case 1:
1008 stb_phys(addr, val);
1009 break;
1010 case 2:
1011 stw_phys(addr, val);
1012 break;
1013 case 4:
1014 default:
1015 stl_phys(addr, val);
1016 break;
1017 case 8:
1018 stq_phys(addr, val);
1019 break;
1022 break;
1023 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1025 switch (size) {
1026 case 1:
1027 stb_phys((hwaddr)addr
1028 | ((hwaddr)(asi & 0xf) << 32), val);
1029 break;
1030 case 2:
1031 stw_phys((hwaddr)addr
1032 | ((hwaddr)(asi & 0xf) << 32), val);
1033 break;
1034 case 4:
1035 default:
1036 stl_phys((hwaddr)addr
1037 | ((hwaddr)(asi & 0xf) << 32), val);
1038 break;
1039 case 8:
1040 stq_phys((hwaddr)addr
1041 | ((hwaddr)(asi & 0xf) << 32), val);
1042 break;
1045 break;
1046 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1047 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1048 Turbosparc snoop RAM */
1049 case 0x32: /* store buffer control or Turbosparc page table
1050 descriptor diagnostic */
1051 case 0x36: /* I-cache flash clear */
1052 case 0x37: /* D-cache flash clear */
1053 break;
1054 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1056 int reg = (addr >> 8) & 3;
1058 switch (reg) {
1059 case 0: /* Breakpoint Value (Addr) */
1060 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1061 break;
1062 case 1: /* Breakpoint Mask */
1063 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1064 break;
1065 case 2: /* Breakpoint Control */
1066 env->mmubpregs[reg] = (val & 0x7fULL);
1067 break;
1068 case 3: /* Breakpoint Status */
1069 env->mmubpregs[reg] = (val & 0xfULL);
1070 break;
1072 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1073 env->mmuregs[reg]);
1075 break;
1076 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1077 env->mmubpctrv = val & 0xffffffff;
1078 break;
1079 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1080 env->mmubpctrc = val & 0x3;
1081 break;
1082 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1083 env->mmubpctrs = val & 0x3;
1084 break;
1085 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1086 env->mmubpaction = val & 0x1fff;
1087 break;
1088 case 8: /* User code access, XXX */
1089 case 9: /* Supervisor code access, XXX */
1090 default:
1091 cpu_unassigned_access(env, addr, 1, 0, asi, size);
1092 break;
1094 #ifdef DEBUG_ASI
1095 dump_asi("write", addr, asi, size, val);
1096 #endif
1099 #endif /* CONFIG_USER_ONLY */
1100 #else /* TARGET_SPARC64 */
1102 #ifdef CONFIG_USER_ONLY
1103 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1104 int sign)
1106 uint64_t ret = 0;
1107 #if defined(DEBUG_ASI)
1108 target_ulong last_addr = addr;
1109 #endif
1111 if (asi < 0x80) {
1112 helper_raise_exception(env, TT_PRIV_ACT);
1115 helper_check_align(env, addr, size - 1);
1116 addr = asi_address_mask(env, asi, addr);
1118 switch (asi) {
1119 case 0x82: /* Primary no-fault */
1120 case 0x8a: /* Primary no-fault LE */
1121 if (page_check_range(addr, size, PAGE_READ) == -1) {
1122 #ifdef DEBUG_ASI
1123 dump_asi("read ", last_addr, asi, size, ret);
1124 #endif
1125 return 0;
1127 /* Fall through */
1128 case 0x80: /* Primary */
1129 case 0x88: /* Primary LE */
1131 switch (size) {
1132 case 1:
1133 ret = ldub_raw(addr);
1134 break;
1135 case 2:
1136 ret = lduw_raw(addr);
1137 break;
1138 case 4:
1139 ret = ldl_raw(addr);
1140 break;
1141 default:
1142 case 8:
1143 ret = ldq_raw(addr);
1144 break;
1147 break;
1148 case 0x83: /* Secondary no-fault */
1149 case 0x8b: /* Secondary no-fault LE */
1150 if (page_check_range(addr, size, PAGE_READ) == -1) {
1151 #ifdef DEBUG_ASI
1152 dump_asi("read ", last_addr, asi, size, ret);
1153 #endif
1154 return 0;
1156 /* Fall through */
1157 case 0x81: /* Secondary */
1158 case 0x89: /* Secondary LE */
1159 /* XXX */
1160 break;
1161 default:
1162 break;
1165 /* Convert from little endian */
1166 switch (asi) {
1167 case 0x88: /* Primary LE */
1168 case 0x89: /* Secondary LE */
1169 case 0x8a: /* Primary no-fault LE */
1170 case 0x8b: /* Secondary no-fault LE */
1171 switch (size) {
1172 case 2:
1173 ret = bswap16(ret);
1174 break;
1175 case 4:
1176 ret = bswap32(ret);
1177 break;
1178 case 8:
1179 ret = bswap64(ret);
1180 break;
1181 default:
1182 break;
1184 default:
1185 break;
1188 /* Convert to signed number */
1189 if (sign) {
1190 switch (size) {
1191 case 1:
1192 ret = (int8_t) ret;
1193 break;
1194 case 2:
1195 ret = (int16_t) ret;
1196 break;
1197 case 4:
1198 ret = (int32_t) ret;
