2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
27 #include "mc146818rtc.h"
34 //#define DEBUG_COALESCED
37 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
39 # define CMOS_DPRINTF(format, ...) do { } while (0)
42 #ifdef DEBUG_COALESCED
43 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
45 # define DPRINTF_C(format, ...) do { } while (0)
48 #define NSEC_PER_SEC 1000000000LL
49 #define SEC_PER_MIN 60
50 #define MIN_PER_HOUR 60
51 #define SEC_PER_HOUR 3600
52 #define HOUR_PER_DAY 24
53 #define SEC_PER_DAY 86400
55 #define RTC_REINJECT_ON_ACK_COUNT 20
56 #define RTC_CLOCK_RATE 32768
57 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
59 typedef struct RTCState
{
62 uint8_t cmos_data
[128];
72 QEMUTimer
*periodic_timer
;
73 int64_t next_periodic_time
;
74 /* update-ended timer */
75 QEMUTimer
*update_timer
;
76 uint64_t next_alarm_time
;
77 uint16_t irq_reinject_on_ack_count
;
78 uint32_t irq_coalesced
;
80 QEMUTimer
*coalesced_timer
;
81 Notifier clock_reset_notifier
;
82 LostTickPolicy lost_tick_policy
;
83 Notifier suspend_notifier
;
86 static void rtc_set_time(RTCState
*s
);
87 static void rtc_update_time(RTCState
*s
);
88 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
89 static inline int rtc_from_bcd(RTCState
*s
, int a
);
90 static uint64_t get_next_alarm(RTCState
*s
);
92 static inline bool rtc_running(RTCState
*s
)
94 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
95 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
98 static uint64_t get_guest_rtc_ns(RTCState
*s
)
101 uint64_t guest_clock
= qemu_get_clock_ns(rtc_clock
);
103 guest_rtc
= s
->base_rtc
* NSEC_PER_SEC
104 + guest_clock
- s
->last_update
+ s
->offset
;
109 static void rtc_coalesced_timer_update(RTCState
*s
)
111 if (s
->irq_coalesced
== 0) {
112 qemu_del_timer(s
->coalesced_timer
);
114 /* divide each RTC interval to 2 - 8 smaller intervals */
115 int c
= MIN(s
->irq_coalesced
, 7) + 1;
116 int64_t next_clock
= qemu_get_clock_ns(rtc_clock
) +
117 muldiv64(s
->period
/ c
, get_ticks_per_sec(), RTC_CLOCK_RATE
);
118 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
122 static void rtc_coalesced_timer(void *opaque
)
124 RTCState
*s
= opaque
;
126 if (s
->irq_coalesced
!= 0) {
127 apic_reset_irq_delivered();
128 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
129 DPRINTF_C("cmos: injecting from timer\n");
130 qemu_irq_raise(s
->irq
);
131 if (apic_get_irq_delivered()) {
133 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
138 rtc_coalesced_timer_update(s
);
142 /* handle periodic timer */
143 static void periodic_timer_update(RTCState
*s
, int64_t current_time
)
145 int period_code
, period
;
146 int64_t cur_clock
, next_irq_clock
;
148 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
150 && ((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)
151 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
152 if (period_code
<= 2)
154 /* period in 32 Khz cycles */
155 period
= 1 << (period_code
- 1);
157 if (period
!= s
->period
) {
158 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
159 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
163 /* compute 32 khz clock */
164 cur_clock
= muldiv64(current_time
, RTC_CLOCK_RATE
, get_ticks_per_sec());
165 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
166 s
->next_periodic_time
=
167 muldiv64(next_irq_clock
, get_ticks_per_sec(), RTC_CLOCK_RATE
) + 1;
168 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
171 s
->irq_coalesced
= 0;
173 qemu_del_timer(s
->periodic_timer
);
177 static void rtc_periodic_timer(void *opaque
)
179 RTCState
*s
= opaque
;
181 periodic_timer_update(s
, s
->next_periodic_time
);
182 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
183 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
184 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
186 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
187 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
188 s
->irq_reinject_on_ack_count
= 0;
189 apic_reset_irq_delivered();
190 qemu_irq_raise(s
->irq
);
191 if (!apic_get_irq_delivered()) {
193 rtc_coalesced_timer_update(s
);
194 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
199 qemu_irq_raise(s
->irq
);
201 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
202 /* Not square wave at all but we don't want 2048Hz interrupts!
