2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 //#define DEBUG_UNALIGNED
26 //#define DEBUG_UNASSIGNED
28 //#define DEBUG_CACHE_CONTROL
31 #define DPRINTF_MMU(fmt, ...) \
32 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
34 #define DPRINTF_MMU(fmt, ...) do {} while (0)
38 #define DPRINTF_MXCC(fmt, ...) \
39 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
41 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
45 #define DPRINTF_ASI(fmt, ...) \
46 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
49 #ifdef DEBUG_CACHE_CONTROL
50 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
51 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
53 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
58 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
60 #define AM_CHECK(env1) (1)
64 #define QT0 (env->qt0)
65 #define QT1 (env->qt1)
67 #if !defined(CONFIG_USER_ONLY)
68 static void QEMU_NORETURN
do_unaligned_access(CPUSPARCState
*env
,
69 target_ulong addr
, int is_write
,
70 int is_user
, uintptr_t retaddr
);
71 #include "exec/softmmu_exec.h"
72 #define MMUSUFFIX _mmu
76 #include "exec/softmmu_template.h"
79 #include "exec/softmmu_template.h"
82 #include "exec/softmmu_template.h"
85 #include "exec/softmmu_template.h"
88 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
89 /* Calculates TSB pointer value for fault page size 8k or 64k */
90 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register
,
91 uint64_t tag_access_register
,
94 uint64_t tsb_base
= tsb_register
& ~0x1fffULL
;
95 int tsb_split
= (tsb_register
& 0x1000ULL
) ? 1 : 0;
96 int tsb_size
= tsb_register
& 0xf;
98 /* discard lower 13 bits which hold tag access context */
99 uint64_t tag_access_va
= tag_access_register
& ~0x1fffULL
;
101 /* now reorder bits */
102 uint64_t tsb_base_mask
= ~0x1fffULL
;
103 uint64_t va
= tag_access_va
;
105 /* move va bits to correct position */
106 if (page_size
== 8*1024) {
108 } else if (page_size
== 64*1024) {
113 tsb_base_mask
<<= tsb_size
;
116 /* calculate tsb_base mask and adjust va if split is in use */
118 if (page_size
== 8*1024) {
119 va
&= ~(1ULL << (13 + tsb_size
));
120 } else if (page_size
== 64*1024) {
121 va
|= (1ULL << (13 + tsb_size
));
126 return ((tsb_base
& tsb_base_mask
) | (va
& ~tsb_base_mask
)) & ~0xfULL
;
129 /* Calculates tag target register value by reordering bits
130 in tag access register */
131 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register
)
133 return ((tag_access_register
& 0x1fff) << 48) | (tag_access_register
>> 22);
136 static void replace_tlb_entry(SparcTLBEntry
*tlb
,
137 uint64_t tlb_tag
, uint64_t tlb_tte
,
140 target_ulong mask
, size
, va
, offset
;
142 /* flush page range if translation is valid */
143 if (TTE_IS_VALID(tlb
->tte
)) {
145 mask
= 0xffffffffffffe000ULL
;
146 mask
<<= 3 * ((tlb
->tte
>> 61) & 3);
149 va
= tlb
->tag
& mask
;
151 for (offset
= 0; offset
< size
; offset
+= TARGET_PAGE_SIZE
) {
152 tlb_flush_page(env1
, va
+ offset
);
160 static void demap_tlb(SparcTLBEntry
*tlb
, target_ulong demap_addr
,
161 const char *strmmu
, CPUSPARCState
*env1
)
167 int is_demap_context
= (demap_addr
>> 6) & 1;
170 switch ((demap_addr
>> 4) & 3) {
171 case 0: /* primary */
172 context
= env1
->dmmu
.mmu_primary_context
;
174 case 1: /* secondary */
175 context
= env1
->dmmu
.mmu_secondary_context
;
177 case 2: /* nucleus */
180 case 3: /* reserved */
185 for (i
= 0; i
< 64; i
++) {
186 if (TTE_IS_VALID(tlb
[i
].tte
)) {
188 if (is_demap_context
) {
189 /* will remove non-global entries matching context value */
190 if (TTE_IS_GLOBAL(tlb
[i
].tte
) ||
191 !tlb_compare_context(&tlb
[i
], context
)) {
196 will remove any entry matching VA */
197 mask
= 0xffffffffffffe000ULL
;
198 mask
<<= 3 * ((tlb
[i
].tte
>> 61) & 3);
200 if (!compare_masked(demap_addr
, tlb
[i
].tag
, mask
)) {
204 /* entry should be global or matching context value */
205 if (!TTE_IS_GLOBAL(tlb
[i
].tte
) &&
206 !tlb_compare_context(&tlb
[i
], context
)) {
211 replace_tlb_entry(&tlb
[i
], 0, 0, env1
);
213 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu
, i
);
214 dump_mmu(stdout
, fprintf
, env1
);
220 static void replace_tlb_1bit_lru(SparcTLBEntry
*tlb
,
221 uint64_t tlb_tag
, uint64_t tlb_tte
,
222 const char *strmmu
, CPUSPARCState
*env1
)
224 unsigned int i
, replace_used
;
226 /* Try replacing invalid entry */
227 for (i
= 0; i
< 64; i
++) {
228 if (!TTE_IS_VALID(tlb
[i
].tte
)) {
229 replace_tlb_entry(&tlb
[i
], tlb_tag
, tlb_tte
, env1
);
231 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu
, i
);
232 dump_mmu(stdout
, fprintf
, env1
);
238 /* All entries are valid, try replacing unlocked entry */
240 for (replace_used
= 0; replace_used
< 2; ++replace_used
) {
242 /* Used entries are not replaced on first pass */
244 for (i
= 0; i
< 64; i
++) {
245 if (!TTE_IS_LOCKED(tlb
[i
].tte
) && !TTE_IS_USED(tlb
[i
].tte
)) {
247 replace_tlb_entry(&tlb
[i
], tlb_tag
, tlb_tte
, env1
);
249 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
250 strmmu
, (replace_used
? "used" : "unused"), i
);
251 dump_mmu(stdout
, fprintf
, env1
);
257 /* Now reset used bit and search for unused entries again */
259 for (i
= 0; i
< 64; i
++) {
260 TTE_SET_UNUSED(tlb
[i
].tte
);
265 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu
);
272 static inline target_ulong
address_mask(CPUSPARCState
*env1
, target_ulong addr
)
274 #ifdef TARGET_SPARC64
275 if (AM_CHECK(env1
)) {
276 addr
&= 0xffffffffULL
;
282 /* returns true if access using this ASI is to have address translated by MMU
283 otherwise access is to raw physical address */
284 static inline int is_translating_asi(int asi
)
286 #ifdef TARGET_SPARC64
287 /* Ultrasparc IIi translating asi
288 - note this list is defined by cpu implementation
304 /* TODO: check sparc32 bits */
309 static inline target_ulong
asi_address_mask(CPUSPARCState
*env
,
310 int asi
