hw/vexpress: Use correct HBI (board model number) for vexpress-a15
[qemu/pbrook.git] / hw / pl022.c
blobc160e9061c58bfe2d4dbf1628b07fae9b636784b
1 /*
2 * Arm PrimeCell PL022 Synchronous Serial Port
4 * Copyright (c) 2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "sysbus.h"
11 #include "ssi.h"
13 //#define DEBUG_PL022 1
15 #ifdef DEBUG_PL022
16 #define DPRINTF(fmt, ...) \
17 do { printf("pl022: " fmt , ## __VA_ARGS__); } while (0)
18 #define BADF(fmt, ...) \
19 do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
20 #else
21 #define DPRINTF(fmt, ...) do {} while(0)
22 #define BADF(fmt, ...) \
23 do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__);} while (0)
24 #endif
26 #define PL022_CR1_LBM 0x01
27 #define PL022_CR1_SSE 0x02
28 #define PL022_CR1_MS 0x04
29 #define PL022_CR1_SDO 0x08
31 #define PL022_SR_TFE 0x01
32 #define PL022_SR_TNF 0x02
33 #define PL022_SR_RNE 0x04
34 #define PL022_SR_RFF 0x08
35 #define PL022_SR_BSY 0x10
37 #define PL022_INT_ROR 0x01
38 #define PL022_INT_RT 0x04
39 #define PL022_INT_RX 0x04
40 #define PL022_INT_TX 0x08
42 typedef struct {
43 SysBusDevice busdev;
44 MemoryRegion iomem;
45 uint32_t cr0;
46 uint32_t cr1;
47 uint32_t bitmask;
48 uint32_t sr;
49 uint32_t cpsr;
50 uint32_t is;
51 uint32_t im;
52 /* The FIFO head points to the next empty entry. */
53 int tx_fifo_head;
54 int rx_fifo_head;
55 int tx_fifo_len;
56 int rx_fifo_len;
57 uint16_t tx_fifo[8];
58 uint16_t rx_fifo[8];
59 qemu_irq irq;
60 SSIBus *ssi;
61 } pl022_state;
63 static const unsigned char pl022_id[8] =
64 { 0x22, 0x10, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
66 static void pl022_update(pl022_state *s)
68 s->sr = 0;
69 if (s->tx_fifo_len == 0)
70 s->sr |= PL022_SR_TFE;
71 if (s->tx_fifo_len != 8)
72 s->sr |= PL022_SR_TNF;
73 if (s->rx_fifo_len != 0)
74 s->sr |= PL022_SR_RNE;
75 if (s->rx_fifo_len == 8)
76 s->sr |= PL022_SR_RFF;
77 if (s->tx_fifo_len)
78 s->sr |= PL022_SR_BSY;
79 s->is = 0;
80 if (s->rx_fifo_len >= 4)
81 s->is |= PL022_INT_RX;
82 if (s->tx_fifo_len <= 4)
83 s->is |= PL022_INT_TX;
85 qemu_set_irq(s->irq, (s->is & s->im) != 0);
88 static void pl022_xfer(pl022_state *s)
90 int i;
91 int o;
92 int val;
94 if ((s->cr1 & PL022_CR1_SSE) == 0) {
95 pl022_update(s);
96 DPRINTF("Disabled\n");
97 return;
100 DPRINTF("Maybe xfer %d/%d\n", s->tx_fifo_len, s->rx_fifo_len);
101 i = (s->tx_fifo_head - s->tx_fifo_len) & 7;
102 o = s->rx_fifo_head;
103 /* ??? We do not emulate the line speed.
104 This may break some applications. The are two problematic cases:
105 (a) A driver feeds data into the TX FIFO until it is full,
106 and only then drains the RX FIFO. On real hardware the CPU can
107 feed data fast enough that the RX fifo never gets chance to overflow.
108 (b) A driver transmits data, deliberately allowing the RX FIFO to
109 overflow because it ignores the RX data anyway.
111 We choose to support (a) by stalling the transmit engine if it would
112 cause the RX FIFO to overflow. In practice much transmit-only code
113 falls into (a) because it flushes the RX FIFO to determine when
114 the transfer has completed. */
115 while (s->tx_fifo_len && s->rx_fifo_len < 8) {
116 DPRINTF("xfer\n");
117 val = s->tx_fifo[i];
118 if (s->cr1 & PL022_CR1_LBM) {
119 /* Loopback mode. */
120 } else {
121 val = ssi_transfer(s->ssi, val);
123 s->rx_fifo[o] = val & s->bitmask;
124 i = (i + 1) & 7;
125 o = (o + 1) & 7;
126 s->tx_fifo_len--;
127 s->rx_fifo_len++;
129 s->rx_fifo_head = o;
130 pl022_update(s);
133 static uint64_t pl022_read(void *opaque, hwaddr offset,
134 unsigned size)
136 pl022_state *s = (pl022_state *)opaque;
137 int val;
139 if (offset >= 0xfe0 && offset < 0x1000) {
140 return pl022_id[(offset - 0xfe0) >> 2];
142 switch (offset) {
143 case 0x00: /* CR0 */
144 return s->cr0;
145 case 0x04: /* CR1 */
146 return s->cr1;
147 case 0x08: /* DR */
148 if (s->rx_fifo_len) {
149 val = s->rx_fifo[(s->rx_fifo_head - s->rx_fifo_len) & 7];
150 DPRINTF("RX %02x\n", val);
151 s->rx_fifo_len--;
152 pl022_xfer(s);
153 } else {
154 val = 0;
156 return val;
157 case 0x0c: /* SR */
