target-i386: kvm: prevent buffer overflow if -cpu foo, [x]level is too big
[qemu/pbrook.git] / target-i386 / smm_helper.c
blobeea2fe97826b6295ca4eb5f783ba2582272f4ae9
1 /*
2 * x86 SMM helpers
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "helper.h"
23 /* SMM support */
25 #if defined(CONFIG_USER_ONLY)
27 void do_smm_enter(CPUX86State *env)
31 void helper_rsm(CPUX86State *env)
35 #else
37 #ifdef TARGET_X86_64
38 #define SMM_REVISION_ID 0x00020064
39 #else
40 #define SMM_REVISION_ID 0x00020000
41 #endif
43 void do_smm_enter(CPUX86State *env)
45 target_ulong sm_state;
46 SegmentCache *dt;
47 int i, offset;
49 qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
50 log_cpu_state_mask(CPU_LOG_INT, env, CPU_DUMP_CCOP);
52 env->hflags |= HF_SMM_MASK;
53 cpu_smm_update(env);
55 sm_state = env->smbase + 0x8000;
57 #ifdef TARGET_X86_64
58 for (i = 0; i < 6; i++) {
59 dt = &env->segs[i];
60 offset = 0x7e00 + i * 16;
61 stw_phys(sm_state + offset, dt->selector);
62 stw_phys(sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
63 stl_phys(sm_state + offset + 4, dt->limit);
64 stq_phys(sm_state + offset + 8, dt->base);
67 stq_phys(sm_state + 0x7e68, env->gdt.base);
68 stl_phys(sm_state + 0x7e64, env->gdt.limit);
70 stw_phys(sm_state + 0x7e70, env->ldt.selector);
71 stq_phys(sm_state + 0x7e78, env->ldt.base);
72 stl_phys(sm_state + 0x7e74, env->ldt.limit);
73 stw_phys(sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
75 stq_phys(sm_state + 0x7e88, env->idt.base);
76 stl_phys(sm_state + 0x7e84, env->idt.limit);
78 stw_phys(sm_state + 0x7e90, env->tr.selector);
79 stq_phys(sm_state + 0x7e98, env->tr.base);
80 stl_phys(sm_state + 0x7e94, env->tr.limit);
81 stw_phys(sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
83 stq_phys(sm_state + 0x7ed0, env->efer);
85 stq_phys(sm_state + 0x7ff8, EAX);
86 stq_phys(sm_state + 0x7ff0, ECX);
87 stq_phys(sm_state + 0x7fe8, EDX);
88 stq_phys(sm_state + 0x7fe0, EBX);
89 stq_phys(sm_state + 0x7fd8, ESP);
90 stq_phys(sm_state + 0x7fd0, EBP);
91 stq_phys(sm_state + 0x7fc8, ESI);
92 stq_phys(sm_state + 0x7fc0, EDI);
93 for (i = 8; i < 16; i++) {
94 stq_phys(sm_state + 0x7ff8 - i * 8, env->regs[i]);
96 stq_phys(sm_state + 0x7f78, env->eip);
97 stl_phys(sm_state + 0x7f70, cpu_compute_eflags(env));
98 stl_phys(sm_state + 0x7f68, env->dr[6]);
99 stl_phys(sm_state + 0x7f60, env->dr[7]);
101 stl_phys(sm_state + 0x7f48, env->cr[4]);
102 stl_phys(sm_state + 0x7f50, env->cr[3]);
103 stl_phys(sm_state + 0x7f58, env->cr[0]);
105 stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
106 stl_phys(sm_state + 0x7f00, env->smbase);
107 #else
108 stl_phys(sm_state + 0x7ffc, env->cr[0]);
109 stl_phys(sm_state + 0x7ff8, env->cr[3]);
110 stl_phys(sm_state + 0x7ff4, cpu_compute_eflags(env));
111 stl_phys(sm_state + 0x7ff0, env->eip);
112 stl_phys(sm_state + 0x7fec, EDI);
113 stl_phys(sm_state + 0x7fe8, ESI);
114 stl_phys(sm_state + 0x7fe4, EBP);
115 stl_phys(sm_state + 0x7fe0, ESP);
116 stl_phys(sm_state + 0x7fdc, EBX);
117 stl_phys(sm_state + 0x7fd8, EDX);
118 stl_phys(sm_state + 0x7fd4, ECX);
119 stl_phys(sm_state + 0x7fd0, EAX);