, target_ulong addr
)
312 if (is_translating_asi(asi
)) {
313 return address_mask(env
, addr
);
319 void helper_check_align(CPUSPARCState
*env
, target_ulong addr
, uint32_t align
)
322 #ifdef DEBUG_UNALIGNED
323 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
324 "\n", addr
, env
->pc
);
326 helper_raise_exception(env
, TT_UNALIGNED
);
330 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
332 static void dump_mxcc(CPUSPARCState
*env
)
334 printf("mxccdata: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
336 env
->mxccdata
[0], env
->mxccdata
[1],
337 env
->mxccdata
[2], env
->mxccdata
[3]);
338 printf("mxccregs: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
340 " %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
342 env
->mxccregs
[0], env
->mxccregs
[1],
343 env
->mxccregs
[2], env
->mxccregs
[3],
344 env
->mxccregs
[4], env
->mxccregs
[5],
345 env
->mxccregs
[6], env
->mxccregs
[7]);
349 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
350 && defined(DEBUG_ASI)
351 static void dump_asi(const char *txt
, target_ulong addr
, int asi
, int size
,
356 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %02" PRIx64
"\n", txt
,
357 addr
, asi
, r1
& 0xff);
360 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %04" PRIx64
"\n", txt
,
361 addr
, asi
, r1
& 0xffff);
364 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %08" PRIx64
"\n", txt
,
365 addr
, asi
, r1
& 0xffffffff);
368 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %016" PRIx64
"\n", txt
,
375 #ifndef TARGET_SPARC64
376 #ifndef CONFIG_USER_ONLY
379 /* Leon3 cache control */
381 static void leon3_cache_control_st(CPUSPARCState
*env
, target_ulong addr
,
382 uint64_t val
, int size
)
384 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64
", size:%d\n",
388 DPRINTF_CACHE_CONTROL("32bits only\n");
393 case 0x00: /* Cache control */
395 /* These values must always be read as zeros */
396 val
&= ~CACHE_CTRL_FD
;
397 val
&= ~CACHE_CTRL_FI
;
398 val
&= ~CACHE_CTRL_IB
;
399 val
&= ~CACHE_CTRL_IP
;
400 val
&= ~CACHE_CTRL_DP
;
402 env
->cache_control
= val
;
404 case 0x04: /* Instruction cache configuration */
405 case 0x08: /* Data cache configuration */
409 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr
);
414 static uint64_t leon3_cache_control_ld(CPUSPARCState
*env
, target_ulong addr
,
420 DPRINTF_CACHE_CONTROL("32bits only\n");
425 case 0x00: /* Cache control */
426 ret
= env
->cache_control
;
429 /* Configuration registers are read and only always keep those
432 case 0x04: /* Instruction cache configuration */
435 case 0x08: /* Data cache configuration */
439 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr
);
442 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64
", size:%d\n",
447 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
451 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
452 uint32_t last_addr
= addr
;
455 helper_check_align(env
, addr
, size
- 1);
457 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
459 case 0x00: /* Leon3 Cache Control */
460 case 0x08: /* Leon3 Instruction Cache config */
461 case 0x0C: /* Leon3 Date Cache config */
462 if (env
->def
->features
& CPU_FEATURE_CACHE_CTRL
) {
463 ret
= leon3_cache_control_ld(env
, addr
, size
);
466 case 0x01c00a00: /* MXCC control register */
468 ret
= env
->mxccregs
[3];
470 qemu_log_mask(LOG_UNIMP
,
471 "%08x: unimplemented access size: %d\n", addr
,
475 case 0x01c00a04: /* MXCC control register */
477 ret
= env
->mxccregs
[3];
479 qemu_log_mask(LOG_UNIMP
,
480 "%08x: unimplemented access size: %d\n", addr
,
484 case 0x01c00c00: /* Module reset register */
486 ret
= env
->mxccregs
[5];
487 /* should we do something here? */
489 qemu_log_mask(LOG_UNIMP
,
490 "%08x: unimplemented access size: %d\n", addr
,
494 case 0x01c00f00: /* MBus port address register */
496 ret
= env
->mxccregs
[7];
498 qemu_log_mask(LOG_UNIMP
,
499 "%08x: unimplemented access size: %d\n", addr
,
504 qemu_log_mask(LOG_UNIMP
,
505 "%08x: unimplemented address, size: %d\n", addr
,
509 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
510 "addr = %08x -> ret = %" PRIx64
","
511 "addr = %08x\n", asi
, size
, sign
, last_addr
, ret
, addr
);
516 case 3: /* MMU probe */
520 mmulev
= (addr
>> 8) & 15;
524 ret
= mmu_probe(env
, addr
, mmulev
);
526 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64
"\n",
530 case 4: /* read MMU regs */
532 int reg
= (addr
>> 8) & 0x1f;
534 ret
= env
->mmuregs
[reg
];
535 if (reg
== 3) { /* Fault status cleared on read */
537 } else if (reg
== 0x13) { /* Fault status read */
538 ret
= env
->mmuregs
[3];
539 } else if (reg
== 0x14) { /* Fault address read */
540 ret
= env
->mmuregs
[4];
542 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64
"\n", reg
, ret
);
545 case 5: /* Turbosparc ITLB Diagnostic */
546 case 6: /* Turbosparc DTLB Diagnostic */
547 case 7: /* Turbosparc IOTLB Diagnostic */
549 case 9: /* Supervisor code access */
552 ret
= cpu_ldub_code(env
, addr
);
555 ret
= cpu_lduw_code(env
, addr
);
559 ret
= cpu_ldl_code(env
, addr
);
562 ret
= cpu_ldq_code(env
, addr
);
566 case 0xa: /* User data access */
569 ret
= cpu_ldub_user(env
, addr
);
572 ret
= cpu_lduw_user(env
, addr
);
576 ret
= cpu_ldl_user(env
, addr
);
579 ret
= cpu_ldq_user(env
, addr
);
583 case 0xb: /* Supervisor data access */
586 ret
= cpu_ldub_kernel(env
, addr
);
589 ret
= cpu_lduw_kernel(env
, addr
);
593 ret
= cpu_ldl_kernel(env
, addr
);
596 ret
= cpu_ldq_kernel(env
, addr
);
600 case 0xc: /* I-cache tag */
601 case 0xd: /* I-cache data */
602 case 0xe: /* D-cache tag */
603 case 0xf: /* D-cache data */
605 case 0x20: /* MMU passthrough */
608 ret
= ldub_phys(addr
);
611 ret
= lduw_phys(addr
);
615 ret
= ldl_phys(addr
);
618 ret
= ldq_phys(addr
);
622 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
625 ret
= ldub_phys((hwaddr
)addr
626 | ((hwaddr
)(asi
& 0xf) << 32));