203 Must be seen as a pulse. */
204 qemu_irq_raise(s
->sqw_irq
);
208 /* handle update-ended timer */
209 static void check_update_timer(RTCState
*s
)
211 uint64_t next_update_time
;
215 /* From the data sheet: "Holding the dividers in reset prevents
216 * interrupts from operating, while setting the SET bit allows"
217 * them to occur. However, it will prevent an alarm interrupt
218 * from occurring, because the time of day is not updated.
220 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
221 qemu_del_timer(s
->update_timer
);
224 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
225 (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
226 qemu_del_timer(s
->update_timer
);
229 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
230 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
231 qemu_del_timer(s
->update_timer
);
235 guest_nsec
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
236 /* if UF is clear, reprogram to next second */
237 next_update_time
= qemu_get_clock_ns(rtc_clock
)
238 + NSEC_PER_SEC
- guest_nsec
;
240 /* Compute time of next alarm. One second is already accounted
241 * for in next_update_time.
243 next_alarm_sec
= get_next_alarm(s
);
244 s
->next_alarm_time
= next_update_time
+ (next_alarm_sec
- 1) * NSEC_PER_SEC
;
246 if (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) {
247 /* UF is set, but AF is clear. Program the timer to target
249 next_update_time
= s
->next_alarm_time
;
251 if (next_update_time
!= qemu_timer_expire_time_ns(s
->update_timer
)) {
252 qemu_mod_timer(s
->update_timer
, next_update_time
);
256 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
258 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
260 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
267 static uint64_t get_next_alarm(RTCState
*s
)
269 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
270 int32_t hour
, min
, sec
;
274 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
275 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
276 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
277 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
279 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
280 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
281 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
282 cur_hour
= convert_hour(s
, cur_hour
);
284 if (alarm_hour
== -1) {
285 alarm_hour
= cur_hour
;
286 if (alarm_min
== -1) {
288 if (alarm_sec
== -1) {
289 alarm_sec
= cur_sec
+ 1;
290 } else if (cur_sec
> alarm_sec
) {
293 } else if (cur_min
== alarm_min
) {
294 if (alarm_sec
== -1) {
295 alarm_sec
= cur_sec
+ 1;
297 if (cur_sec
> alarm_sec
) {
301 if (alarm_sec
== SEC_PER_MIN
) {
302 /* wrap to next hour, minutes is not in don't care mode */
306 } else if (cur_min
> alarm_min
) {
309 } else if (cur_hour
== alarm_hour
) {
310 if (alarm_min
== -1) {
312 if (alarm_sec
== -1) {
313 alarm_sec
= cur_sec
+ 1;
314 } else if (cur_sec
> alarm_sec
) {
318 if (alarm_sec
== SEC_PER_MIN
) {
322 /* wrap to next day, hour is not in don't care mode */
323 alarm_min
%= MIN_PER_HOUR
;
324 } else if (cur_min
== alarm_min
) {
325 if (alarm_sec
== -1) {
326 alarm_sec
= cur_sec
+ 1;
328 /* wrap to next day, hours+minutes not in don't care mode */
329 alarm_sec
%= SEC_PER_MIN
;
333 /* values that are still don't care fire at the next min/sec */
334 if (alarm_min
== -1) {
337 if (alarm_sec
== -1) {
341 /* keep values in range */
342 if (alarm_sec
== SEC_PER_MIN
) {
346 if (alarm_min
== MIN_PER_HOUR
) {
350 alarm_hour
%= HOUR_PER_DAY
;
352 hour
= alarm_hour
- cur_hour
;
353 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
354 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
355 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
358 static void rtc_update_timer(void *opaque
)
360 RTCState
*s
= opaque
;
361 int32_t irqs
= REG_C_UF
;
364 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
366 /* UIP might have been latched, update time and clear it. */
368 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
370 if (qemu_get_clock_ns(rtc_clock
) >= s
->next_alarm_time
) {
372 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
373 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
377 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