120 stl_phys(sm_state + 0x7fcc, env->dr[6]);
121 stl_phys(sm_state + 0x7fc8, env->dr[7]);
123 stl_phys(sm_state + 0x7fc4, env->tr.selector);
124 stl_phys(sm_state + 0x7f64, env->tr.base);
125 stl_phys(sm_state + 0x7f60, env->tr.limit);
126 stl_phys(sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
128 stl_phys(sm_state + 0x7fc0, env->ldt.selector);
129 stl_phys(sm_state + 0x7f80, env->ldt.base);
130 stl_phys(sm_state + 0x7f7c, env->ldt.limit);
131 stl_phys(sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
133 stl_phys(sm_state + 0x7f74, env->gdt.base);
134 stl_phys(sm_state + 0x7f70, env->gdt.limit);
136 stl_phys(sm_state + 0x7f58, env->idt.base);
137 stl_phys(sm_state + 0x7f54, env->idt.limit);
139 for (i = 0; i < 6; i++) {
140 dt = &env->segs[i];
141 if (i < 3) {
142 offset = 0x7f84 + i * 12;
143 } else {
144 offset = 0x7f2c + (i - 3) * 12;
146 stl_phys(sm_state + 0x7fa8 + i * 4, dt->selector);
147 stl_phys(sm_state + offset + 8, dt->base);
148 stl_phys(sm_state + offset + 4, dt->limit);
149 stl_phys(sm_state + offset, (dt->flags >> 8) & 0xf0ff);
151 stl_phys(sm_state + 0x7f14, env->cr[4]);
153 stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
154 stl_phys(sm_state + 0x7ef8, env->smbase);
155 #endif
156 /* init SMM cpu state */
158 #ifdef TARGET_X86_64
159 cpu_load_efer(env, 0);
160 #endif
161 cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
162 DF_MASK));
163 env->eip = 0x00008000;
164 cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
165 0xffffffff, 0);
166 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, 0);
167 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, 0);
168 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, 0);
169 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, 0);
170 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, 0);
172 cpu_x86_update_cr0(env,
173 env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
174 CR0_PG_MASK));
175 cpu_x86_update_cr4(env, 0);
176 env->dr[7] = 0x00000400;
177 CC_OP = CC_OP_EFLAGS;
180 void helper_rsm(CPUX86State *env)
182 target_ulong sm_state;
183 int i, offset;
184 uint32_t val;
186 sm_state = env->smbase + 0x8000;
187 #ifdef TARGET_X86_64
188 cpu_load_efer(env, ldq_phys(sm_state + 0x7ed0));
190 for (i = 0; i < 6; i++) {
191 offset = 0x7e00 + i * 16;
192 cpu_x86_load_seg_cache(env, i,
193 lduw_phys(sm_state + offset),
194 ldq_phys(sm_state + offset + 8),
195 ldl_phys(sm_state + offset + 4),
196 (lduw_phys(sm_state + offset + 2) &
197 0xf0ff) << 8);
200 env->gdt.base = ldq_phys(sm_state + 0x7e68);
201 env->gdt.limit = ldl_phys(sm_state + 0x7e64);
203 env->ldt.selector = lduw_phys(sm_state + 0x7e70);
204 env->ldt.base = ldq_phys(sm_state + 0x7e78);
205 env->ldt.limit = ldl_phys(sm_state + 0x7e74);
206 env->ldt.flags = (lduw_phys(sm_state + 0x7e72) & 0xf0ff) << 8;
208 env->idt.base = ldq_phys(sm_state + 0x7e88);
209 env->idt.limit = ldl_phys(sm_state + 0x7e84);
211 env->tr.selector = lduw_phys(sm_state + 0x7e90);
212 env->tr.base = ldq_phys(sm_state + 0x7e98);
213 env->tr.limit = ldl_phys(sm_state + 0x7e94);
214 env->tr.flags = (lduw_phys(sm_state + 0x7e92) & 0xf0ff) << 8;
