hw/arm_gic: Fix comparison with priority mask register
[qemu/pbrook.git] / target-sh4 / op_helper.c
blob60ec4cbc4d002eb5e79cc543dac6bae00386e8aa
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <assert.h>
20 #include <stdlib.h>
21 #include "cpu.h"
22 #include "helper.h"
24 static inline void cpu_restore_state_from_retaddr(CPUSH4State *env,
25 uintptr_t retaddr)
27 TranslationBlock *tb;
29 if (retaddr) {
30 tb = tb_find_pc(retaddr);
31 if (tb) {
32 /* the PC is inside the translated code. It means that we have
33 a virtual CPU fault */
34 cpu_restore_state(tb, env, retaddr);
39 #ifndef CONFIG_USER_ONLY
40 #include "softmmu_exec.h"
42 #define MMUSUFFIX _mmu
44 #define SHIFT 0
45 #include "softmmu_template.h"
47 #define SHIFT 1
48 #include "softmmu_template.h"
50 #define SHIFT 2
51 #include "softmmu_template.h"
53 #define SHIFT 3
54 #include "softmmu_template.h"
56 void tlb_fill(CPUSH4State *env, target_ulong addr, int is_write, int mmu_idx,
57 uintptr_t retaddr)
59 int ret;
61 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx);
62 if (ret) {
63 /* now we have a real cpu fault */
64 cpu_restore_state_from_retaddr(env, retaddr);
65 cpu_loop_exit(env);
69 #endif
71 void helper_ldtlb(CPUSH4State *env)
73 #ifdef CONFIG_USER_ONLY
74 /* XXXXX */
75 cpu_abort(env, "Unhandled ldtlb");
76 #else
77 cpu_load_tlb(env);
78 #endif
81 static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
82 uintptr_t retaddr)
84 env->exception_index = index;
85 cpu_restore_state_from_retaddr(env, retaddr);
86 cpu_loop_exit(env);
89 void helper_raise_illegal_instruction(CPUSH4State *env)
91 raise_exception(env, 0x180, 0);
94 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
96 raise_exception(env, 0x1a0, 0);
99 void helper_raise_fpu_disable(CPUSH4State *env)
101 raise_exception(env, 0x800, 0);
104 void helper_raise_slot_fpu_disable(CPUSH4State *env)
106 raise_exception(env, 0x820, 0);
109 void helper_debug(CPUSH4State *env)
111 raise_exception(env, EXCP_DEBUG, 0);
114 void helper_sleep(CPUSH4State *env)
116 env->halted = 1;
117 env->in_sleep = 1;
118 raise_exception(env, EXCP_HLT, 0);
121 void helper_trapa(CPUSH4State *env, uint32_t tra)
123 env->tra = tra << 2;
124 raise_exception(env, 0x160, 0);
127 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
129 if (cpu_sh4_is_cached (env, address))
131 memory_content *r = malloc (sizeof(memory_content));
132 r->address = address;
133 r->value = value;
134 r->next = NULL;
136 *(env->movcal_backup_tail) = r;
137 env->movcal_backup_tail = &(r->next);
141 void helper_discard_movcal_backup(CPUSH4State *env)
143 memory_content *current = env->movcal_backup;
145 while(current)
147 memory_content *next = current->next;
148 free (current);
149 env->movcal_backup = current = next;
150 if (current == NULL)
151 env->movcal_backup_tail = &(env->movcal_backup);
155 void helper_ocbi(CPUSH4State *env, uint32_t address)
157 memory_content **current = &(env->movcal_backup);
158 while (*current)
160 uint32_t a = (*current)->address;
161 if ((a & ~0x1F) == (address & ~0x1F))
163 memory_content *next = (*current)->next;
164 cpu_stl_data(env, a, (*current)->value);
166 if (next == NULL)
168 env->movcal_backup_tail = current;
171 free (*current);
172 *current = next;
173 break;
178 #define T (env->sr & SR_T)
179 #define Q (env->sr & SR_Q ? 1 : 0)
180 #define M (env->sr & SR_M ? 1 : 0)
181 #define SETT env->sr |= SR_T
182 #define CLRT env->sr &= ~SR_T
183 #define SETQ env->sr |= SR_Q
184 #define CLRQ env->sr &= ~SR_Q
185 #define SETM env->sr |= SR_M
186 #define CLRM env->sr &= ~SR_M
188 uint32_t helper_div1(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
190 uint32_t tmp0, tmp2;
191 uint8_t old_q, tmp1 = 0xff;
193 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
194 old_q = Q;
195 if ((0x80000000 & arg1) != 0)
196 SETQ;
197 else
198 CLRQ;
199 tmp2 = arg0;
200 arg1 <<= 1;
201 arg1 |= T;
202 switch (old_q) {
203 case 0:
204 switch (M) {
205 case 0:
206 tmp0 = arg1;
207 arg1 -= tmp2;
208 tmp1 = arg1 > tmp0;
209 switch (Q) {
210 case 0:
211 if (tmp1)
212 SETQ;
213 else
214 CLRQ;
215 break;
216 case 1:
217 if (tmp1 == 0)
218 SETQ;
219 else
220 CLRQ;
221 break;
223 break;
224 case 1:
225 tmp0 = arg1;
226 arg1 += tmp2;
227 tmp1 = arg1 < tmp0;
228 switch (Q) {
229 case 0:
230 if (tmp1 == 0)
231 SETQ;
232 else
233 CLRQ;
234 break;
235 case 1:
236 if (tmp1)
237 SETQ;
238 else
239 CLRQ;
240 break;
242 break;
244 break;
245 case 1:
246 switch (M) {
247 case 0:
248 tmp0 = arg1;
249 arg1 += tmp2;
250 tmp1 = arg1 < tmp0;
251 switch (Q) {
252 case 0:
253 if (tmp1)
254 SETQ;
255 else
256 CLRQ;
