Replace gtk_menu_append with gtk_menu_shell_append
[qemu/pbrook.git] / hw / cadence_ttc.c
blob67028a3f75694c7ef771c9e50386cacf276f1f5a
1 /*
2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
8 * M. Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "sysbus.h"
20 #include "qemu/timer.h"
22 #ifdef CADENCE_TTC_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24 fprintf(stderr, ": %s: ", __func__); \
25 fprintf(stderr, ## __VA_ARGS__); \
26 } while (0);
27 #else
28 #define DB_PRINT(...)
29 #endif
31 #define COUNTER_INTR_IV 0x00000001
32 #define COUNTER_INTR_M1 0x00000002
33 #define COUNTER_INTR_M2 0x00000004
34 #define COUNTER_INTR_M3 0x00000008
35 #define COUNTER_INTR_OV 0x00000010
36 #define COUNTER_INTR_EV 0x00000020
38 #define COUNTER_CTRL_DIS 0x00000001
39 #define COUNTER_CTRL_INT 0x00000002
40 #define COUNTER_CTRL_DEC 0x00000004
41 #define COUNTER_CTRL_MATCH 0x00000008
42 #define COUNTER_CTRL_RST 0x00000010
44 #define CLOCK_CTRL_PS_EN 0x00000001
45 #define CLOCK_CTRL_PS_V 0x0000001e
47 typedef struct {
48 QEMUTimer *timer;
49 int freq;
51 uint32_t reg_clock;
52 uint32_t reg_count;
53 uint32_t reg_value;
54 uint16_t reg_interval;
55 uint16_t reg_match[3];
56 uint32_t reg_intr;
57 uint32_t reg_intr_en;
58 uint32_t reg_event_ctrl;
59 uint32_t reg_event;
61 uint64_t cpu_time;
62 unsigned int cpu_time_valid;
64 qemu_irq irq;
65 } CadenceTimerState;
67 typedef struct {
68 SysBusDevice busdev;
69 MemoryRegion iomem;
70 CadenceTimerState timer[3];
71 } CadenceTTCState;
73 static void cadence_timer_update(CadenceTimerState *s)
75 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
78 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
79 hwaddr offset)
81 unsigned int index;
82 CadenceTTCState *s = (CadenceTTCState *)opaque;
84 index = (offset >> 2) % 3;
86 return &s->timer[index];
89 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
91 /* timer_steps has max value of 0x100000000. double check it
92 * (or overflow can happen below) */
93 assert(timer_steps <= 1ULL << 32);
95 uint64_t r = timer_steps * 1000000000ULL;
96 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
97 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
98 } else {
99 r >>= 16;
101 r /= (uint64_t)s->freq;
102 return r;
105 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
107 uint64_t to_divide = 1000000000ULL;
109 uint64_t r = ns;
110 /* for very large intervals (> 8s) do some division first to stop
111 * overflow (costs some prescision) */
112 while (r >= 8ULL << 30 && to_divide > 1) {
113 r /= 1000;
114 to_divide /= 1000;
116 r <<= 16;
117 /* keep early-dividing as needed */
118 while (r >= 8ULL << 30 && to_divide > 1) {
119 r /= 1000;
120 to_divide /= 1000;
122 r *= (uint64_t)s->freq;
123 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
124 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
127 r /= to_divide;
128 return r;
131 /* determine if x is in between a and b, exclusive of a, inclusive of b */
133 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
135 if (a < b) {
136 return x > a && x <= b;
138 return x < a && x >= b;
141 static void cadence_timer_run(CadenceTimerState *s)
143 int i;
144 int64_t event_interval, next_value;
146 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
148 if (s->reg_count & COUNTER_CTRL_DIS) {
149 s->cpu_time_valid = 0;
150 return;
153 { /* figure out what's going to happen next (rollover or match) */
154 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
155 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
156 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
157 for (i = 0; i < 3; ++i) {
158 int64_t cand = (uint64_t)s->reg_match[i] << 16;
159 if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
160 next_value = cand;