629 ret
= lduw_phys((hwaddr
)addr
630 | ((hwaddr
)(asi
& 0xf) << 32));
634 ret
= ldl_phys((hwaddr
)addr
635 | ((hwaddr
)(asi
& 0xf) << 32));
638 ret
= ldq_phys((hwaddr
)addr
639 | ((hwaddr
)(asi
& 0xf) << 32));
643 case 0x30: /* Turbosparc secondary cache diagnostic */
644 case 0x31: /* Turbosparc RAM snoop */
645 case 0x32: /* Turbosparc page table descriptor diagnostic */
646 case 0x39: /* data cache diagnostic register */
649 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
651 int reg
= (addr
>> 8) & 3;
654 case 0: /* Breakpoint Value (Addr) */
655 ret
= env
->mmubpregs
[reg
];
657 case 1: /* Breakpoint Mask */
658 ret
= env
->mmubpregs
[reg
];
660 case 2: /* Breakpoint Control */
661 ret
= env
->mmubpregs
[reg
];
663 case 3: /* Breakpoint Status */
664 ret
= env
->mmubpregs
[reg
];
665 env
->mmubpregs
[reg
] = 0ULL;
668 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64
"\n", reg
,
672 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
673 ret
= env
->mmubpctrv
;
675 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
676 ret
= env
->mmubpctrc
;
678 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
679 ret
= env
->mmubpctrs
;
681 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
682 ret
= env
->mmubpaction
;
684 case 8: /* User code access, XXX */
686 cpu_unassigned_access(env
, addr
, 0, 0, asi
, size
);
706 dump_asi("read ", last_addr
, asi
, size
, ret
);
711 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, uint64_t val
, int asi
,
714 helper_check_align(env
, addr
, size
- 1);
716 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
718 case 0x00: /* Leon3 Cache Control */
719 case 0x08: /* Leon3 Instruction Cache config */
720 case 0x0C: /* Leon3 Date Cache config */
721 if (env
->def
->features
& CPU_FEATURE_CACHE_CTRL
) {
722 leon3_cache_control_st(env
, addr
, val
, size
);
726 case 0x01c00000: /* MXCC stream data register 0 */
728 env
->mxccdata
[0] = val
;
730 qemu_log_mask(LOG_UNIMP
,
731 "%08x: unimplemented access size: %d\n", addr
,
735 case 0x01c00008: /* MXCC stream data register 1 */
737 env
->mxccdata
[1] = val
;
739 qemu_log_mask(LOG_UNIMP
,
740 "%08x: unimplemented access size: %d\n", addr
,
744 case 0x01c00010: /* MXCC stream data register 2 */
746 env
->mxccdata
[2] = val
;
748 qemu_log_mask(LOG_UNIMP
,
749 "%08x: unimplemented access size: %d\n", addr
,
753 case 0x01c00018: /* MXCC stream data register 3 */
755 env
->mxccdata
[3] = val
;
757 qemu_log_mask(LOG_UNIMP
,
758 "%08x: unimplemented access size: %d\n", addr
,
762 case 0x01c00100: /* MXCC stream source */
764 env
->mxccregs
[0] = val
;
766 qemu_log_mask(LOG_UNIMP
,
767 "%08x: unimplemented access size: %d\n", addr
,
770 env
->mxccdata
[0] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
772 env
->mxccdata
[1] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
774 env
->mxccdata
[2] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
776 env
->mxccdata
[3] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) +
779 case 0x01c00200: /* MXCC stream destination */
781 env
->mxccregs
[1] = val
;
783 qemu_log_mask(LOG_UNIMP
,
784 "%08x: unimplemented access size: %d\n", addr
,
787 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 0,
789 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 8,
791 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 16,
793 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 24,
796 case 0x01c00a00: /* MXCC control register */
798 env
->mxccregs
[3] = val
;
800 qemu_log_mask(LOG_UNIMP
,
801 "%08x: unimplemented access size: %d\n", addr
,
805 case 0x01c00a04: /* MXCC control register */
807 env
->mxccregs
[3] = (env
->mxccregs
[3] & 0xffffffff00000000ULL
)
810 qemu_log_mask(LOG_UNIMP
,
811 "%08x: unimplemented access size: %d\n", addr
,
815 case 0x01c00e00: /* MXCC error register */
816 /* writing a 1 bit clears the error */
818 env
->mxccregs
[6] &= ~val
;
820 qemu_log_mask(LOG_UNIMP
,
821 "%08x: unimplemented access size: %d\n", addr
,
825 case 0x01c00f00: /* MBus port address register */
827 env
->mxccregs
[7] = val
;
829 qemu_log_mask(LOG_UNIMP
,
830 "%08x: unimplemented access size: %d\n", addr
,
835 qemu_log_mask(LOG_UNIMP
,
836 "%08x: unimplemented address, size: %d\n", addr
,
840 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64
"\n",
841 asi
, size
, addr
, val
);
846 case 3: /* MMU flush */
850 mmulev
= (addr
>> 8) & 15;
851 DPRINTF_MMU("mmu flush level %d\n", mmulev
);
853 case 0: /* flush page */
854 tlb_flush_page(env
, addr
& 0xfffff000);
856 case 1: /* flush segment (256k) */
857 case 2: /* flush region (16M) */
858 case 3: /* flush context (4G) */
859 case 4: /* flush entire */
866 dump_mmu(stdout
, fprintf
, env
);
870 case 4: /* write MMU regs */
872 int reg
= (addr
>> 8) & 0x1f;
875 oldreg
= env
->mmuregs
[reg
];
877 case 0: /* Control Register */
878 env
->mmuregs
[reg
] = (env
->mmuregs
[reg
] & 0xff000000) |
880 /* Mappings generated during no-fault mode or MMU
881 disabled mode are invalid in normal mode */
882 if ((oldreg
& (MMU_E
| MMU_NF
| env
->def
->mmu_bm
)) !=
883 (env
->mmuregs
[reg
] & (MMU_E
| MMU_NF
| env
->def
->mmu_bm
))) {
887 case 1: /* Context Table Pointer Register */
888 env
->mmuregs
[reg
] = val
& env
->def
->mmu_ctpr_mask
;
890 case 2: /* Context Register */
891 env
->mmuregs
[reg
] = val
& env
->def
->mmu_cxr_mask
;
892 if (oldreg
!= env
->mmuregs
[reg
]) {
893 /* we flush when the MMU context changes because
894 QEMU has no MMU context support */
898 case 3: /* Synchronous Fault Status Register with Clear */
899 case 4: /* Synchronous Fault Address Register */
901 case 0x10: /* TLB Replacement Control Register */
902 env
->mmuregs
[reg
] = val
& env
->def
->mmu_trcr_mask
;
904 case 0x13: /* Synchronous Fault Status Register with Read
906 env
->mmuregs
[3] = val
& env
->def
->mmu_sfsr_mask
;
908 case 0x14: /* Synchronous Fault Address Register */
909 env
