2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
27 #include "mc146818rtc.h"
34 //#define DEBUG_COALESCED
37 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
39 # define CMOS_DPRINTF(format, ...) do { } while (0)
42 #ifdef DEBUG_COALESCED
43 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
45 # define DPRINTF_C(format, ...) do { } while (0)
48 #define NSEC_PER_SEC 1000000000LL
49 #define SEC_PER_MIN 60
50 #define MIN_PER_HOUR 60
51 #define SEC_PER_HOUR 3600
52 #define HOUR_PER_DAY 24
53 #define SEC_PER_DAY 86400
55 #define RTC_REINJECT_ON_ACK_COUNT 20
56 #define RTC_CLOCK_RATE 32768
57 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
59 typedef struct RTCState
{
62 uint8_t cmos_data
[128];
72 QEMUTimer
*periodic_timer
;
73 int64_t next_periodic_time
;
74 /* update-ended timer */
75 QEMUTimer
*update_timer
;
76 uint64_t next_alarm_time
;
77 uint16_t irq_reinject_on_ack_count
;
78 uint32_t irq_coalesced
;
80 QEMUTimer
*coalesced_timer
;
81 Notifier clock_reset_notifier
;
82 LostTickPolicy lost_tick_policy
;
83 Notifier suspend_notifier
;
86 static void rtc_set_time(RTCState
*s
);
87 static void rtc_update_time(RTCState
*s
);
88 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
89 static inline int rtc_from_bcd(RTCState
*s
, int a
);
90 static uint64_t get_next_alarm(RTCState
*s
);
92 static inline bool rtc_running(RTCState
*s
)
94 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
95 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
98 static uint64_t get_guest_rtc_ns(RTCState
*s
)
101 uint64_t guest_clock
= qemu_get_clock_ns(rtc_clock
);
103 guest_rtc
= s
->base_rtc
* NSEC_PER_SEC
104 + guest_clock
- s
->last_update
+ s
->offset
;
109 static void rtc_coalesced_timer_update(RTCState
*s
)
111 if (s
->irq_coalesced
== 0) {
112 qemu_del_timer(s
->coalesced_timer
);
114 /* divide each RTC interval to 2 - 8 smaller intervals */
115 int c
= MIN(s
->irq_coalesced
, 7) + 1;
116 int64_t next_clock
= qemu_get_clock_ns(rtc_clock
) +
117 muldiv64(s
->period
/ c
, get_ticks_per_sec(), RTC_CLOCK_RATE
);
118 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
122 static void rtc_coalesced_timer(void *opaque
)
124 RTCState
*s
= opaque
;
126 if (s
->irq_coalesced
!= 0) {
127 apic_reset_irq_delivered();
128 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
129 DPRINTF_C("cmos: injecting from timer\n");
130 qemu_irq_raise(s
->irq
);
131 if (apic_get_irq_delivered()) {
133 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
138 rtc_coalesced_timer_update(s
);
142 /* handle periodic timer */
143 static void periodic_timer_update(RTCState
*s
, int64_t current_time
)
145 int period_code
, period
;
146 int64_t cur_clock
, next_irq_clock
;
148 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
150 && ((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)
151 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
152 if (period_code
<= 2)
154 /* period in 32 Khz cycles */
155 period
= 1 << (period_code
- 1);
157 if (period
!= s
->period
) {
158 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
159 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
163 /* compute 32 khz clock */
164 cur_clock
= muldiv64(current_time
, RTC_CLOCK_RATE
, get_ticks_per_sec());
165 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
166 s
->next_periodic_time
=
167 muldiv64(next_irq_clock
, get_ticks_per_sec(), RTC_CLOCK_RATE
) + 1;
168 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
171 s
->irq_coalesced
= 0;
173 qemu_del_timer(s
->periodic_timer
);
177 static void rtc_periodic_timer(void *opaque
)
179 RTCState
*s
= opaque
;
181 periodic_timer_update(s
, s
->next_periodic_time
);
182 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
183 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
184 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
186 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
187 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
188 s
->irq_reinject_on_ack_count
= 0;
189 apic_reset_irq_delivered();
190 qemu_irq_raise(s
->irq
);
191 if (!apic_get_irq_delivered()) {
193 rtc_coalesced_timer_update(s
);
194 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
199 qemu_irq_raise(s
->irq
);
201 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
202 /* Not square wave at all but we don't want 2048Hz interrupts!