1199 break;
1200 default:
1201 break;
1204 #ifdef DEBUG_ASI
1205 dump_asi("read ", last_addr, asi, size, ret);
1206 #endif
1207 return ret;
1210 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1211 int asi, int size)
1213 #ifdef DEBUG_ASI
1214 dump_asi("write", addr, asi, size, val);
1215 #endif
1216 if (asi < 0x80) {
1217 helper_raise_exception(env, TT_PRIV_ACT);
1220 helper_check_align(env, addr, size - 1);
1221 addr = asi_address_mask(env, asi, addr);
1223 /* Convert to little endian */
1224 switch (asi) {
1225 case 0x88: /* Primary LE */
1226 case 0x89: /* Secondary LE */
1227 switch (size) {
1228 case 2:
1229 val = bswap16(val);
1230 break;
1231 case 4:
1232 val = bswap32(val);
1233 break;
1234 case 8:
1235 val = bswap64(val);
1236 break;
1237 default:
1238 break;
1240 default:
1241 break;
1244 switch (asi) {
1245 case 0x80: /* Primary */
1246 case 0x88: /* Primary LE */
1248 switch (size) {
1249 case 1:
1250 stb_raw(addr, val);
1251 break;
1252 case 2:
1253 stw_raw(addr, val);
1254 break;
1255 case 4:
1256 stl_raw(addr, val);
1257 break;
1258 case 8:
1259 default:
1260 stq_raw(addr, val);
1261 break;
1264 break;
1265 case 0x81: /* Secondary */
1266 case 0x89: /* Secondary LE */
1267 /* XXX */
1268 return;
1270 case 0x82: /* Primary no-fault, RO */
1271 case 0x83: /* Secondary no-fault, RO */
1272 case 0x8a: /* Primary no-fault LE, RO */
1273 case 0x8b: /* Secondary no-fault LE, RO */
1274 default:
1275 helper_raise_exception(env, TT_DATA_ACCESS);
1276 return;
1280 #else /* CONFIG_USER_ONLY */
1282 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1283 int sign)
1285 uint64_t ret = 0;
1286 #if defined(DEBUG_ASI)
1287 target_ulong last_addr = addr;
1288 #endif
1290 asi &= 0xff;
1292 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1293 || (cpu_has_hypervisor(env)
1294 && asi >= 0x30 && asi < 0x80
1295 && !(env->hpstate & HS_PRIV))) {
1296 helper_raise_exception(env, TT_PRIV_ACT);
1299 helper_check_align(env, addr, size - 1);
1300 addr = asi_address_mask(env, asi, addr);
1302 /* process nonfaulting loads first */
1303 if ((asi & 0xf6) == 0x82) {
1304 int mmu_idx;
1306 /* secondary space access has lowest asi bit equal to 1 */
1307 if (env->pstate & PS_PRIV) {
1308 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1309 } else {
1310 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1313 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1314 #ifdef DEBUG_ASI
1315 dump_asi("read ", last_addr, asi, size, ret);
1316 #endif
1317 /* env->exception_index is set in get_physical_address_data(). */
1318 helper_raise_exception(env, env->exception_index);
1321 /* convert nonfaulting load ASIs to normal load ASIs */
1322 asi &= ~0x02;
1325 switch (asi) {
1326 case 0x10: /* As if user primary */
1327 case 0x11: /* As if user secondary */
1328 case 0x18: /* As if user primary LE */
1329 case 0x19: /* As if user secondary LE */
1330 case 0x80: /* Primary */
1331 case 0x81: /* Secondary */
1332 case 0x88: /* Primary LE */
1333 case 0x89: /* Secondary LE */
1334 case 0xe2: /* UA2007 Primary block init */
1335 case 0xe3: /* UA2007 Secondary block init */
1336 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1337 if (cpu_hypervisor_mode(env)) {
1338 switch (size) {
1339 case 1:
1340 ret = cpu_ldub_hypv(env, addr);
1341 break;
1342 case 2:
1343 ret = cpu_lduw_hypv(env, addr);
1344 break;
1345 case 4:
1346 ret = cpu_ldl_hypv(env, addr);
1347 break;
1348 default:
1349 case 8:
1350 ret = cpu_ldq_hypv(env, addr);
1351 break;
1353 } else {
1354 /* secondary space access has lowest asi bit equal to 1 */
1355 if (asi & 1) {
1356 switch (size) {
1357 case 1:
1358 ret = cpu_ldub_kernel_secondary(env, addr);
1359 break;
1360 case 2:
1361 ret = cpu_lduw_kernel_secondary(env, addr);
1362 break;
1363 case 4:
1364 ret = cpu_ldl_kernel_secondary(env, addr);
1365 break;
1366 default:
1367 case 8:
1368 ret = cpu_ldq_kernel_secondary(env, addr);
1369 break;
1371 } else {
1372 switch (size) {
1373 case 1:
1374 ret = cpu_ldub_kernel(env, addr);
1375 break;
1376 case 2:
1377 ret = cpu_lduw_kernel(env, addr);
1378 break;
1379 case 4:
1380 ret = cpu_ldl_kernel(env, addr);
1381 break;
1382 default:
1383 case 8:
1384 ret = cpu_ldq_kernel(env, addr);
1385 break;
1389 } else {
1390 /* secondary space access has lowest asi bit equal to 1 */
1391 if (asi & 1) {
1392 switch (size) {
1393 case 1:
1394 ret = cpu_ldub_user_secondary(env, addr);