->mmuregs
[4] = val
;
912 env
->mmuregs
[reg
] = val
;
915 if (oldreg
!= env
->mmuregs
[reg
]) {
916 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
917 reg
, oldreg
, env
->mmuregs
[reg
]);
920 dump_mmu(stdout
, fprintf
, env
);
924 case 5: /* Turbosparc ITLB Diagnostic */
925 case 6: /* Turbosparc DTLB Diagnostic */
926 case 7: /* Turbosparc IOTLB Diagnostic */
928 case 0xa: /* User data access */
931 cpu_stb_user(env
, addr
, val
);
934 cpu_stw_user(env
, addr
, val
);
938 cpu_stl_user(env
, addr
, val
);
941 cpu_stq_user(env
, addr
, val
);
945 case 0xb: /* Supervisor data access */
948 cpu_stb_kernel(env
, addr
, val
);
951 cpu_stw_kernel(env
, addr
, val
);
955 cpu_stl_kernel(env
, addr
, val
);
958 cpu_stq_kernel(env
, addr
, val
);
962 case 0xc: /* I-cache tag */
963 case 0xd: /* I-cache data */
964 case 0xe: /* D-cache tag */
965 case 0xf: /* D-cache data */
966 case 0x10: /* I/D-cache flush page */
967 case 0x11: /* I/D-cache flush segment */
968 case 0x12: /* I/D-cache flush region */
969 case 0x13: /* I/D-cache flush context */
970 case 0x14: /* I/D-cache flush user */
972 case 0x17: /* Block copy, sta access */
978 uint32_t src
= val
& ~3, dst
= addr
& ~3, temp
;
980 for (i
= 0; i
< 32; i
+= 4, src
+= 4, dst
+= 4) {
981 temp
= cpu_ldl_kernel(env
, src
);
982 cpu_stl_kernel(env
, dst
, temp
);
986 case 0x1f: /* Block fill, stda access */
989 fill 32 bytes with val */
991 uint32_t dst
= addr
& 7;
993 for (i
= 0; i
< 32; i
+= 8, dst
+= 8) {
994 cpu_stq_kernel(env
, dst
, val
);
998 case 0x20: /* MMU passthrough */
1002 stb_phys(addr
, val
);
1005 stw_phys(addr
, val
);
1009 stl_phys(addr
, val
);
1012 stq_phys(addr
, val
);
1017 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1021 stb_phys((hwaddr
)addr
1022 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1025 stw_phys((hwaddr
)addr
1026 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1030 stl_phys((hwaddr
)addr
1031 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1034 stq_phys((hwaddr
)addr
1035 | ((hwaddr
)(asi
& 0xf) << 32), val
);
1040 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1041 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1042 Turbosparc snoop RAM */
1043 case 0x32: /* store buffer control or Turbosparc page table
1044 descriptor diagnostic */
1045 case 0x36: /* I-cache flash clear */
1046 case 0x37: /* D-cache flash clear */
1048 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1050 int reg
= (addr
>> 8) & 3;
1053 case 0: /* Breakpoint Value (Addr) */
1054 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1056 case 1: /* Breakpoint Mask */
1057 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1059 case 2: /* Breakpoint Control */
1060 env
->mmubpregs
[reg
] = (val
& 0x7fULL
);
1062 case 3: /* Breakpoint Status */
1063 env
->mmubpregs
[reg
] = (val
& 0xfULL
);
1066 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg
,
1070 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1071 env
->mmubpctrv
= val
& 0xffffffff;
1073 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1074 env
->mmubpctrc
= val
& 0x3;
1076 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1077 env
->mmubpctrs
= val
& 0x3;
1079 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1080 env
->mmubpaction
= val
& 0x1fff;
1082 case 8: /* User code access, XXX */
1083 case 9: /* Supervisor code access, XXX */
1085 cpu_unassigned_access(env
, addr
, 1, 0, asi
, size
);
1089 dump_asi("write", addr
, asi
, size
, val
);
1093 #endif /* CONFIG_USER_ONLY */
1094 #else /* TARGET_SPARC64 */
1096 #ifdef CONFIG_USER_ONLY
1097 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
1101 #if defined(DEBUG_ASI)
1102 target_ulong last_addr
= addr
;
1106 helper_raise_exception(env
, TT_PRIV_ACT
);
1109 helper_check_align(env
, addr
, size
- 1);
1110 addr
= asi_address_mask(env
, asi
, addr
);
1113 case 0x82: /* Primary no-fault */
1114 case 0x8a: /* Primary no-fault LE */
1115 if (page_check_range(addr
, size
, PAGE_READ
) == -1) {
1117 dump_asi("read ", last_addr
, asi
, size
, ret
);
1122 case 0x80: /* Primary */
1123 case 0x88: /* Primary LE */
1127 ret
= ldub_raw(addr
);
1130 ret
= lduw_raw(addr
);
1133 ret
= ldl_raw(addr
);
1137 ret
= ldq_raw(addr
);
1142 case 0x83: /* Secondary no-fault */
1143 case 0x8b: /* Secondary no-fault LE */
1144 if (page_check_range(addr
, size
, PAGE_READ
) == -1) {
1146 dump_asi("read ", last_addr
, asi
, size
, ret
);
1151 case 0x81: /* Secondary */
1152 case 0x89: /* Secondary LE */
1159 /* Convert from little endian */
1161 case 0x88: /* Primary LE */
1162 case 0x89: /* Secondary LE */
1163 case 0x8a: /* Primary no-fault LE */
1164 case 0x8b: /* Secondary no-fault LE */
1182 /* Convert to signed number */
1189 ret
= (int16_t) ret
;
1192 ret
= (int32_t) ret
;
1199 dump_asi("read ", last_addr
, asi
, size
, ret
);
1204 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, target_ulong val
,
1208 dump_asi("write", addr
, asi
, size
, val
);
1211 helper_raise_exception(env
, TT_PRIV_ACT
);
1214 helper_check_align(env
, addr
, size
- 1);
1215 addr
= asi_address_mask(env
, asi
, addr
);
1217 /* Convert to little endian */
1219 case 0x88: /* Primary LE */
1220 case 0x89: /* Secondary LE */
1239 case 0x80: /* Primary */
1240 case 0x88: /* Primary LE */
1259 case 0x81: /* Secondary */
1260 case 0x89: /* Secondary LE */
1264 case 0x82: /* Primary no-fault, RO */
1265 case 0x83: /* Secondary no-fault, RO */
1266 case 0x8a: /* Primary no-fault LE, RO */
1267 case 0x8b: /* Secondary no-fault LE, RO */
1269 helper_raise_exception(env
, TT_DATA_ACCESS
);
1274 #else /* CONFIG_USER_ONLY */
1276 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
1280 #if defined(DEBUG_ASI)
1281 target_ulong last_addr
= addr
;
1286 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
1287 || (cpu_has_hypervisor(env
)
1288 && asi
>= 0x30 && asi
< 0x80
1289 && !(env
->hpstate