378 s
->cmos_data
[RTC_REG_C
] |= irqs
;
379 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
380 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
381 qemu_irq_raise(s
->irq
);
383 check_update_timer(s
);
386 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
388 RTCState
*s
= opaque
;
390 if ((addr
& 1) == 0) {
391 s
->cmos_index
= data
& 0x7f;
393 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
394 s
->cmos_index
, data
);
395 switch(s
->cmos_index
) {
396 case RTC_SECONDS_ALARM
:
397 case RTC_MINUTES_ALARM
:
398 case RTC_HOURS_ALARM
:
399 s
->cmos_data
[s
->cmos_index
] = data
;
400 check_update_timer(s
);
402 case RTC_IBM_PS2_CENTURY_BYTE
:
403 s
->cmos_index
= RTC_CENTURY
;
409 case RTC_DAY_OF_WEEK
:
410 case RTC_DAY_OF_MONTH
:
413 s
->cmos_data
[s
->cmos_index
] = data
;
414 /* if in set mode, do not update the time */
415 if (rtc_running(s
)) {
417 check_update_timer(s
);
421 if ((data
& 0x60) == 0x60) {
422 if (rtc_running(s
)) {
425 /* What happens to UIP when divider reset is enabled is
426 * unclear from the datasheet. Shouldn't matter much
429 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
430 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
431 (data
& 0x70) <= 0x20) {
432 /* when the divider reset is removed, the first update cycle
433 * begins one-half second later*/
434 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
435 s
->offset
= 500000000;
438 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
440 /* UIP bit is read only */
441 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
442 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
443 periodic_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
444 check_update_timer(s
);
447 if (data
& REG_B_SET
) {
448 /* update cmos to when the rtc was stopping */
449 if (rtc_running(s
)) {
452 /* set mode: reset UIP mode */
453 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
456 /* if disabling set mode, update the time */
457 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
458 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
459 s
->offset
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
463 /* if an interrupt flag is already set when the interrupt
464 * becomes enabled, raise an interrupt immediately. */
465 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
466 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
467 qemu_irq_raise(s
->irq
);
469 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
470 qemu_irq_lower(s
->irq
);
472 s
->cmos_data
[RTC_REG_B
] = data
;
473 periodic_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
474 check_update_timer(s
);
478 /* cannot write to them */
481 s
->cmos_data
[s
->cmos_index
] = data
;
487 static inline int rtc_to_bcd(RTCState
*s
, int a
)
489 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
492 return ((a
/ 10) << 4) | (a
% 10);
496 static inline int rtc_from_bcd(RTCState
*s
, int a
)
498 if ((a
& 0xc0) == 0xc0) {
501 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
504 return ((a
>> 4) * 10) + (a
& 0x0f);
508 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
510 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
511 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
512 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
513 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
515 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
519 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
520 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
521 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
523 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
524 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
527 static void rtc_set_time(RTCState
*s
)
531 rtc_get_time(s
, &tm
);
532 s
->base_rtc
= mktimegm(&tm
);
533 s
->last_update
= qemu_get_clock_ns(rtc_clock
);
535 rtc_change_mon_event(&tm
);
538 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
542 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
543 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
544 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
546 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
549 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
550 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