203 Must be seen as a pulse. */
204 qemu_irq_raise(s
->sqw_irq
);
208 /* handle update-ended timer */
209 static void check_update_timer(RTCState
*s
)
211 uint64_t next_update_time
;
215 /* From the data sheet: "Holding the dividers in reset prevents
216 * interrupts from operating, while setting the SET bit allows"
217 * them to occur. However, it will prevent an alarm interrupt
218 * from occurring, because the time of day is not updated.
220 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
221 qemu_del_timer(s
->update_timer
);
224 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
225 (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
226 qemu_del_timer(s
->update_timer
);
229 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
230 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
231 qemu_del_timer(s
->update_timer
);
235 guest_nsec
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
236 /* if UF is clear, reprogram to next second */
237 next_update_time
= qemu_get_clock_ns(rtc_clock
)
238 + NSEC_PER_SEC
- guest_nsec
;
240 /* Compute time of next alarm. One second is already accounted
241 * for in next_update_time.
243 next_alarm_sec
= get_next_alarm(s
);
244 s
->next_alarm_time
= next_update_time
+ (next_alarm_sec
- 1) * NSEC_PER_SEC
;
246 if (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) {
247 /* UF is set, but AF is clear. Program the timer to target
249 next_update_time
= s
->next_alarm_time
;
251 if (next_update_time
!= qemu_timer_expire_time_ns(s
->update_timer
)) {
252 qemu_mod_timer(s
->update_timer
, next_update_time
);
256 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
258 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
260 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
267 static uint64_t get_next_alarm(RTCState
*s
)
269 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
270 int32_t hour
, min
, sec
;
274 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
275 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
276 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
277 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
279 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
280 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
281 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
282 cur_hour
= convert_hour(s
, cur_hour
);
284 if (alarm_hour
== -1) {
285 alarm_hour
= cur_hour
;
286 if (alarm_min
== -1) {
288 if (alarm_sec
== -1) {
289 alarm_sec
= cur_sec
+ 1;
290 } else if (cur_sec
> alarm_sec
) {
293 } else if (cur_min
== alarm_min
) {
294 if (alarm_sec
== -1) {
295 alarm_sec
= cur_sec
+ 1;
297 if (cur_sec
> alarm_sec
) {
301 if (alarm_sec
== SEC_PER_MIN
) {
302 /* wrap to next hour, minutes is not in don't care mode */
306 } else if (cur_min
> alarm_min
) {
309 } else if (cur_hour
== alarm_hour
) {
310 if (alarm_min
== -1) {
312 if (alarm_sec
== -1) {
313 alarm_sec
= cur_sec
+ 1;
314 } else if (cur_sec
> alarm_sec
) {
318 if (alarm_sec
== SEC_PER_MIN
) {
322 /* wrap to next day, hour is not in don't care mode */
323 alarm_min
%= MIN_PER_HOUR
;
324 } else if (cur_min
== alarm_min
) {
325 if (alarm_sec
== -1) {
326 alarm_sec
= cur_sec
+ 1;
328 /* wrap to next day, hours+minutes not in don't care mode */
329 alarm_sec
%= SEC_PER_MIN
;
333 /* values that are still don't care fire at the next min/sec */
334 if (alarm_min
== -1) {
337 if (alarm_sec
== -1) {
341 /* keep values in range */
342 if (alarm_sec
== SEC_PER_MIN
) {
346 if (alarm_min
== MIN_PER_HOUR
) {
350 alarm_hour
%= HOUR_PER_DAY
;
352 hour
= alarm_hour
- cur_hour
;
353 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
354 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
355 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
358 static void rtc_update_timer(void *opaque
)
360 RTCState
*s
= opaque
;
361 int32_t irqs
= REG_C_UF
;
364 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
366 /* UIP might have been latched, update time and clear it. */
368 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