& HS_PRIV
))) {
1290 helper_raise_exception(env
, TT_PRIV_ACT
);
1293 helper_check_align(env
, addr
, size
- 1);
1294 addr
= asi_address_mask(env
, asi
, addr
);
1296 /* process nonfaulting loads first */
1297 if ((asi
& 0xf6) == 0x82) {
1300 /* secondary space access has lowest asi bit equal to 1 */
1301 if (env
->pstate
& PS_PRIV
) {
1302 mmu_idx
= (asi
& 1) ? MMU_KERNEL_SECONDARY_IDX
: MMU_KERNEL_IDX
;
1304 mmu_idx
= (asi
& 1) ? MMU_USER_SECONDARY_IDX
: MMU_USER_IDX
;
1307 if (cpu_get_phys_page_nofault(env
, addr
, mmu_idx
) == -1ULL) {
1309 dump_asi("read ", last_addr
, asi
, size
, ret
);
1311 /* env->exception_index is set in get_physical_address_data(). */
1312 helper_raise_exception(env
, env
->exception_index
);
1315 /* convert nonfaulting load ASIs to normal load ASIs */
1320 case 0x10: /* As if user primary */
1321 case 0x11: /* As if user secondary */
1322 case 0x18: /* As if user primary LE */
1323 case 0x19: /* As if user secondary LE */
1324 case 0x80: /* Primary */
1325 case 0x81: /* Secondary */
1326 case 0x88: /* Primary LE */
1327 case 0x89: /* Secondary LE */
1328 case 0xe2: /* UA2007 Primary block init */
1329 case 0xe3: /* UA2007 Secondary block init */
1330 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
1331 if (cpu_hypervisor_mode(env
)) {
1334 ret
= cpu_ldub_hypv(env
, addr
);
1337 ret
= cpu_lduw_hypv(env
, addr
);
1340 ret
= cpu_ldl_hypv(env
, addr
);
1344 ret
= cpu_ldq_hypv(env
, addr
);
1348 /* secondary space access has lowest asi bit equal to 1 */
1352 ret
= cpu_ldub_kernel_secondary(env
, addr
);
1355 ret
= cpu_lduw_kernel_secondary(env
, addr
);
1358 ret
= cpu_ldl_kernel_secondary(env
, addr
);
1362 ret
= cpu_ldq_kernel_secondary(env
, addr
);
1368 ret
= cpu_ldub_kernel(env
, addr
);
1371 ret
= cpu_lduw_kernel(env
, addr
);
1374 ret
= cpu_ldl_kernel(env
, addr
);
1378 ret
= cpu_ldq_kernel(env
, addr
);
1384 /* secondary space access has lowest asi bit equal to 1 */
1388 ret
= cpu_ldub_user_secondary(env
, addr
);
1391 ret
= cpu_lduw_user_secondary(env
, addr
);
1394 ret
= cpu_ldl_user_secondary(env
, addr
);
1398 ret
= cpu_ldq_user_secondary(env
, addr
);
1404 ret
= cpu_ldub_user(env
, addr
);
1407 ret
= cpu_lduw_user(env
, addr
);
1410 ret
= cpu_ldl_user(env
, addr
);
1414 ret
= cpu_ldq_user(env
, addr
);
1420 case 0x14: /* Bypass */
1421 case 0x15: /* Bypass, non-cacheable */
1422 case 0x1c: /* Bypass LE */
1423 case 0x1d: /* Bypass, non-cacheable LE */
1427 ret
= ldub_phys(addr
);
1430 ret
= lduw_phys(addr
);
1433 ret
= ldl_phys(addr
);
1437 ret
= ldq_phys(addr
);
1442 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1443 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1444 Only ldda allowed */
1445 helper_raise_exception(env
, TT_ILL_INSN
);
1447 case 0x04: /* Nucleus */
1448 case 0x0c: /* Nucleus Little Endian (LE) */
1452 ret
= cpu_ldub_nucleus(env
, addr
);
1455 ret
= cpu_lduw_nucleus(env
, addr
);
1458 ret
= cpu_ldl_nucleus(env
, addr
);
1462 ret
= cpu_ldq_nucleus(env
, addr
);
1467 case 0x4a: /* UPA config */
1470 case 0x45: /* LSU */
1473 case 0x50: /* I-MMU regs */
1475 int reg
= (addr
>> 3) & 0xf;
1478 /* I-TSB Tag Target register */
1479 ret
= ultrasparc_tag_target(env
->immu
.tag_access
);
1481 ret
= env
->immuregs
[reg
];
1486 case 0x51: /* I-MMU 8k TSB pointer */
1488 /* env->immuregs[5] holds I-MMU TSB register value
1489 env->immuregs[6] holds I-MMU Tag Access register value */
1490 ret
= ultrasparc_tsb_pointer(env
->immu
.tsb
, env
->immu
.tag_access
,
1494 case 0x52: /* I-MMU 64k TSB pointer */
1496 /* env->immuregs[5] holds I-MMU TSB register value
1497 env->immuregs[6] holds I-MMU Tag Access register value */
1498 ret
= ultrasparc_tsb_pointer(env
->immu
.tsb
, env
->immu
.tag_access
,
1502 case 0x55: /* I-MMU data access */
1504 int reg
= (addr
>> 3) & 0x3f;
1506 ret
= env
->itlb
[reg
].tte
;
1509 case 0x56: /* I-MMU tag read */
1511 int reg
= (addr
>> 3) & 0x3f;
1513 ret
= env
->itlb
[reg
].tag
;
1516 case 0x58: /* D-MMU regs */
1518 int reg
= (addr
>> 3) & 0xf;
1521 /* D-TSB Tag Target register */
1522 ret
= ultrasparc_tag_target(env
->dmmu
.tag_access
);
1524 ret
= env
->dmmuregs
[reg
];
1528 case 0x59: /* D-MMU 8k TSB pointer */
1530 /* env->dmmuregs[5] holds D-MMU TSB register value
1531 env->dmmuregs[6] holds D-MMU Tag Access register value */
1532 ret
= ultrasparc_tsb_pointer(env
->dmmu
.tsb
, env
->dmmu
.tag_access
,
1536 case 0x5a: /* D-MMU 64k TSB pointer */
1538 /* env->dmmuregs[5] holds D-MMU TSB register value
1539 env->dmmuregs[6] holds D-MMU Tag Access register value */
1540 ret
= ultrasparc_tsb_pointer(env
->dmmu
.tsb
, env
->dmmu
.tag_access
,
1544 case 0x5d: /* D-MMU data access */
1546 int reg
= (addr
>> 3) & 0x3f;
1548 ret
= env
->dtlb
[reg
].tte
;
1551 case 0x5e: /* D-MMU tag read */
1553 int reg
= (addr
>> 3) & 0x3f;
1555 ret
= env
->dtlb
[reg
].tag
;
1558 case 0x48: /* Interrupt dispatch, RO */
1560 case 0x49: /* Interrupt data receive */
1561 ret
= env
->ivec_status
;
1563 case 0x7f: /* Incoming interrupt vector, RO */
1565 int reg
= (addr
>> 4) & 0x3;
1567 ret
= env
->ivec_data
[reg
];
1571 case 0x46: /* D-cache data */
1572 case 0x47: /* D-cache tag access */
1573 case 0x4b: /* E-cache error enable */
1574 case 0x4c: /* E-cache asynchronous fault status */
1575 case 0x4d: /* E-cache asynchronous fault address */
1576 case 0x4e: /* E-cache tag data */
1577 case 0x66: /* I-cache instruction access */
1578 case 0x67: /* I-cache tag access */
1579 case 0x6e: /* I-cache predecode */
1580 case 0x6f: /* I-cache LRU etc. */
1581 case 0x76: /* E-cache tag */
1582 case 0x7e: /* E-cache tag */
1584 case 0x5b: /* D-MMU data pointer */
1585 case 0x54: /* I-MMU data in, WO */
1586 case 0x57: /* I-MMU demap, WO */
1587 case 0x5c: /* D-MMU data in, WO */
1588 case 0x5f: /* D-MMU demap, WO */
1589 case 0x77: /* Interrupt vector, WO */
1591 cpu_unassigned_access(env
, addr
, 0, 0, 1, size