1395 break;
1396 case 2:
1397 ret = cpu_lduw_user_secondary(env, addr);
1398 break;
1399 case 4:
1400 ret = cpu_ldl_user_secondary(env, addr);
1401 break;
1402 default:
1403 case 8:
1404 ret = cpu_ldq_user_secondary(env, addr);
1405 break;
1407 } else {
1408 switch (size) {
1409 case 1:
1410 ret = cpu_ldub_user(env, addr);
1411 break;
1412 case 2:
1413 ret = cpu_lduw_user(env, addr);
1414 break;
1415 case 4:
1416 ret = cpu_ldl_user(env, addr);
1417 break;
1418 default:
1419 case 8:
1420 ret = cpu_ldq_user(env, addr);
1421 break;
1425 break;
1426 case 0x14: /* Bypass */
1427 case 0x15: /* Bypass, non-cacheable */
1428 case 0x1c: /* Bypass LE */
1429 case 0x1d: /* Bypass, non-cacheable LE */
1431 switch (size) {
1432 case 1:
1433 ret = ldub_phys(addr);
1434 break;
1435 case 2:
1436 ret = lduw_phys(addr);
1437 break;
1438 case 4:
1439 ret = ldl_phys(addr);
1440 break;
1441 default:
1442 case 8:
1443 ret = ldq_phys(addr);
1444 break;
1446 break;
1448 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1449 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1450 Only ldda allowed */
1451 helper_raise_exception(env, TT_ILL_INSN);
1452 return 0;
1453 case 0x04: /* Nucleus */
1454 case 0x0c: /* Nucleus Little Endian (LE) */
1456 switch (size) {
1457 case 1:
1458 ret = cpu_ldub_nucleus(env, addr);
1459 break;
1460 case 2:
1461 ret = cpu_lduw_nucleus(env, addr);
1462 break;
1463 case 4:
1464 ret = cpu_ldl_nucleus(env, addr);
1465 break;
1466 default:
1467 case 8:
1468 ret = cpu_ldq_nucleus(env, addr);
1469 break;
1471 break;
1473 case 0x4a: /* UPA config */
1474 /* XXX */
1475 break;
1476 case 0x45: /* LSU */
1477 ret = env->lsu;
1478 break;
1479 case 0x50: /* I-MMU regs */
1481 int reg = (addr >> 3) & 0xf;
1483 if (reg == 0) {
1484 /* I-TSB Tag Target register */
1485 ret = ultrasparc_tag_target(env->immu.tag_access);
1486 } else {
1487 ret = env->immuregs[reg];
1490 break;
1492 case 0x51: /* I-MMU 8k TSB pointer */
1494 /* env->immuregs[5] holds I-MMU TSB register value
1495 env->immuregs[6] holds I-MMU Tag Access register value */
1496 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1497 8*1024);
1498 break;
1500 case 0x52: /* I-MMU 64k TSB pointer */
1502 /* env->immuregs[5] holds I-MMU TSB register value
1503 env->immuregs[6] holds I-MMU Tag Access register value */
1504 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1505 64*1024);
1506 break;
1508 case 0x55: /* I-MMU data access */
1510 int reg = (addr >> 3) & 0x3f;
1512 ret = env->itlb[reg].tte;
1513 break;
1515 case 0x56: /* I-MMU tag read */
1517 int reg = (addr >> 3) & 0x3f;
1519 ret = env->itlb[reg].tag;
1520 break;
1522 case 0x58: /* D-MMU regs */
1524 int reg = (addr >> 3) & 0xf;
1526 if (reg == 0) {
1527 /* D-TSB Tag Target register */
1528 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1529 } else {
1530 ret = env->dmmuregs[reg];
1532 break;
1534 case 0x59: /* D-MMU 8k TSB pointer */
1536 /* env->dmmuregs[5] holds D-MMU TSB register value
1537 env->dmmuregs[6] holds D-MMU Tag Access register value */
1538 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1539 8*1024);
1540 break;
1542 case 0x5a: /* D-MMU 64k TSB pointer */
1544 /* env->dmmuregs[5] holds D-MMU TSB register value
1545 env->dmmuregs[6] holds D-MMU Tag Access register value */
1546 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1547 64*1024);
1548 break;
1550 case 0x5d: /* D-MMU data access */
1552 int reg = (addr >> 3) & 0x3f;
1554 ret = env->dtlb[reg].tte;
1555 break;
1557 case 0x5e: /* D-MMU tag read */
1559 int reg = (addr >> 3) & 0x3f;
1561 ret = env->dtlb[reg].tag;
1562 break;
1564 case 0x48: /* Interrupt dispatch, RO */
1565 break;
1566 case 0x49: /* Interrupt data receive */
1567 ret = env->ivec_status;
1568 break;
1569 case 0x7f: /* Incoming interrupt vector, RO */
1571 int reg = (addr >> 4) & 0x3;
1572 if (reg < 3) {
1573 ret = env->ivec_data[reg];
1575 break;
1577 case 0x46: /* D-cache data */
1578 case 0x47: /* D-cache tag access */
1579 case 0x4b: /* E-cache error enable */
1580 case 0x4c: /* E-cache asynchronous fault status */
1581 case 0x4d: /* E-cache asynchronous fault address */
1582 case 0x4e: /* E-cache tag data */
1583 case 0x66: /* I-cache instruction access */
1584 case 0x67: /* I-cache tag access */
1585 case 0x6e: /* I-cache predecode */
1586 case 0x6f: /* I-cache LRU etc. */
1587 case 0x76: /* E-cache tag */