257 break;
258 case 1:
259 if (tmp1 == 0)
260 SETQ;
261 else
262 CLRQ;
263 break;
265 break;
266 case 1:
267 tmp0 = arg1;
268 arg1 -= tmp2;
269 tmp1 = arg1 > tmp0;
270 switch (Q) {
271 case 0:
272 if (tmp1 == 0)
273 SETQ;
274 else
275 CLRQ;
276 break;
277 case 1:
278 if (tmp1)
279 SETQ;
280 else
281 CLRQ;
282 break;
284 break;
286 break;
288 if (Q == M)
289 SETT;
290 else
291 CLRT;
292 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
293 return arg1;
296 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
298 int64_t res;
300 res = ((uint64_t) env->mach << 32) | env->macl;
301 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
302 env->mach = (res >> 32) & 0xffffffff;
303 env->macl = res & 0xffffffff;
304 if (env->sr & SR_S) {
305 if (res < 0)
306 env->mach |= 0xffff0000;
307 else
308 env->mach &= 0x00007fff;
312 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
314 int64_t res;
316 res = ((uint64_t) env->mach << 32) | env->macl;
317 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
318 env->mach = (res >> 32) & 0xffffffff;
319 env->macl = res & 0xffffffff;
320 if (env->sr & SR_S) {
321 if (res < -0x80000000) {
322 env->mach = 1;
323 env->macl = 0x80000000;
324 } else if (res > 0x000000007fffffff) {
325 env->mach = 1;
326 env->macl = 0x7fffffff;
331 static inline void set_t(CPUSH4State *env)
333 env->sr |= SR_T;
336 static inline void clr_t(CPUSH4State *env)
338 env->sr &= ~SR_T;
341 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
343 env->fpscr = val & FPSCR_MASK;
344 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
345 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
346 } else {
347 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
349 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
352 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
354 int xcpt, cause, enable;
356 xcpt = get_float_exception_flags(&env->fp_status);
358 /* Clear the flag entries */
359 env->fpscr &= ~FPSCR_FLAG_MASK;
361 if (unlikely(xcpt)) {
362 if (xcpt & float_flag_invalid) {
363 env->fpscr |= FPSCR_FLAG_V;
365 if (xcpt & float_flag_divbyzero) {
366 env->fpscr |= FPSCR_FLAG_Z;
368 if (xcpt & float_flag_overflow) {
369 env->fpscr |= FPSCR_FLAG_O;
371 if (xcpt & float_flag_underflow) {
372 env->fpscr |= FPSCR_FLAG_U;
374 if (xcpt & float_flag_inexact) {
375 env->fpscr |= FPSCR_FLAG_I;
378 /* Accumulate in cause entries */
379 env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
380 << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
382 /* Generate an exception if enabled */
383 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
384 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
385 if (cause & enable) {
386 raise_exception(env, 0x120, retaddr);
391 float32 helper_fabs_FT(float32 t0)
393 return float32_abs(t0);
396 float64 helper_fabs_DT(float64 t0)
398 return float64_abs(t0);
401 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
403 set_float_exception_flags(0, &env->fp_status);
404 t0 = float32_add(t0, t1, &env->fp_status);
405 update_fpscr(env, GETPC());
406 return t0;
409 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
411 set_float_exception_flags(0, &env->fp_status);
412 t0 = float64_add(t0, t1, &env->fp_status);
413 update_fpscr(env, GETPC());
414 return t0;
417 void helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
419 int relation;
421 set_float_exception_flags(0, &env->fp_status);
422 relation = float32_compare(t0, t1, &env->fp_status);
423 if (unlikely(relation == float_relation_unordered)) {
424 update_fpscr(env, GETPC());
425 } else if (relation == float_relation_equal) {
426 set_t(env);
427 } else {
428 clr_t(env);
432 void helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
434 int relation;
436 set_float_exception_flags(0, &env->fp_status);
437 relation = float64_compare(t0, t1, &env->fp_status);
438 if (unlikely(relation == float_relation_unordered)) {
439 update_fpscr(env, GETPC());
440 } else if (relation == float_relation_equal) {
441 set_t(env);
442 } else {
443 clr_t(env);
447 void helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
449 int relation;
451 set_float_exception_flags(0, &env->fp_status);
452 relation = float32_compare(t0, t1, &env->fp_status);
453 if (unlikely(relation == float_relation_unordered)) {
454 update_fpscr(env, GETPC());
455 } else if (relation == float_relation_greater) {
456 set_t(env);
457 } else {
458 clr_t(env);
462 void helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
464 int relation;
466 set_float_exception_flags(0, &env->fp_status);
467 relation = float64_compare(t0, t1, &env->fp_status);