);
1596 /* Convert from little endian */
1598 case 0x0c: /* Nucleus Little Endian (LE) */
1599 case 0x18: /* As if user primary LE */
1600 case 0x19: /* As if user secondary LE */
1601 case 0x1c: /* Bypass LE */
1602 case 0x1d: /* Bypass, non-cacheable LE */
1603 case 0x88: /* Primary LE */
1604 case 0x89: /* Secondary LE */
1622 /* Convert to signed number */
1629 ret
= (int16_t) ret
;
1632 ret
= (int32_t) ret
;
1639 dump_asi("read ", last_addr
, asi
, size
, ret
);
1644 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, target_ulong val
,
1648 dump_asi("write", addr
, asi
, size
, val
);
1653 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
1654 || (cpu_has_hypervisor(env
)
1655 && asi
>= 0x30 && asi
< 0x80
1656 && !(env
->hpstate
& HS_PRIV
))) {
1657 helper_raise_exception(env
, TT_PRIV_ACT
);
1660 helper_check_align(env
, addr
, size
- 1);
1661 addr
= asi_address_mask(env
, asi
, addr
);
1663 /* Convert to little endian */
1665 case 0x0c: /* Nucleus Little Endian (LE) */
1666 case 0x18: /* As if user primary LE */
1667 case 0x19: /* As if user secondary LE */
1668 case 0x1c: /* Bypass LE */
1669 case 0x1d: /* Bypass, non-cacheable LE */
1670 case 0x88: /* Primary LE */
1671 case 0x89: /* Secondary LE */
1690 case 0x10: /* As if user primary */
1691 case 0x11: /* As if user secondary */
1692 case 0x18: /* As if user primary LE */
1693 case 0x19: /* As if user secondary LE */
1694 case 0x80: /* Primary */
1695 case 0x81: /* Secondary */
1696 case 0x88: /* Primary LE */
1697 case 0x89: /* Secondary LE */
1698 case 0xe2: /* UA2007 Primary block init */
1699 case 0xe3: /* UA2007 Secondary block init */
1700 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
1701 if (cpu_hypervisor_mode(env
)) {
1704 cpu_stb_hypv(env
, addr
, val
);
1707 cpu_stw_hypv(env
, addr
, val
);
1710 cpu_stl_hypv(env
, addr
, val
);
1714 cpu_stq_hypv(env
, addr
, val
);
1718 /* secondary space access has lowest asi bit equal to 1 */
1722 cpu_stb_kernel_secondary(env
, addr
, val
);
1725 cpu_stw_kernel_secondary(env
, addr
, val
);
1728 cpu_stl_kernel_secondary(env
, addr
, val
);
1732 cpu_stq_kernel_secondary(env
, addr
, val
);
1738 cpu_stb_kernel(env
, addr
, val
);
1741 cpu_stw_kernel(env
, addr
, val
);
1744 cpu_stl_kernel(env
, addr
, val
);
1748 cpu_stq_kernel(env
, addr
, val
);
1754 /* secondary space access has lowest asi bit equal to 1 */
1758 cpu_stb_user_secondary(env
, addr
, val
);
1761 cpu_stw_user_secondary(env
, addr
, val
);
1764 cpu_stl_user_secondary(env
, addr
, val
);
1768 cpu_stq_user_secondary(env
, addr
, val
);
1774 cpu_stb_user(env
, addr
, val
);
1777 cpu_stw_user(env
, addr
, val
);
1780 cpu_stl_user(env
, addr
, val
);
1784 cpu_stq_user(env
, addr
, val
);
1790 case 0x14: /* Bypass */
1791 case 0x15: /* Bypass, non-cacheable */
1792 case 0x1c: /* Bypass LE */
1793 case 0x1d: /* Bypass, non-cacheable LE */
1797 stb_phys(addr
, val
);
1800 stw_phys(addr
, val
);
1803 stl_phys(addr
, val
);
1807 stq_phys(addr
, val
);
1812 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1813 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1814 Only ldda allowed */
1815 helper_raise_exception(env
, TT_ILL_INSN
);
1817 case 0x04: /* Nucleus */
1818 case 0x0c: /* Nucleus Little Endian (LE) */
1822 cpu_stb_nucleus(env
, addr
, val
);
1825 cpu_stw_nucleus(env
, addr
, val
);
1828 cpu_stl_nucleus(env
, addr
, val
);
1832 cpu_stq_nucleus(env
, addr
, val
);
1838 case 0x4a: /* UPA config */
1841 case 0x45: /* LSU */
1846 env
->lsu
= val
& (DMMU_E
| IMMU_E
);
1847 /* Mappings generated during D/I MMU disabled mode are
1848 invalid in normal mode */
1849 if (oldreg
!= env
->lsu
) {
1850 DPRINTF_MMU("LSU change: 0x%" PRIx64
" -> 0x%" PRIx64
"\n",
1853 dump_mmu(stdout
, fprintf
, env1
);
1859 case 0x50: /* I-MMU regs */
1861 int reg
= (addr
>> 3) & 0xf;
1864 oldreg
= env
->immuregs
[reg
];
1868 case 1: /* Not in I-MMU */
1872 if ((val
& 1) == 0) {
1873 val
= 0; /* Clear SFSR */
1875 env
->immu
.sfsr
= val
;
1879 case 5: /* TSB access */
1880 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64
" -> 0x%016"
1881 PRIx64
"\n", env
->immu
.tsb
, val
);
1882 env
->immu
.tsb
= val
;
1884 case 6: /* Tag access */
1885 env
->immu
.tag_access
= val
;
1894 if (oldreg
!= env
->immuregs
[reg
]) {
1895 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64
" -> 0x%016"
1896 PRIx64
"\n", reg
, oldreg
, env
->immuregs
[reg
]);
1899 dump_mmu(stdout
, fprintf
, env
);
1903 case 0x54: /* I-MMU data in */
1904 replace_tlb_1bit_lru(env
->itlb
, env
->immu
.tag_access
, val
, "immu", env
);
1906 case 0x55: /* I-MMU data access */
1908 /* TODO: auto demap */
1910 unsigned int i
= (addr
>> 3) & 0x3f;
1912 replace_tlb_entry(&env
->itlb
[i
], env
->immu
.tag_access
, val
, env
);
1915 DPRINTF_MMU("immu data access replaced entry [%i]\n", i
);
1916 dump_mmu(stdout
, fprintf
, env
);
1920 case 0x57: /* I-MMU demap */
1921 demap_tlb(env
->itlb
, addr
, "immu", env
);
1923 case 0x58: /* D-MMU regs */
1925 int reg
= (addr
>> 3) & 0xf;
1928 oldreg
= env
->dmmuregs
[reg
];
1934 if ((val
& 1) == 0) {
1935 val
= 0; /* Clear SFSR, Fault address */
1938 env
->dmmu
.sfsr
= val
;
1940 case 1: /* Primary context */
1941 env
->dmmu
.mmu_primary_context
= val
;
1942 /* can be optimized to only flush MMU_USER_IDX
1943 and MMU_KERNEL_IDX entries */
1946 case 2: /* Secondary context */
1947 env
->dmmu
.mmu_secondary_context
= val
;
1948 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1949 and MMU_KERNEL_SECONDARY_IDX entries */
1952 case 5: /* TSB access */
1953 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64
" -> 0x%016"
1954 PRIx64
"\n", env
->dmmu
.tsb
, val
);
1955 env
->dmmu
.tsb
= val
;
1957 case 6: /* Tag access */
1958 env
->dmmu
.tag_access
= val
;
1960 case 7: /* Virtual Watchpoint */
1961 case 8: /* Physical Watchpoint */
1963 env
->dmmuregs
[reg
] = val
;
1967 if (oldreg
!= env