1588 case 0x7e: /* E-cache tag */
1589 break;
1590 case 0x5b: /* D-MMU data pointer */
1591 case 0x54: /* I-MMU data in, WO */
1592 case 0x57: /* I-MMU demap, WO */
1593 case 0x5c: /* D-MMU data in, WO */
1594 case 0x5f: /* D-MMU demap, WO */
1595 case 0x77: /* Interrupt vector, WO */
1596 default:
1597 cpu_unassigned_access(env, addr, 0, 0, 1, size);
1598 ret = 0;
1599 break;
1602 /* Convert from little endian */
1603 switch (asi) {
1604 case 0x0c: /* Nucleus Little Endian (LE) */
1605 case 0x18: /* As if user primary LE */
1606 case 0x19: /* As if user secondary LE */
1607 case 0x1c: /* Bypass LE */
1608 case 0x1d: /* Bypass, non-cacheable LE */
1609 case 0x88: /* Primary LE */
1610 case 0x89: /* Secondary LE */
1611 switch(size) {
1612 case 2:
1613 ret = bswap16(ret);
1614 break;
1615 case 4:
1616 ret = bswap32(ret);
1617 break;
1618 case 8:
1619 ret = bswap64(ret);
1620 break;
1621 default:
1622 break;
1624 default:
1625 break;
1628 /* Convert to signed number */
1629 if (sign) {
1630 switch (size) {
1631 case 1:
1632 ret = (int8_t) ret;
1633 break;
1634 case 2:
1635 ret = (int16_t) ret;
1636 break;
1637 case 4:
1638 ret = (int32_t) ret;
1639 break;
1640 default:
1641 break;
1644 #ifdef DEBUG_ASI
1645 dump_asi("read ", last_addr, asi, size, ret);
1646 #endif
1647 return ret;
1650 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1651 int asi, int size)
1653 #ifdef DEBUG_ASI
1654 dump_asi("write", addr, asi, size, val);
1655 #endif
1657 asi &= 0xff;
1659 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1660 || (cpu_has_hypervisor(env)
1661 && asi >= 0x30 && asi < 0x80
1662 && !(env->hpstate & HS_PRIV))) {
1663 helper_raise_exception(env, TT_PRIV_ACT);
1666 helper_check_align(env, addr, size - 1);
1667 addr = asi_address_mask(env, asi, addr);
1669 /* Convert to little endian */
1670 switch (asi) {
1671 case 0x0c: /* Nucleus Little Endian (LE) */
1672 case 0x18: /* As if user primary LE */
1673 case 0x19: /* As if user secondary LE */
1674 case 0x1c: /* Bypass LE */
1675 case 0x1d: /* Bypass, non-cacheable LE */
1676 case 0x88: /* Primary LE */
1677 case 0x89: /* Secondary LE */
1678 switch (size) {
1679 case 2:
1680 val = bswap16(val);
1681 break;
1682 case 4:
1683 val = bswap32(val);
1684 break;
1685 case 8:
1686 val = bswap64(val);
1687 break;
1688 default:
1689 break;
1691 default:
1692 break;
1695 switch (asi) {
1696 case 0x10: /* As if user primary */
1697 case 0x11: /* As if user secondary */
1698 case 0x18: /* As if user primary LE */
1699 case 0x19: /* As if user secondary LE */
1700 case 0x80: /* Primary */
1701 case 0x81: /* Secondary */
1702 case 0x88: /* Primary LE */
1703 case 0x89: /* Secondary LE */
1704 case 0xe2: /* UA2007 Primary block init */
1705 case 0xe3: /* UA2007 Secondary block init */
1706 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1707 if (cpu_hypervisor_mode(env)) {
1708 switch (size) {
1709 case 1:
1710 cpu_stb_hypv(env, addr, val);
1711 break;
1712 case 2:
1713 cpu_stw_hypv(env, addr, val);
1714 break;
1715 case 4:
1716 cpu_stl_hypv(env, addr, val);
1717 break;
1718 case 8:
1719 default:
1720 cpu_stq_hypv(env, addr, val);
1721 break;
1723 } else {
1724 /* secondary space access has lowest asi bit equal to 1 */
1725 if (asi & 1) {
1726 switch (size) {
1727 case 1:
1728 cpu_stb_kernel_secondary(env, addr, val);
1729 break;
1730 case 2:
1731 cpu_stw_kernel_secondary(env, addr, val);
1732 break;
1733 case 4:
1734 cpu_stl_kernel_secondary(env, addr, val);
1735 break;
1736 case 8:
1737 default:
1738 cpu_stq_kernel_secondary(env, addr, val);
1739 break;
1741 } else {
1742 switch (size) {
1743 case 1:
1744 cpu_stb_kernel(env, addr, val);
1745 break;
1746 case 2:
1747 cpu_stw_kernel(env, addr, val);
1748 break;
1749 case 4:
1750 cpu_stl_kernel(env, addr, val);
1751 break;
1752 case 8:
1753 default:
1754 cpu_stq_kernel(env, addr, val);
1755 break;
1759 } else {
1760 /* secondary space access has lowest asi bit equal to 1 */
1761 if (asi & 1) {
1762 switch (size) {
1763 case 1:
1764 cpu_stb_user_secondary(env, addr, val);
1765 break;
1766 case 2:
1767 cpu_stw_user_secondary(env, addr, val);
1768 break;
1769 case 4:
1770 cpu_stl_user_secondary(env, addr, val);
1771 break;
1772 case 8:
1773 default:
1774 cpu_stq_user_secondary(env, addr, val);
1775 break;
1777 } else {
1778 switch (size) {
1779 case 1:
1780 cpu_stb_user(env, addr, val);
1781 break;
1782 case 2:
1783 cpu_stw_user(env, addr, val);
1784 break;
1785 case 4:
1786 cpu_stl_user(env, addr, val);
1787 break;
1788 case 8:
1789 default:
1790 cpu_stq_user(env, addr, val);
1791 break;
1795 break;
1796 case 0x14: /* Bypass */
1797 case 0x15: /* Bypass, non-cacheable */
1798 case 0x1c: /* Bypass LE */
1799 case 0x1d: /* Bypass, non-cacheable LE */
1801 switch (size) {
1802 case 1:
1803 stb_phys(addr, val);
1804 break;
1805 case 2:
1806 stw_phys(addr, val);
1807 break;
1808 case 4:
1809 stl_phys(addr, val);
1810 break;
1811 case 8:
1812 default:
1813 stq_phys(addr, val);
1814 break;
1817 return;
1818 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1819 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1820 Only ldda allowed */
1821 helper_raise_exception(env, TT_ILL_INSN);
1822 return;
1823 case 0x04: /* Nucleus */
1824 case 0x0c: /* Nucleus Little Endian (LE) */
1826 switch (size) {
1827 case 1:
1828 cpu_stb_nucleus(env, addr, val);
1829 break;
1830 case 2:
1831 cpu_stw_nucleus(env, addr, val);
1832 break;
1833 case 4:
1834 cpu_stl_nucleus(env, addr, val);
1835 break;
1836 default:
1837 case 8:
1838 cpu_stq_nucleus(env, addr, val);
1839 break;
1841 break;
1844 case 0x4a: /* UPA config */
1845 /* XXX */
1846 return;
1847 case 0x45: /* LSU */
1849 uint64_t oldreg;
1851 oldreg = env->lsu;
1852 env->lsu = val & (DMMU_E | IMMU_E);
1853 /* Mappings generated during D/I MMU disabled mode are
1854 invalid in normal mode */
1855 if (oldreg != env->lsu) {
1856 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1857 oldreg, env->lsu);
1858 #ifdef DEBUG_MMU
1859 dump_mmu(stdout, fprintf, env);
1860 #endif
1861 tlb_flush(env, 1);
1863 return;
1865 case 0x50: /* I-MMU regs */
1867 int reg = (addr >> 3) & 0xf;
1868 uint64_t oldreg;
1870 oldreg = env->immuregs[reg];
1871 switch (reg) {
1872 case 0: /* RO */
1873 return;
1874 case 1: /* Not in I-MMU */
1875 case 2:
1876 return;
1877 case 3: /* SFSR */
1878 if ((val & 1) == 0) {
1879 val = 0; /* Clear SFSR */
1881 env->immu.sfsr = val;
1882 break;
1883 case 4: /* RO */
1884 return;
1885 case 5: /* TSB access */
1886 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1887 PRIx64 "\n", env->immu.tsb, val);
1888 env->immu.tsb = val;
1889 break;
1890 case 6: /* Tag access */
1891 env->immu.tag_access = val;
1892 break;
1893 case 7:
1894 case 8:
1895 return;
1896 default:
1897 break;
1900 if (oldreg != env->immuregs[reg]) {
1901 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1902 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1904 #ifdef DEBUG_MMU
1905 dump_mmu(stdout, fprintf, env);
1906 #endif
1907 return;
1909 case 0x54: /* I-MMU data in */
1910 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1911 return;
1912 case 0x55: /* I-MMU data access */
1914 /* TODO: auto demap */
1916 unsigned int i = (addr >> 3) & 0x3f;
1918 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1920 #ifdef DEBUG_MMU
1921 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1922 dump_mmu(stdout, fprintf, env);
1923 #endif
1924 return;
1926 case 0x57: /* I-MMU demap */
1927 demap_tlb(env->itlb, addr, "immu", env);
1928 return;
1929 case 0x58: /* D-MMU regs */
1931 int reg = (addr >> 3) & 0xf;
1932 uint64_t oldreg;
1934 oldreg = env->dmmuregs[reg];
1935 switch (reg) {
1936 case 0: /* RO */
1937 case 4:
1938 return;
1939 case 3: /* SFSR */
1940 if ((val & 1) == 0) {
1941 val = 0; /* Clear SFSR, Fault address */
1942 env->dmmu.sfar = 0;
1944 env->dmmu.sfsr = val;
1945 break;
1946 case 1: /* Primary context */
1947 env->dmmu.mmu_primary_context = val;
1948 /* can be optimized to only flush MMU_USER_IDX
1949 and MMU_KERNEL_IDX entries */
1950 tlb_flush(env, 1);
1951 break;
1952 case 2: /* Secondary context */
1953 env->dmmu.mmu_secondary_context = val;
1954 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1955 and MMU_KERNEL_SECONDARY_IDX entries */
1956 tlb_flush(env, 1);
1957 break;
1958 case 5: /* TSB access */
1959 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1960 PRIx64 "\n", env->dmmu.tsb, val);
1961 env->dmmu.tsb = val;
1962 break;
1963 case 6: /* Tag access */
1964 env->dmmu.tag_access = val;
1965 break;
1966 case 7: /* Virtual Watchpoint */
1967 case 8: /* Physical Watchpoint */
1968 default:
1969 env->dmmuregs[reg] = val;
1970 break;
1973 if (oldreg != env->dmmuregs[reg]) {
1974 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1975 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1977 #ifdef DEBUG_MMU