370 if (qemu_get_clock_ns(rtc_clock
) >= s
->next_alarm_time
) {
372 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
373 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
377 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
378 s
->cmos_data
[RTC_REG_C
] |= irqs
;
379 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
380 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
381 qemu_irq_raise(s
->irq
);
383 check_update_timer(s
);
386 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
387 uint64_t data
, unsigned size
)
389 RTCState
*s
= opaque
;
391 if ((addr
& 1) == 0) {
392 s
->cmos_index
= data
& 0x7f;
394 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
395 s
->cmos_index
, data
);
396 switch(s
->cmos_index
) {
397 case RTC_SECONDS_ALARM
:
398 case RTC_MINUTES_ALARM
:
399 case RTC_HOURS_ALARM
:
400 s
->cmos_data
[s
->cmos_index
] = data
;
401 check_update_timer(s
);
403 case RTC_IBM_PS2_CENTURY_BYTE
:
404 s
->cmos_index
= RTC_CENTURY
;
410 case RTC_DAY_OF_WEEK
:
411 case RTC_DAY_OF_MONTH
:
414 s
->cmos_data
[s
->cmos_index
] = data
;
415 /* if in set mode, do not update the time */
416 if (rtc_running(s
)) {
418 check_update_timer(s
);
422 if ((data
& 0x60) == 0x60) {
423 if (rtc_running(s
)) {
426 /* What happens to UIP when divider reset is enabled is
427 * unclear from the datasheet. Shouldn't matter much
430 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
431 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
432 (data
& 0x70) <= 0x20) {
433 /* when the divider reset is removed, the first update cycle
434 * begins one-half second later*/
435 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
436 s
->offset
= 500000000;
439 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
441 /* UIP bit is read only */
442 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
443 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
444 periodic_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
445 check_update_timer(s
);
448 if (data
& REG_B_SET
) {
449 /* update cmos to when the rtc was stopping */
450 if (rtc_running(s
)) {
453 /* set mode: reset UIP mode */
454 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
457 /* if disabling set mode, update the time */
458 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
459 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
460 s
->offset
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
464 /* if an interrupt flag is already set when the interrupt
465 * becomes enabled, raise an interrupt immediately. */
466 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
467 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
468 qemu_irq_raise(s
->irq
);
470 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
471 qemu_irq_lower(s
->irq
);
473 s
->cmos_data
[RTC_REG_B
] = data
;
474 periodic_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
475 check_update_timer(s
);
479 /* cannot write to them */
482 s
->cmos_data
[s
->cmos_index
] = data
;
488 static inline int rtc_to_bcd(RTCState
*s
, int a
)
490 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
493 return ((a
/ 10) << 4) | (a
% 10);
497 static inline int rtc_from_bcd(RTCState
*s
, int a
)
499 if ((a
& 0xc0) == 0xc0) {
502 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
505 return ((a
>> 4) * 10) + (a
& 0x0f);
509 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
511 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
512 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
513 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
514 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
516 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
520 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
521 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
522 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
524 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
525 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
528 static void rtc_set_time(RTCState
*s
)
532 rtc_get_time(s