->dmmuregs
[reg
]) {
1968 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64
" -> 0x%016"
1969 PRIx64
"\n", reg
, oldreg
, env
->dmmuregs
[reg
]);
1972 dump_mmu(stdout
, fprintf
, env
);
1976 case 0x5c: /* D-MMU data in */
1977 replace_tlb_1bit_lru(env
->dtlb
, env
->dmmu
.tag_access
, val
, "dmmu", env
);
1979 case 0x5d: /* D-MMU data access */
1981 unsigned int i
= (addr
>> 3) & 0x3f;
1983 replace_tlb_entry(&env
->dtlb
[i
], env
->dmmu
.tag_access
, val
, env
);
1986 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i
);
1987 dump_mmu(stdout
, fprintf
, env
);
1991 case 0x5f: /* D-MMU demap */
1992 demap_tlb(env
->dtlb
, addr
, "dmmu", env
);
1994 case 0x49: /* Interrupt data receive */
1995 env
->ivec_status
= val
& 0x20;
1997 case 0x46: /* D-cache data */
1998 case 0x47: /* D-cache tag access */
1999 case 0x4b: /* E-cache error enable */
2000 case 0x4c: /* E-cache asynchronous fault status */
2001 case 0x4d: /* E-cache asynchronous fault address */
2002 case 0x4e: /* E-cache tag data */
2003 case 0x66: /* I-cache instruction access */
2004 case 0x67: /* I-cache tag access */
2005 case 0x6e: /* I-cache predecode */
2006 case 0x6f: /* I-cache LRU etc. */
2007 case 0x76: /* E-cache tag */
2008 case 0x7e: /* E-cache tag */
2010 case 0x51: /* I-MMU 8k TSB pointer, RO */
2011 case 0x52: /* I-MMU 64k TSB pointer, RO */
2012 case 0x56: /* I-MMU tag read, RO */
2013 case 0x59: /* D-MMU 8k TSB pointer, RO */
2014 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2015 case 0x5b: /* D-MMU data pointer, RO */
2016 case 0x5e: /* D-MMU tag read, RO */
2017 case 0x48: /* Interrupt dispatch, RO */
2018 case 0x7f: /* Incoming interrupt vector, RO */
2019 case 0x82: /* Primary no-fault, RO */
2020 case 0x83: /* Secondary no-fault, RO */
2021 case 0x8a: /* Primary no-fault LE, RO */
2022 case 0x8b: /* Secondary no-fault LE, RO */
2024 cpu_unassigned_access(env
, addr
, 1, 0, 1, size
);
2028 #endif /* CONFIG_USER_ONLY */
2030 void helper_ldda_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int rd
)
2032 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
2033 || (cpu_has_hypervisor(env
)
2034 && asi
>= 0x30 && asi
< 0x80
2035 && !(env
->hpstate
& HS_PRIV
))) {
2036 helper_raise_exception(env
, TT_PRIV_ACT
);
2039 addr
= asi_address_mask(env
, asi
, addr
);
2042 #if !defined(CONFIG_USER_ONLY)
2043 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2044 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2045 helper_check_align(env
, addr
, 0xf);
2047 env
->gregs
[1] = cpu_ldq_nucleus(env
, addr
+ 8);
2049 bswap64s(&env
->gregs
[1]);
2051 } else if (rd
< 8) {
2052 env
->gregs
[rd
] = cpu_ldq_nucleus(env
, addr
);
2053 env
->gregs
[rd
+ 1] = cpu_ldq_nucleus(env
, addr
+ 8);
2055 bswap64s(&env
->gregs
[rd
]);
2056 bswap64s(&env
->gregs
[rd
+ 1]);
2059 env
->regwptr
[rd
] = cpu_ldq_nucleus(env
, addr
);
2060 env
->regwptr
[rd
+ 1] = cpu_ldq_nucleus(env
, addr
+ 8);
2062 bswap64s(&env
->regwptr
[rd
]);
2063 bswap64s(&env
->regwptr
[rd
+ 1]);
2069 helper_check_align(env
, addr
, 0x3);
2071 env
->gregs
[1] = helper_ld_asi(env
, addr
+ 4, asi
, 4, 0);
2072 } else if (rd
< 8) {
2073 env
->gregs
[rd
] = helper_ld_asi(env
, addr
, asi
, 4, 0);
2074 env
->gregs
[rd
+ 1] = helper_ld_asi(env
, addr
+ 4, asi
, 4, 0);
2076 env
->regwptr
[rd
] = helper_ld_asi(env
, addr
, asi
, 4, 0);
2077 env
->regwptr
[rd
+ 1] = helper_ld_asi(env
, addr
+ 4, asi
, 4, 0);
2083 void helper_ldf_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
2089 helper_check_align(env
, addr
, 3);
2090 addr
= asi_address_mask(env
, asi
, addr
);
2093 case 0xf0: /* UA2007/JPS1 Block load primary */
2094 case 0xf1: /* UA2007/JPS1 Block load secondary */
2095 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2096 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2098 helper_raise_exception(env
, TT_ILL_INSN
);
2101 helper_check_align(env
, addr
, 0x3f);
2102 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2103 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
& 0x8f, 8, 0);
2107 case 0x16: /* UA2007 Block load primary, user privilege */
2108 case 0x17: /* UA2007 Block load secondary, user privilege */
2109 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2110 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2111 case 0x70: /* JPS1 Block load primary, user privilege */
2112 case 0x71: /* JPS1 Block load secondary, user privilege */
2113 case 0x78: /* JPS1 Block load primary LE, user privilege */
2114 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2116 helper_raise_exception(env
, TT_ILL_INSN
);
2119 helper_check_align(env
, addr
, 0x3f);
2120 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2121 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
& 0x19, 8, 0);
2132 val
= helper_ld_asi(env
, addr
, asi
, size
, 0);
2134 env
->fpr
[rd
/ 2].l
.lower
= val
;
2136 env
->fpr
[rd
/ 2].l
.upper
= val
;
2140 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
, size
, 0);
2143 env
->fpr
[rd
/ 2].ll
= helper_ld_asi(env
, addr
, asi
, 8, 0);
2144 env
->fpr
[rd
/ 2 + 1].ll
= helper_ld_asi(env
, addr
+ 8, asi
, 8, 0);
2149 void helper_stf_asi(CPUSPARCState
*env
, target_ulong addr
, int asi
, int size
,
2155 helper_check_align(env
, addr
, 3);
2156 addr
= asi_address_mask(env
, asi
, addr
);
2159 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2160 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2161 case 0xf0: /* UA2007/JPS1 Block store primary */
2162 case 0xf1: /* UA2007/JPS1 Block store secondary */
2163 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2164 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2166 helper_raise_exception(env
, TT_ILL_INSN
);
2169 helper_check_align(env
, addr
, 0x3f);
2170 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2171 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
& 0x8f, 8);
2175 case 0x16: /* UA2007 Block load primary, user privilege */