1978 dump_mmu(stdout, fprintf, env);
1979 #endif
1980 return;
1982 case 0x5c: /* D-MMU data in */
1983 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1984 return;
1985 case 0x5d: /* D-MMU data access */
1987 unsigned int i = (addr >> 3) & 0x3f;
1989 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
1991 #ifdef DEBUG_MMU
1992 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1993 dump_mmu(stdout, fprintf, env);
1994 #endif
1995 return;
1997 case 0x5f: /* D-MMU demap */
1998 demap_tlb(env->dtlb, addr, "dmmu", env);
1999 return;
2000 case 0x49: /* Interrupt data receive */
2001 env->ivec_status = val & 0x20;
2002 return;
2003 case 0x46: /* D-cache data */
2004 case 0x47: /* D-cache tag access */
2005 case 0x4b: /* E-cache error enable */
2006 case 0x4c: /* E-cache asynchronous fault status */
2007 case 0x4d: /* E-cache asynchronous fault address */
2008 case 0x4e: /* E-cache tag data */
2009 case 0x66: /* I-cache instruction access */
2010 case 0x67: /* I-cache tag access */
2011 case 0x6e: /* I-cache predecode */
2012 case 0x6f: /* I-cache LRU etc. */
2013 case 0x76: /* E-cache tag */
2014 case 0x7e: /* E-cache tag */
2015 return;
2016 case 0x51: /* I-MMU 8k TSB pointer, RO */
2017 case 0x52: /* I-MMU 64k TSB pointer, RO */
2018 case 0x56: /* I-MMU tag read, RO */
2019 case 0x59: /* D-MMU 8k TSB pointer, RO */
2020 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2021 case 0x5b: /* D-MMU data pointer, RO */
2022 case 0x5e: /* D-MMU tag read, RO */
2023 case 0x48: /* Interrupt dispatch, RO */
2024 case 0x7f: /* Incoming interrupt vector, RO */
2025 case 0x82: /* Primary no-fault, RO */
2026 case 0x83: /* Secondary no-fault, RO */
2027 case 0x8a: /* Primary no-fault LE, RO */
2028 case 0x8b: /* Secondary no-fault LE, RO */
2029 default:
2030 cpu_unassigned_access(env, addr, 1, 0, 1, size);
2031 return;
2034 #endif /* CONFIG_USER_ONLY */
2036 void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
2038 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2039 || (cpu_has_hypervisor(env)
2040 && asi >= 0x30 && asi < 0x80
2041 && !(env->hpstate & HS_PRIV))) {
2042 helper_raise_exception(env, TT_PRIV_ACT);
2045 addr = asi_address_mask(env, asi, addr);
2047 switch (asi) {
2048 #if !defined(CONFIG_USER_ONLY)
2049 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2050 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2051 helper_check_align(env, addr, 0xf);
2052 if (rd == 0) {
2053 env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
2054 if (asi == 0x2c) {
2055 bswap64s(&env->gregs[1]);
2057 } else if (rd < 8) {
2058 env->gregs[rd] = cpu_ldq_nucleus(env, addr);
2059 env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2060 if (asi == 0x2c) {
2061 bswap64s(&env->gregs[rd]);
2062 bswap64s(&env->gregs[rd + 1]);
2064 } else {
2065 env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
2066 env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2067 if (asi == 0x2c) {
2068 bswap64s(&env->regwptr[rd]);
2069 bswap64s(&env->regwptr[rd + 1]);
2072 break;
2073 #endif
2074 default:
2075 helper_check_align(env, addr, 0x3);
2076 if (rd == 0) {
2077 env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2078 } else if (rd < 8) {
2079 env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2080 env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2081 } else {
2082 env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2083 env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2085 break;
2089 void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2090 int rd)
2092 unsigned int i;
2093 target_ulong val;
2095 helper_check_align(env, addr, 3);
2096 addr = asi_address_mask(env, asi, addr);
2098 switch (asi) {
2099 case 0xf0: /* UA2007/JPS1 Block load primary */
2100 case 0xf1: /* UA2007/JPS1 Block load secondary */
2101 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2102 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2103 if (rd & 7) {
2104 helper_raise_exception(env, TT_ILL_INSN);
2105 return;
2107 helper_check_align(env, addr, 0x3f);
2108 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2109 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
2111 return;
2113 case 0x16: /* UA2007 Block load primary, user privilege */
2114 case 0x17: /* UA2007 Block load secondary, user privilege */