551 if (tm
->tm_hour
>= 12)
552 s
->cmos_data
[RTC_HOURS
] |= 0x80;
554 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
555 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
556 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
557 year
= tm
->tm_year
+ 1900 - s
->base_year
;
558 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
559 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
562 static void rtc_update_time(RTCState
*s
)
568 guest_nsec
= get_guest_rtc_ns(s
);
569 guest_sec
= guest_nsec
/ NSEC_PER_SEC
;
570 gmtime_r(&guest_sec
, &ret
);
571 rtc_set_cmos(s
, &ret
);
574 static int update_in_progress(RTCState
*s
)
578 if (!rtc_running(s
)) {
581 if (qemu_timer_pending(s
->update_timer
)) {
582 int64_t next_update_time
= qemu_timer_expire_time_ns(s
->update_timer
);
583 /* Latch UIP until the timer expires. */
584 if (qemu_get_clock_ns(rtc_clock
) >= (next_update_time
- UIP_HOLD_LENGTH
)) {
585 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
590 guest_nsec
= get_guest_rtc_ns(s
);
591 /* UIP bit will be set at last 244us of every second. */
592 if ((guest_nsec
% NSEC_PER_SEC
) >= (NSEC_PER_SEC
- UIP_HOLD_LENGTH
)) {
598 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
600 RTCState
*s
= opaque
;
602 if ((addr
& 1) == 0) {
605 switch(s
->cmos_index
) {
606 case RTC_IBM_PS2_CENTURY_BYTE
:
607 s
->cmos_index
= RTC_CENTURY
;
613 case RTC_DAY_OF_WEEK
:
614 case RTC_DAY_OF_MONTH
:
617 /* if not in set mode, calibrate cmos before
619 if (rtc_running(s
)) {
622 ret
= s
->cmos_data
[s
->cmos_index
];
625 if (update_in_progress(s
)) {
626 s
->cmos_data
[s
->cmos_index
] |= REG_A_UIP
;
628 s
->cmos_data
[s
->cmos_index
] &= ~REG_A_UIP
;
630 ret
= s
->cmos_data
[s
->cmos_index
];
633 ret
= s
->cmos_data
[s
->cmos_index
];
634 qemu_irq_lower(s
->irq
);
635 s
->cmos_data
[RTC_REG_C
] = 0x00;
636 if (ret
& (REG_C_UF
| REG_C_AF
)) {
637 check_update_timer(s
);
640 if(s
->irq_coalesced
&&
641 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
642 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
643 s
->irq_reinject_on_ack_count
++;
644 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
645 apic_reset_irq_delivered();
646 DPRINTF_C("cmos: injecting on ack\n");
647 qemu_irq_raise(s
->irq
);
648 if (apic_get_irq_delivered()) {
650 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
657 ret
= s
->cmos_data
[s
->cmos_index
];
660 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
666 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
668 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
669 if (addr
>= 0 && addr
<= 127)
670 s
->cmos_data
[addr
] = val
;
673 static void rtc_set_date_from_host(ISADevice
*dev
)
675 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
678 qemu_get_timedate(&tm
, 0);
680 s
->base_rtc
= mktimegm(&tm
);
681 s
->last_update
= qemu_get_clock_ns(rtc_clock
);
684 /* set the CMOS date */
685 rtc_set_cmos(s
, &tm
);
688 static int rtc_post_load(void *opaque
, int version_id
)
690 RTCState
*s
= opaque
;
692 if (version_id
<= 2) {
695 check_update_timer(s
);
699 if (version_id
>= 2) {
700 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
701 rtc_coalesced_timer_update(s
);
708 static const VMStateDescription vmstate_rtc
= {
709 .name
= "mc146818rtc",
711 .minimum_version_id
= 1,
712 .minimum_version_id_old
= 1,
713 .post_load
= rtc_post_load
,
714 .fields
= (VMStateField
[]) {
715 VMSTATE_BUFFER(cmos_data
, RTCState
),
716 VMSTATE_UINT8(cmos_index
, RTCState
),
718 VMSTATE_TIMER(periodic_timer
, RTCState
),
719 VMSTATE_INT64(next_periodic_time
, RTCState
),
721 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
722 VMSTATE_UINT32_V(period
, RTCState
, 2),
723 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
724 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
725 VMSTATE_INT64_V(offset
, RTCState
, 3),
726 VMSTATE_TIMER_V(update_timer
, RTCState
, 3),
727 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
728 VMSTATE_END_OF_LIST()
732 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
734 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
735 int64_t now
= *(int64_t *)data
;
737 rtc_set_date_from_host(&s
->dev
);
738 periodic_timer_update(s
, now
);
739 check_update_timer(s
);