2176 case 0x17: /* UA2007 Block load secondary, user privilege */
2177 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2178 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2179 case 0x70: /* JPS1 Block store primary, user privilege */
2180 case 0x71: /* JPS1 Block store secondary, user privilege */
2181 case 0x78: /* JPS1 Block load primary LE, user privilege */
2182 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2184 helper_raise_exception(env
, TT_ILL_INSN
);
2187 helper_check_align(env
, addr
, 0x3f);
2188 for (i
= 0; i
< 8; i
++, rd
+= 2, addr
+= 8) {
2189 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
& 0x19, 8);
2201 val
= env
->fpr
[rd
/ 2].l
.lower
;
2203 val
= env
->fpr
[rd
/ 2].l
.upper
;
2205 helper_st_asi(env
, addr
, val
, asi
, size
);
2208 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
, size
);
2211 helper_st_asi(env
, addr
, env
->fpr
[rd
/ 2].ll
, asi
, 8);
2212 helper_st_asi(env
, addr
+ 8, env
->fpr
[rd
/ 2 + 1].ll
, asi
, 8);
2217 target_ulong
helper_cas_asi(CPUSPARCState
*env
, target_ulong addr
,
2218 target_ulong val1
, target_ulong val2
, uint32_t asi
)
2222 val2
&= 0xffffffffUL
;
2223 ret
= helper_ld_asi(env
, addr
, asi
, 4, 0);
2224 ret
&= 0xffffffffUL
;
2226 helper_st_asi(env
, addr
, val1
& 0xffffffffUL
, asi
, 4);
2231 target_ulong
helper_casx_asi(CPUSPARCState
*env
, target_ulong addr
,
2232 target_ulong val1
, target_ulong val2
,
2237 ret
= helper_ld_asi(env
, addr
, asi
, 8, 0);
2239 helper_st_asi(env
, addr
, val1
, asi
, 8);
2243 #endif /* TARGET_SPARC64 */
2245 void helper_ldqf(CPUSPARCState
*env
, target_ulong addr
, int mem_idx
)
2247 /* XXX add 128 bit load */
2250 helper_check_align(env
, addr
, 7);
2251 #if !defined(CONFIG_USER_ONLY)
2254 u
.ll
.upper
= cpu_ldq_user(env
, addr
);
2255 u
.ll
.lower
= cpu_ldq_user(env
, addr
+ 8);
2258 case MMU_KERNEL_IDX
:
2259 u
.ll
.upper
= cpu_ldq_kernel(env
, addr
);
2260 u
.ll
.lower
= cpu_ldq_kernel(env
, addr
+ 8);
2263 #ifdef TARGET_SPARC64
2265 u
.ll
.upper
= cpu_ldq_hypv(env
, addr
);
2266 u
.ll
.lower
= cpu_ldq_hypv(env
, addr
+ 8);
2271 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx
);
2275 u
.ll
.upper
= ldq_raw(address_mask(env
, addr
));
2276 u
.ll
.lower
= ldq_raw(address_mask(env
, addr
+ 8));
2281 void helper_stqf(CPUSPARCState
*env
, target_ulong addr
, int mem_idx
)
2283 /* XXX add 128 bit store */
2286 helper_check_align(env
, addr
, 7);
2287 #if !defined(CONFIG_USER_ONLY)
2291 cpu_stq_user(env
, addr
, u
.ll
.upper
);
2292 cpu_stq_user(env
, addr
+ 8, u
.ll
.lower
);
2294 case MMU_KERNEL_IDX
:
2296 cpu_stq_kernel(env
, addr
, u
.ll
.upper
);
2297 cpu_stq_kernel(env
, addr
+ 8, u
.ll
.lower
);
2299 #ifdef TARGET_SPARC64
2302 cpu_stq_hypv(env
, addr
, u
.ll
.upper
);
2303 cpu_stq_hypv(env
, addr
+ 8, u
.ll
.lower
);
2307 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx
);
2312 stq_raw(address_mask(env
, addr
), u
.ll
.upper
);
2313 stq_raw(address_mask(env
, addr
+ 8), u
.ll
.lower
);
2317 #if !defined(CONFIG_USER_ONLY)
2318 #ifndef TARGET_SPARC64
2319 void cpu_unassigned_access(CPUSPARCState
*env
, hwaddr addr
,
2320 int is_write
, int is_exec
, int is_asi
, int size
)
2324 #ifdef DEBUG_UNASSIGNED
2326 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2327 " asi 0x%02x from " TARGET_FMT_lx
"\n",
2328 is_exec
? "exec" : is_write
? "write" : "read", size
,
2329 size
== 1 ? "" : "s", addr
, is_asi
, env
->pc
);
2331 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2332 " from " TARGET_FMT_lx
"\n",
2333 is_exec
? "exec" : is_write
? "write" : "read", size
,
2334 size
== 1 ? "" : "s", addr
, env
->pc
);
2337 /* Don't overwrite translation and access faults */
2338 fault_type
= (env
->mmuregs
[3] & 0x1c) >> 2;
2339 if ((fault_type
> 4) || (fault_type
== 0)) {
2340 env
->mmuregs
[3] = 0; /* Fault status register */
2342 env
->mmuregs
[3] |= 1 << 16;
2345 env
->mmuregs
[3] |= 1 << 5;
2348 env
->mmuregs
[3] |= 1 << 6;
2351 env
->mmuregs
[3] |= 1 << 7;
2353 env
->mmuregs
[3] |= (5 << 2) | 2;
2354 /* SuperSPARC will never place instruction fault addresses in the FAR */
2356 env
->mmuregs
[4] = addr
; /* Fault address register */
2359 /* overflow (same type fault was not read before another fault) */
2360 if (fault_type
== ((env
->mmuregs
[3] & 0x1c)) >> 2) {
2361 env
->mmuregs
[3] |= 1;
2364 if ((env
->mmuregs
[0] & MMU_E
) && !(env
->mmuregs
[0] & MMU_NF
)) {
2366 helper_raise_exception(env
, TT_CODE_ACCESS
);
2368 helper_raise_exception(env
, TT_DATA_ACCESS
);
2372 /* flush neverland mappings created during no-fault mode,
2373 so the sequential MMU faults report proper fault types */
2374 if (env
->mmuregs
[0] & MMU_NF
) {
2379 void cpu_unassigned_access(CPUSPARCState
*env
, hwaddr addr
,
2380 int is_write
, int is_exec
, int is_asi
, int size
)
2382 #ifdef DEBUG_UNASSIGNED
2383 printf("Unassigned mem access to " TARGET_FMT_plx
" from " TARGET_FMT_lx
2384 "\n", addr
, env
->pc
);
2388 helper_raise_exception(env
, TT_CODE_ACCESS
);
2390 helper_raise_exception(env
, TT_DATA_ACCESS
);
2396 #if !defined(CONFIG_USER_ONLY)
2397 static void QEMU_NORETURN
do_unaligned_access(CPUSPARCState
*env
,
2398 target_ulong addr
, int is_write
,
2399 int is_user
, uintptr_t retaddr
)
2401 #ifdef DEBUG_UNALIGNED
2402 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
2403 "\n", addr
, env
->pc
);
2406 cpu_restore_state(env
, retaddr
);
2408 helper_raise_exception(env
, TT_UNALIGNED
);
2411 /* try to fill the TLB and return an exception if error. If retaddr is
2412 NULL, it means that the function was called in C code (i.e. not
2413 from generated code or from helper.c) */
2414 /* XXX: fix it to restore all registers */
2415 void tlb_fill(CPUSPARCState
*env
, target_ulong addr
, int is_write
, int mmu_idx
,
2420 ret
= cpu_sparc_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
);
2423 cpu_restore_state(env
, retaddr
);