2115 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2116 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2117 case 0x70: /* JPS1 Block load primary, user privilege */
2118 case 0x71: /* JPS1 Block load secondary, user privilege */
2119 case 0x78: /* JPS1 Block load primary LE, user privilege */
2120 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2121 if (rd & 7) {
2122 helper_raise_exception(env, TT_ILL_INSN);
2123 return;
2125 helper_check_align(env, addr, 0x3f);
2126 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2127 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
2129 return;
2131 default:
2132 break;
2135 switch (size) {
2136 default:
2137 case 4:
2138 val = helper_ld_asi(env, addr, asi, size, 0);
2139 if (rd & 1) {
2140 env->fpr[rd / 2].l.lower = val;
2141 } else {
2142 env->fpr[rd / 2].l.upper = val;
2144 break;
2145 case 8:
2146 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
2147 break;
2148 case 16:
2149 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
2150 env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
2151 break;
2155 void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2156 int rd)
2158 unsigned int i;
2159 target_ulong val;
2161 helper_check_align(env, addr, 3);
2162 addr = asi_address_mask(env, asi, addr);
2164 switch (asi) {
2165 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2166 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2167 case 0xf0: /* UA2007/JPS1 Block store primary */
2168 case 0xf1: /* UA2007/JPS1 Block store secondary */
2169 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2170 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2171 if (rd & 7) {
2172 helper_raise_exception(env, TT_ILL_INSN);
2173 return;
2175 helper_check_align(env, addr, 0x3f);
2176 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2177 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
2180 return;
2181 case 0x16: /* UA2007 Block load primary, user privilege */
2182 case 0x17: /* UA2007 Block load secondary, user privilege */
2183 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2184 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2185 case 0x70: /* JPS1 Block store primary, user privilege */
2186 case 0x71: /* JPS1 Block store secondary, user privilege */
2187 case 0x78: /* JPS1 Block load primary LE, user privilege */
2188 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2189 if (rd & 7) {
2190 helper_raise_exception(env, TT_ILL_INSN);
2191 return;
2193 helper_check_align(env, addr, 0x3f);
2194 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2195 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
2198 return;
2199 default:
2200 break;
2203 switch (size) {
2204 default:
2205 case 4:
2206 if (rd & 1) {
2207 val = env->fpr[rd / 2].l.lower;
2208 } else {
2209 val = env->fpr[rd / 2].l.upper;
2211 helper_st_asi(env, addr, val, asi, size);
2212 break;
2213 case 8:
2214 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
2215 break;
2216 case 16:
2217 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
2218 helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
2219 break;
2223 target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
2224 target_ulong val1, target_ulong val2, uint32_t asi)
2226 target_ulong ret;
2228 val2 &= 0xffffffffUL;
2229 ret = helper_ld_asi(env, addr, asi, 4, 0);
2230 ret &= 0xffffffffUL;
2231 if (val2 == ret) {
2232 helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
2234 return ret;
2237 target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
2238 target_ulong val1, target_ulong val2,
2239 uint32_t asi)
2241 target_ulong ret;
2243 ret = helper_ld_asi(env, addr, asi, 8, 0);
2244 if (val2 == ret) {
2245 helper_st_asi(env, addr, val1, asi, 8);
2247 return ret;
2249 #endif /* TARGET_SPARC64 */
2251 void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2253 /* XXX add 128 bit load */
2254 CPU_QuadU u;
2256 helper_check_align(env, addr, 7);
2257 #if !defined(CONFIG_USER_ONLY)
2258 switch (mem_idx) {
2259 case MMU_USER_IDX:
2260 u.ll.upper = cpu_ldq_user(env, addr);
2261 u.ll.lower = cpu_ldq_user(env, addr + 8);
2262 QT0 = u.q;
2263 break;
2264 case MMU_KERNEL_IDX:
2265 u.ll.upper = cpu_ldq_kernel(env, addr);
2266 u.ll.lower = cpu_ldq_kernel(env, addr + 8);
2267 QT0 = u.q;
2268 break;
2269 #ifdef TARGET_SPARC64
2270 case MMU_HYPV_IDX:
2271 u.ll.upper = cpu_ldq_hypv(env, addr);
2272 u.ll.lower = cpu_ldq_hypv(env, addr + 8);