164 DB_PRINT("next timer event value: %09llx\n",
165 (unsigned long long)next_value);
167 event_interval = next_value - (int64_t)s->reg_value;
168 event_interval = (event_interval < 0) ? -event_interval : event_interval;
170 qemu_mod_timer(s->timer, s->cpu_time +
171 cadence_timer_get_ns(s, event_interval));
174 static void cadence_timer_sync(CadenceTimerState *s)
176 int i;
177 int64_t r, x;
178 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
179 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
180 uint64_t old_time = s->cpu_time;
182 s->cpu_time = qemu_get_clock_ns(vm_clock);
183 DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
185 if (!s->cpu_time_valid || old_time == s->cpu_time) {
186 s->cpu_time_valid = 1;
187 return;
190 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
191 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
193 for (i = 0; i < 3; ++i) {
194 int64_t m = (int64_t)s->reg_match[i] << 16;
195 if (m > interval) {
196 continue;
198 /* check to see if match event has occurred. check m +/- interval
199 * to account for match events in wrap around cases */
200 if (is_between(m, s->reg_value, x) ||
201 is_between(m + interval, s->reg_value, x) ||
202 is_between(m - interval, s->reg_value, x)) {
203 s->reg_intr |= (2 << i);
206 while (x < 0) {
207 x += interval;
209 s->reg_value = (uint32_t)(x % interval);
211 if (s->reg_value != x) {
212 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
213 COUNTER_INTR_IV : COUNTER_INTR_OV;
215 cadence_timer_update(s);
218 static void cadence_timer_tick(void *opaque)
220 CadenceTimerState *s = opaque;
222 DB_PRINT("\n");
223 cadence_timer_sync(s);
224 cadence_timer_run(s);
227 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
229 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
230 uint32_t value;
232 cadence_timer_sync(s);
233 cadence_timer_run(s);
235 switch (offset) {
236 case 0x00: /* clock control */
237 case 0x04:
238 case 0x08:
239 return s->reg_clock;
241 case 0x0c: /* counter control */
242 case 0x10:
243 case 0x14:
244 return s->reg_count;
246 case 0x18: /* counter value */
247 case 0x1c:
248 case 0x20:
249 return (uint16_t)(s->reg_value >> 16);
251 case 0x24: /* reg_interval counter */
252 case 0x28:
253 case 0x2c:
254 return s->reg_interval;
256 case 0x30: /* match 1 counter */
257 case 0x34:
258 case 0x38:
259 return s->reg_match[0];
261 case 0x3c: /* match 2 counter */
262 case 0x40:
263 case 0x44:
264 return s->reg_match[1];
266 case 0x48: /* match 3 counter */
267 case 0x4c:
268 case 0x50:
269 return s->reg_match[2];
271 case 0x54: /* interrupt register */
272 case 0x58:
273 case 0x5c:
274 /* cleared after read */
275 value = s->reg_intr;
276 s->reg_intr = 0;
277 cadence_timer_update(s);
278 return value;
280 case 0x60: /* interrupt enable */
281 case 0x64:
282 case 0x68:
283 return s->reg_intr_en;
285 case 0x6c:
286 case 0x70:
287 case 0x74:
288 return s->reg_event_ctrl;
290 case 0x78:
291 case 0x7c:
292 case 0x80:
293 return s->reg_event;
295 default:
296 return 0;
300 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
301 unsigned size)
303 uint32_t ret = cadence_ttc_read_imp(opaque, offset);
305 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
306 return ret;
309 static void cadence_ttc_write(void *opaque, hwaddr offset,
310 uint64_t value, unsigned size)
312 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
314 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
316 cadence_timer_sync(s);
318 switch (offset) {
319 case 0x00: /* clock control */
320 case 0x04:
321 case 0x08:
322 s->reg_clock = value & 0x3F;
323 break;
325 case 0x0c: /* counter control */
326 case 0x10:
327 case 0x14:
328 if (value & COUNTER_CTRL_RST) {
329 s->reg_value = 0;