468 if (unlikely(relation == float_relation_unordered)) {
469 update_fpscr(env, GETPC());
470 } else if (relation == float_relation_greater) {
471 set_t(env);
472 } else {
473 clr_t(env);
477 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
479 float64 ret;
480 set_float_exception_flags(0, &env->fp_status);
481 ret = float32_to_float64(t0, &env->fp_status);
482 update_fpscr(env, GETPC());
483 return ret;
486 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
488 float32 ret;
489 set_float_exception_flags(0, &env->fp_status);
490 ret = float64_to_float32(t0, &env->fp_status);
491 update_fpscr(env, GETPC());
492 return ret;
495 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
497 set_float_exception_flags(0, &env->fp_status);
498 t0 = float32_div(t0, t1, &env->fp_status);
499 update_fpscr(env, GETPC());
500 return t0;
503 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
505 set_float_exception_flags(0, &env->fp_status);
506 t0 = float64_div(t0, t1, &env->fp_status);
507 update_fpscr(env, GETPC());
508 return t0;
511 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
513 float32 ret;
514 set_float_exception_flags(0, &env->fp_status);
515 ret = int32_to_float32(t0, &env->fp_status);
516 update_fpscr(env, GETPC());
517 return ret;
520 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
522 float64 ret;
523 set_float_exception_flags(0, &env->fp_status);
524 ret = int32_to_float64(t0, &env->fp_status);
525 update_fpscr(env, GETPC());
526 return ret;
529 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
531 set_float_exception_flags(0, &env->fp_status);
532 t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
533 update_fpscr(env, GETPC());
534 return t0;
537 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
539 set_float_exception_flags(0, &env->fp_status);
540 t0 = float32_mul(t0, t1, &env->fp_status);
541 update_fpscr(env, GETPC());
542 return t0;
545 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
547 set_float_exception_flags(0, &env->fp_status);
548 t0 = float64_mul(t0, t1, &env->fp_status);
549 update_fpscr(env, GETPC());
550 return t0;
553 float32 helper_fneg_T(float32 t0)
555 return float32_chs(t0);
558 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
560 set_float_exception_flags(0, &env->fp_status);
561 t0 = float32_sqrt(t0, &env->fp_status);
562 update_fpscr(env, GETPC());
563 return t0;
566 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
568 set_float_exception_flags(0, &env->fp_status);
569 t0 = float64_sqrt(t0, &env->fp_status);
570 update_fpscr(env, GETPC());
571 return t0;
574 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
576 set_float_exception_flags(0, &env->fp_status);
577 t0 = float32_sub(t0, t1, &env->fp_status);
578 update_fpscr(env, GETPC());
579 return t0;
582 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
584 set_float_exception_flags(0, &env->fp_status);
585 t0 = float64_sub(t0, t1, &env->fp_status);
586 update_fpscr(env, GETPC());
587 return t0;
590 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
592 uint32_t ret;
593 set_float_exception_flags(0, &env->fp_status);
594 ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
595 update_fpscr(env, GETPC());
596 return ret;
599 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
601 uint32_t ret;
602 set_float_exception_flags(0, &env->fp_status);
603 ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
604 update_fpscr(env, GETPC());
605 return ret;
608 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
610 int bank, i;
611 float32 r, p;
613 bank = (env->sr & FPSCR_FR) ? 16 : 0;
614 r = float32_zero;
615 set_float_exception_flags(0, &env->fp_status);
617 for (i = 0 ; i < 4 ; i++) {
618 p = float32_mul(env->fregs[bank + m + i],
619 env->fregs[bank + n + i],
620 &env->fp_status);
621 r = float32_add(r, p, &env->fp_status);
623 update_fpscr(env, GETPC());
625 env->fregs[bank + n + 3] = r;
628 void helper_ftrv(CPUSH4State *env, uint32_t n)
630 int bank_matrix, bank_vector;
631 int i, j;
632 float32 r[4];
633 float32 p;
635 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
636 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
637 set_float_exception_flags(0, &env->fp_status);
638 for (i = 0 ; i < 4 ; i++) {
639 r[i] = float32_zero;
640 for (j = 0 ; j < 4 ; j++) {
641 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
642 env->fregs[bank_vector + j],
643 &env->fp_status);
644 r[i] = float32_add(r[i], p, &env->fp_status);
647 update_fpscr(env, GETPC());
649 for (i = 0 ; i < 4 ; i++) {
650 env->fregs[bank_vector + i] = r[i];