741 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
742 rtc_coalesced_timer_update(s
);
747 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
748 BIOS will read it and start S3 resume at POST Entry */
749 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
751 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
752 rtc_set_memory(&s
->dev
, 0xF, 0xFE);
755 static void rtc_reset(void *opaque
)
757 RTCState
*s
= opaque
;
759 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
760 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
761 check_update_timer(s
);
763 qemu_irq_lower(s
->irq
);
766 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
767 s
->irq_coalesced
= 0;
772 static const MemoryRegionPortio cmos_portio
[] = {
773 {0, 2, 1, .read
= cmos_ioport_read
, .write
= cmos_ioport_write
},
774 PORTIO_END_OF_LIST(),
777 static const MemoryRegionOps cmos_ops
= {
778 .old_portio
= cmos_portio
781 static void rtc_get_date(Object
*obj
, Visitor
*v
, void *opaque
,
782 const char *name
, Error
**errp
)
784 ISADevice
*isa
= ISA_DEVICE(obj
);
785 RTCState
*s
= DO_UPCAST(RTCState
, dev
, isa
);
786 struct tm current_tm
;
789 rtc_get_time(s
, ¤t_tm
);
790 visit_start_struct(v
, NULL
, "struct tm", name
, 0, errp
);
791 visit_type_int32(v
, ¤t_tm
.tm_year
, "tm_year", errp
);
792 visit_type_int32(v
, ¤t_tm
.tm_mon
, "tm_mon", errp
);
793 visit_type_int32(v
, ¤t_tm
.tm_mday
, "tm_mday", errp
);
794 visit_type_int32(v
, ¤t_tm
.tm_hour
, "tm_hour", errp
);
795 visit_type_int32(v
, ¤t_tm
.tm_min
, "tm_min", errp
);
796 visit_type_int32(v
, ¤t_tm
.tm_sec
, "tm_sec", errp
);
797 visit_end_struct(v
, errp
);
800 static int rtc_initfn(ISADevice
*dev
)
802 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
805 s
->cmos_data
[RTC_REG_A
] = 0x26;
806 s
->cmos_data
[RTC_REG_B
] = 0x02;
807 s
->cmos_data
[RTC_REG_C
] = 0x00;
808 s
->cmos_data
[RTC_REG_D
] = 0x80;
810 /* This is for historical reasons. The default base year qdev property
811 * was set to 2000 for most machine types before the century byte was
814 * This if statement means that the century byte will be always 0
815 * (at least until 2079...) for base_year = 1980, but will be set
816 * correctly for base_year = 2000.
818 if (s
->base_year
== 2000) {
822 rtc_set_date_from_host(dev
);
825 switch (s
->lost_tick_policy
) {
828 qemu_new_timer_ns(rtc_clock
, rtc_coalesced_timer
, s
);
830 case LOST_TICK_DISCARD
:
837 s
->periodic_timer
= qemu_new_timer_ns(rtc_clock
, rtc_periodic_timer
, s
);
838 s
->update_timer
= qemu_new_timer_ns(rtc_clock
, rtc_update_timer
, s
);
839 check_update_timer(s
);
841 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
842 qemu_register_clock_reset_notifier(rtc_clock
, &s
->clock_reset_notifier
);
844 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
845 qemu_register_suspend_notifier(&s
->suspend_notifier
);
847 memory_region_init_io(&s
->io
, &cmos_ops
, s
, "rtc", 2);
848 isa_register_ioport(dev
, &s
->io
, base
);
850 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 3);
851 qemu_register_reset(rtc_reset
, s
);
853 object_property_add(OBJECT(s
), "date", "struct tm",
854 rtc_get_date
, NULL
, NULL
, s
, NULL
);
859 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
864 dev
= isa_create(bus
, "mc146818rtc");
865 s
= DO_UPCAST(RTCState
, dev
, dev
);
866 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
867 qdev_init_nofail(&dev
->qdev
);
869 s
->irq
= intercept_irq
;
871 isa_init_irq(dev
, &s
->irq
, RTC_ISA_IRQ
);
876 static Property mc146818rtc_properties
[] = {
877 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
878 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
879 lost_tick_policy
, LOST_TICK_DISCARD
),
880 DEFINE_PROP_END_OF_LIST(),
883 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
885 DeviceClass
*dc
= DEVICE_CLASS(klass
);
886 ISADeviceClass
*ic
= ISA_DEVICE_CLASS(klass
);
887 ic
->init
= rtc_initfn
;
889 dc
->vmsd
= &vmstate_rtc
;
890 dc
->props
= mc146818rtc_properties
;
893 static TypeInfo mc146818rtc_info
= {
894 .name
= "mc146818rtc",
895 .parent
= TYPE_ISA_DEVICE
,
896 .instance_size
= sizeof(RTCState
),
897 .class_init
= rtc_class_initfn
,
900 static void mc146818rtc_register_types(void)
902 type_register_static(&mc146818rtc_info
);
905 type_init(mc146818rtc_register_types
)