216 EAX = ldq_phys(sm_state + 0x7ff8);
217 ECX = ldq_phys(sm_state + 0x7ff0);
218 EDX = ldq_phys(sm_state + 0x7fe8);
219 EBX = ldq_phys(sm_state + 0x7fe0);
220 ESP = ldq_phys(sm_state + 0x7fd8);
221 EBP = ldq_phys(sm_state + 0x7fd0);
222 ESI = ldq_phys(sm_state + 0x7fc8);
223 EDI = ldq_phys(sm_state + 0x7fc0);
224 for (i = 8; i < 16; i++) {
225 env->regs[i] = ldq_phys(sm_state + 0x7ff8 - i * 8);
227 env->eip = ldq_phys(sm_state + 0x7f78);
228 cpu_load_eflags(env, ldl_phys(sm_state + 0x7f70),
229 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
230 env->dr[6] = ldl_phys(sm_state + 0x7f68);
231 env->dr[7] = ldl_phys(sm_state + 0x7f60);
233 cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f48));
234 cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7f50));
235 cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7f58));
237 val = ldl_phys(sm_state + 0x7efc); /* revision ID */
238 if (val & 0x20000) {
239 env->smbase = ldl_phys(sm_state + 0x7f00) & ~0x7fff;
241 #else
242 cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7ffc));
243 cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7ff8));
244 cpu_load_eflags(env, ldl_phys(sm_state + 0x7ff4),
245 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
246 env->eip = ldl_phys(sm_state + 0x7ff0);
247 EDI = ldl_phys(sm_state + 0x7fec);
248 ESI = ldl_phys(sm_state + 0x7fe8);
249 EBP = ldl_phys(sm_state + 0x7fe4);
250 ESP = ldl_phys(sm_state + 0x7fe0);
251 EBX = ldl_phys(sm_state + 0x7fdc);
252 EDX = ldl_phys(sm_state + 0x7fd8);
253 ECX = ldl_phys(sm_state + 0x7fd4);
254 EAX = ldl_phys(sm_state + 0x7fd0);
255 env->dr[6] = ldl_phys(sm_state + 0x7fcc);
256 env->dr[7] = ldl_phys(sm_state + 0x7fc8);
258 env->tr.selector = ldl_phys(sm_state + 0x7fc4) & 0xffff;
259 env->tr.base = ldl_phys(sm_state + 0x7f64);
260 env->tr.limit = ldl_phys(sm_state + 0x7f60);
261 env->tr.flags = (ldl_phys(sm_state + 0x7f5c) & 0xf0ff) << 8;
263 env->ldt.selector = ldl_phys(sm_state + 0x7fc0) & 0xffff;
264 env->ldt.base = ldl_phys(sm_state + 0x7f80);
265 env->ldt.limit = ldl_phys(sm_state + 0x7f7c);
266 env->ldt.flags = (ldl_phys(sm_state + 0x7f78) & 0xf0ff) << 8;
268 env->gdt.base = ldl_phys(sm_state + 0x7f74);
269 env->gdt.limit = ldl_phys(sm_state + 0x7f70);
271 env->idt.base = ldl_phys(sm_state + 0x7f58);
272 env->idt.limit = ldl_phys(sm_state + 0x7f54);
274 for (i = 0; i < 6; i++) {
275 if (i < 3) {
276 offset = 0x7f84 + i * 12;
277 } else {
278 offset = 0x7f2c + (i - 3) * 12;
280 cpu_x86_load_seg_cache(env, i,
281 ldl_phys(sm_state + 0x7fa8 + i * 4) & 0xffff,
282 ldl_phys(sm_state + offset + 8),
283 ldl_phys(sm_state + offset + 4),
284 (ldl_phys(sm_state + offset) & 0xf0ff) << 8);
286 cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f14));
288 val = ldl_phys(sm_state + 0x7efc); /* revision ID */
289 if (val & 0x20000) {
290 env->smbase = ldl_phys(sm_state + 0x7ef8) & ~0x7fff;
292 #endif
293 CC_OP = CC_OP_EFLAGS;
294 env->hflags &= ~HF_SMM_MASK;
295 cpu_smm_update(env);
297 qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
298 log_cpu_state_mask(CPU_LOG_INT, env, CPU_DUMP_CCOP);
301 #endif /* !CONFIG_USER_ONLY */