158 return s->sr;
159 case 0x10: /* CPSR */
160 return s->cpsr;
161 case 0x14: /* IMSC */
162 return s->im;
163 case 0x18: /* RIS */
164 return s->is;
165 case 0x1c: /* MIS */
166 return s->im & s->is;
167 case 0x20: /* DMACR */
168 /* Not implemented. */
169 return 0;
170 default:
171 qemu_log_mask(LOG_GUEST_ERROR,
172 "pl022_read: Bad offset %x\n", (int)offset);
173 return 0;
177 static void pl022_write(void *opaque, hwaddr offset,
178 uint64_t value, unsigned size)
180 pl022_state *s = (pl022_state *)opaque;
182 switch (offset) {
183 case 0x00: /* CR0 */
184 s->cr0 = value;
185 /* Clock rate and format are ignored. */
186 s->bitmask = (1 << ((value & 15) + 1)) - 1;
187 break;
188 case 0x04: /* CR1 */
189 s->cr1 = value;
190 if ((s->cr1 & (PL022_CR1_MS | PL022_CR1_SSE))
191 == (PL022_CR1_MS | PL022_CR1_SSE)) {
192 BADF("SPI slave mode not implemented\n");
194 pl022_xfer(s);
195 break;
196 case 0x08: /* DR */
197 if (s->tx_fifo_len < 8) {
198 DPRINTF("TX %02x\n", (unsigned)value);
199 s->tx_fifo[s->tx_fifo_head] = value & s->bitmask;
200 s->tx_fifo_head = (s->tx_fifo_head + 1) & 7;
201 s->tx_fifo_len++;
202 pl022_xfer(s);
204 break;
205 case 0x10: /* CPSR */
206 /* Prescaler. Ignored. */
207 s->cpsr = value & 0xff;
208 break;
209 case 0x14: /* IMSC */
210 s->im = value;
211 pl022_update(s);
212 break;
213 case 0x20: /* DMACR */
214 if (value) {
215 qemu_log_mask(LOG_UNIMP, "pl022: DMA not implemented\n");
217 break;
218 default:
219 qemu_log_mask(LOG_GUEST_ERROR,
220 "pl022_write: Bad offset %x\n", (int)offset);
224 static void pl022_reset(pl022_state *s)
226 s->rx_fifo_len = 0;
227 s->tx_fifo_len = 0;
228 s->im = 0;
229 s->is = PL022_INT_TX;
230 s->sr = PL022_SR_TFE | PL022_SR_TNF;
233 static const MemoryRegionOps pl022_ops = {
234 .read = pl022_read,
235 .write = pl022_write,
236 .endianness = DEVICE_NATIVE_ENDIAN,
239 static const VMStateDescription vmstate_pl022 = {
240 .name = "pl022_ssp",
241 .version_id = 1,
242 .minimum_version_id = 1,
243 .minimum_version_id_old = 1,
244 .fields = (VMStateField[]) {
245 VMSTATE_UINT32(cr0, pl022_state),
246 VMSTATE_UINT32(cr1, pl022_state),
247 VMSTATE_UINT32(bitmask, pl022_state),
248 VMSTATE_UINT32(sr, pl022_state),
249 VMSTATE_UINT32(cpsr, pl022_state),
250 VMSTATE_UINT32(is, pl022_state),
251 VMSTATE_UINT32(im, pl022_state),
252 VMSTATE_INT32(tx_fifo_head, pl022_state),
253 VMSTATE_INT32(rx_fifo_head, pl022_state),
254 VMSTATE_INT32(tx_fifo_len, pl022_state),
255 VMSTATE_INT32(rx_fifo_len, pl022_state),
256 VMSTATE_UINT16(tx_fifo[0], pl022_state),
257 VMSTATE_UINT16(rx_fifo[0], pl022_state),
258 VMSTATE_UINT16(tx_fifo[1], pl022_state),
259 VMSTATE_UINT16(rx_fifo[1], pl022_state),
260 VMSTATE_UINT16(tx_fifo[2], pl022_state),
261 VMSTATE_UINT16(rx_fifo[2], pl022_state),
262 VMSTATE_UINT16(tx_fifo[3], pl022_state),
263 VMSTATE_UINT16(rx_fifo[3], pl022_state),
264 VMSTATE_UINT16(tx_fifo[4], pl022_state),
265 VMSTATE_UINT16(rx_fifo[4], pl022_state),
266 VMSTATE_UINT16(tx_fifo[5], pl022_state),
267 VMSTATE_UINT16(rx_fifo[5], pl022_state),
268 VMSTATE_UINT16(tx_fifo[6], pl022_state),
269 VMSTATE_UINT16(rx_fifo[6], pl022_state),
270 VMSTATE_UINT16(tx_fifo[7], pl022_state),
271 VMSTATE_UINT16(rx_fifo[7], pl022_state),
272 VMSTATE_END_OF_LIST()
276 static int pl022_init(SysBusDevice *dev)
278 pl022_state *s = FROM_SYSBUS(pl022_state, dev);
280 memory_region_init_io(&s->iomem, &pl022_ops, s, "pl022", 0x1000);
281 sysbus_init_mmio(dev, &s->iomem);
282 sysbus_init_irq(dev, &s->irq);
283 s->ssi = ssi_create_bus(&dev->qdev, "ssi");
284 pl022_reset(s);
285 vmstate_register(&dev->qdev, -1, &vmstate_pl022, s);
286 return 0;
289 static void pl022_class_init(ObjectClass *klass, void *data)
291 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
293 sdc->init = pl022_init;
296 static const TypeInfo pl022_info = {
297 .name = "pl022",
298 .parent = TYPE_SYS_BUS_DEVICE,
299 .instance_size = sizeof(pl022_state),
300 .class_init = pl022_class_init,
303 static void pl022_register_types(void)
305 type_register_static(&pl022_info);
308 type_init(pl022_register_types)