331 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
332 break;
334 case 0x24: /* interval register */
335 case 0x28:
336 case 0x2c:
337 s->reg_interval = value & 0xffff;
338 break;
340 case 0x30: /* match register */
341 case 0x34:
342 case 0x38:
343 s->reg_match[0] = value & 0xffff;
345 case 0x3c: /* match register */
346 case 0x40:
347 case 0x44:
348 s->reg_match[1] = value & 0xffff;
350 case 0x48: /* match register */
351 case 0x4c:
352 case 0x50:
353 s->reg_match[2] = value & 0xffff;
354 break;
356 case 0x54: /* interrupt register */
357 case 0x58:
358 case 0x5c:
359 break;
361 case 0x60: /* interrupt enable */
362 case 0x64:
363 case 0x68:
364 s->reg_intr_en = value & 0x3f;
365 break;
367 case 0x6c: /* event control */
368 case 0x70:
369 case 0x74:
370 s->reg_event_ctrl = value & 0x07;
371 break;
373 default:
374 return;
377 cadence_timer_run(s);
378 cadence_timer_update(s);
381 static const MemoryRegionOps cadence_ttc_ops = {
382 .read = cadence_ttc_read,
383 .write = cadence_ttc_write,
384 .endianness = DEVICE_NATIVE_ENDIAN,
387 static void cadence_timer_reset(CadenceTimerState *s)
389 s->reg_count = 0x21;
392 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
394 memset(s, 0, sizeof(CadenceTimerState));
395 s->freq = freq;
397 cadence_timer_reset(s);
399 s->timer = qemu_new_timer_ns(vm_clock, cadence_timer_tick, s);
402 static int cadence_ttc_init(SysBusDevice *dev)
404 CadenceTTCState *s = FROM_SYSBUS(CadenceTTCState, dev);
405 int i;
407 for (i = 0; i < 3; ++i) {
408 cadence_timer_init(133000000, &s->timer[i]);
409 sysbus_init_irq(dev, &s->timer[i].irq);
412 memory_region_init_io(&s->iomem, &cadence_ttc_ops, s, "timer", 0x1000);
413 sysbus_init_mmio(dev, &s->iomem);
415 return 0;
418 static void cadence_timer_pre_save(void *opaque)
420 cadence_timer_sync((CadenceTimerState *)opaque);
423 static int cadence_timer_post_load(void *opaque, int version_id)
425 CadenceTimerState *s = opaque;
427 s->cpu_time_valid = 0;
428 cadence_timer_sync(s);
429 cadence_timer_run(s);
430 cadence_timer_update(s);
431 return 0;
434 static const VMStateDescription vmstate_cadence_timer = {
435 .name = "cadence_timer",
436 .version_id = 1,
437 .minimum_version_id = 1,
438 .minimum_version_id_old = 1,
439 .pre_save = cadence_timer_pre_save,
440 .post_load = cadence_timer_post_load,
441 .fields = (VMStateField[]) {
442 VMSTATE_UINT32(reg_clock, CadenceTimerState),
443 VMSTATE_UINT32(reg_count, CadenceTimerState),
444 VMSTATE_UINT32(reg_value, CadenceTimerState),
445 VMSTATE_UINT16(reg_interval, CadenceTimerState),
446 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
447 VMSTATE_UINT32(reg_intr, CadenceTimerState),
448 VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
449 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
450 VMSTATE_UINT32(reg_event, CadenceTimerState),
451 VMSTATE_END_OF_LIST()
455 static const VMStateDescription vmstate_cadence_ttc = {
456 .name = "cadence_TTC",
457 .version_id = 1,
458 .minimum_version_id = 1,
459 .minimum_version_id_old = 1,
460 .fields = (VMStateField[]) {
461 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
462 vmstate_cadence_timer,
463 CadenceTimerState),
464 VMSTATE_END_OF_LIST()
468 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
470 DeviceClass *dc = DEVICE_CLASS(klass);
471 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
473 sdc->init = cadence_ttc_init;
474 dc->vmsd = &vmstate_cadence_ttc;
477 static const TypeInfo cadence_ttc_info = {
478 .name = "cadence_ttc",
479 .parent = TYPE_SYS_BUS_DEVICE,
480 .instance_size = sizeof(CadenceTTCState),
481 .class_init = cadence_ttc_class_init,
484 static void cadence_ttc_register_types(void)
486 type_register_static(&cadence_ttc_info);
489 type_init(cadence_ttc_register_types)