2273 QT0 = u.q;
2274 break;
2275 #endif
2276 default:
2277 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
2278 break;
2280 #else
2281 u.ll.upper = ldq_raw(address_mask(env, addr));
2282 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
2283 QT0 = u.q;
2284 #endif
2287 void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2289 /* XXX add 128 bit store */
2290 CPU_QuadU u;
2292 helper_check_align(env, addr, 7);
2293 #if !defined(CONFIG_USER_ONLY)
2294 switch (mem_idx) {
2295 case MMU_USER_IDX:
2296 u.q = QT0;
2297 cpu_stq_user(env, addr, u.ll.upper);
2298 cpu_stq_user(env, addr + 8, u.ll.lower);
2299 break;
2300 case MMU_KERNEL_IDX:
2301 u.q = QT0;
2302 cpu_stq_kernel(env, addr, u.ll.upper);
2303 cpu_stq_kernel(env, addr + 8, u.ll.lower);
2304 break;
2305 #ifdef TARGET_SPARC64
2306 case MMU_HYPV_IDX:
2307 u.q = QT0;
2308 cpu_stq_hypv(env, addr, u.ll.upper);
2309 cpu_stq_hypv(env, addr + 8, u.ll.lower);
2310 break;
2311 #endif
2312 default:
2313 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
2314 break;
2316 #else
2317 u.q = QT0;
2318 stq_raw(address_mask(env, addr), u.ll.upper);
2319 stq_raw(address_mask(env, addr + 8), u.ll.lower);
2320 #endif
2323 #if !defined(CONFIG_USER_ONLY)
2324 #ifndef TARGET_SPARC64
2325 void cpu_unassigned_access(CPUSPARCState *env, hwaddr addr,
2326 int is_write, int is_exec, int is_asi, int size)
2328 int fault_type;
2330 #ifdef DEBUG_UNASSIGNED
2331 if (is_asi) {
2332 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2333 " asi 0x%02x from " TARGET_FMT_lx "\n",
2334 is_exec ? "exec" : is_write ? "write" : "read", size,
2335 size == 1 ? "" : "s", addr, is_asi, env->pc);
2336 } else {
2337 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2338 " from " TARGET_FMT_lx "\n",
2339 is_exec ? "exec" : is_write ? "write" : "read", size,
2340 size == 1 ? "" : "s", addr, env->pc);
2342 #endif
2343 /* Don't overwrite translation and access faults */
2344 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
2345 if ((fault_type > 4) || (fault_type == 0)) {
2346 env->mmuregs[3] = 0; /* Fault status register */
2347 if (is_asi) {
2348 env->mmuregs[3] |= 1 << 16;
2350 if (env->psrs) {
2351 env->mmuregs[3] |= 1 << 5;
2353 if (is_exec) {
2354 env->mmuregs[3] |= 1 << 6;
2356 if (is_write) {
2357 env->mmuregs[3] |= 1 << 7;
2359 env->mmuregs[3] |= (5 << 2) | 2;
2360 /* SuperSPARC will never place instruction fault addresses in the FAR */
2361 if (!is_exec) {
2362 env->mmuregs[4] = addr; /* Fault address register */
2365 /* overflow (same type fault was not read before another fault) */
2366 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
2367 env->mmuregs[3] |= 1;
2370 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2371 if (is_exec) {
2372 helper_raise_exception(env, TT_CODE_ACCESS);
2373 } else {
2374 helper_raise_exception(env, TT_DATA_ACCESS);
2378 /* flush neverland mappings created during no-fault mode,
2379 so the sequential MMU faults report proper fault types */
2380 if (env->mmuregs[0] & MMU_NF) {
2381 tlb_flush(env, 1);
2384 #else
2385 void cpu_unassigned_access(CPUSPARCState *env, hwaddr addr,
2386 int is_write, int is_exec, int is_asi, int size)
2388 #ifdef DEBUG_UNASSIGNED
2389 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2390 "\n", addr, env->pc);
2391 #endif
2393 if (is_exec) {
2394 helper_raise_exception(env, TT_CODE_ACCESS);
2395 } else {
2396 helper_raise_exception(env, TT_DATA_ACCESS);
2399 #endif
2400 #endif
2402 #if !defined(CONFIG_USER_ONLY)
2403 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
2404 target_ulong addr, int is_write,
2405 int is_user, uintptr_t retaddr)
2407 #ifdef DEBUG_UNALIGNED
2408 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2409 "\n", addr, env->pc);
2410 #endif
2411 if (retaddr) {
2412 cpu_restore_state(env, retaddr);
2414 helper_raise_exception(env, TT_UNALIGNED);
2417 /* try to fill the TLB and return an exception if error. If retaddr is
2418 NULL, it means that the function was called in C code (i.e. not
2419 from generated code or from helper.c) */
2420 /* XXX: fix it to restore all registers */
2421 void tlb_fill(CPUSPARCState *env, target_ulong addr, int is_write, int mmu_idx,
2422 uintptr_t retaddr)
2424 int ret;
2426 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx);
2427 if (ret) {
2428 if (retaddr) {
2429 cpu_restore_state(env, retaddr);
2431 cpu_loop_exit(env);
2434 #endif