, &tm
);
533 s
->base_rtc
= mktimegm(&tm
);
534 s
->last_update
= qemu_get_clock_ns(rtc_clock
);
536 rtc_change_mon_event(&tm
);
539 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
543 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
544 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
545 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
547 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
550 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
551 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
552 if (tm
->tm_hour
>= 12)
553 s
->cmos_data
[RTC_HOURS
] |= 0x80;
555 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
556 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
557 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
558 year
= tm
->tm_year
+ 1900 - s
->base_year
;
559 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
560 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
563 static void rtc_update_time(RTCState
*s
)
569 guest_nsec
= get_guest_rtc_ns(s
);
570 guest_sec
= guest_nsec
/ NSEC_PER_SEC
;
571 gmtime_r(&guest_sec
, &ret
);
572 rtc_set_cmos(s
, &ret
);
575 static int update_in_progress(RTCState
*s
)
579 if (!rtc_running(s
)) {
582 if (qemu_timer_pending(s
->update_timer
)) {
583 int64_t next_update_time
= qemu_timer_expire_time_ns(s
->update_timer
);
584 /* Latch UIP until the timer expires. */
585 if (qemu_get_clock_ns(rtc_clock
) >= (next_update_time
- UIP_HOLD_LENGTH
)) {
586 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
591 guest_nsec
= get_guest_rtc_ns(s
);
592 /* UIP bit will be set at last 244us of every second. */
593 if ((guest_nsec
% NSEC_PER_SEC
) >= (NSEC_PER_SEC
- UIP_HOLD_LENGTH
)) {
599 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
602 RTCState
*s
= opaque
;
604 if ((addr
& 1) == 0) {
607 switch(s
->cmos_index
) {
608 case RTC_IBM_PS2_CENTURY_BYTE
:
609 s
->cmos_index
= RTC_CENTURY
;
615 case RTC_DAY_OF_WEEK
:
616 case RTC_DAY_OF_MONTH
:
619 /* if not in set mode, calibrate cmos before
621 if (rtc_running(s
)) {
624 ret
= s
->cmos_data
[s
->cmos_index
];
627 if (update_in_progress(s
)) {
628 s
->cmos_data
[s
->cmos_index
] |= REG_A_UIP
;
630 s
->cmos_data
[s
->cmos_index
] &= ~REG_A_UIP
;
632 ret
= s
->cmos_data
[s
->cmos_index
];
635 ret
= s
->cmos_data
[s
->cmos_index
];
636 qemu_irq_lower(s
->irq
);
637 s
->cmos_data
[RTC_REG_C
] = 0x00;
638 if (ret
& (REG_C_UF
| REG_C_AF
)) {
639 check_update_timer(s
);
642 if(s
->irq_coalesced
&&
643 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
644 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
645 s
->irq_reinject_on_ack_count
++;
646 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
647 apic_reset_irq_delivered();
648 DPRINTF_C("cmos: injecting on ack\n");
649 qemu_irq_raise(s
->irq
);
650 if (apic_get_irq_delivered()) {
652 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
659 ret
= s
->cmos_data
[s
->cmos_index
];
662 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
668 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
670 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
671 if (addr
>= 0 && addr
<= 127)
672 s
->cmos_data
[addr
] = val
;
675 static void rtc_set_date_from_host(ISADevice
*dev
)
677 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
680 qemu_get_timedate(&tm
, 0);
682 s
->base_rtc
= mktimegm(&tm
);
683 s
->last_update
= qemu_get_clock_ns(rtc_clock
);
686 /* set the CMOS date */
687 rtc_set_cmos(s
, &tm
);
690 static int rtc_post_load(void *opaque
, int version_id
)
692 RTCState
*s
= opaque
;
694 if (version_id
<= 2) {
697 check_update_timer(s
);
701 if (version_id
>= 2) {
702 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
703 rtc_coalesced_timer_update(s
);
710 static const VMStateDescription vmstate_rtc
= {
711 .name
= "mc146818rtc",
713 .minimum_version_id
= 1,
714 .minimum_version_id_old
= 1,
715 .post_load
= rtc_post_load
,
716 .fields
= (VMStateField
[]) {
717 VMSTATE_BUFFER(cmos_data
, RTCState
),
718 VMSTATE_UINT8(cmos_index
, RTCState
),
720 VMSTATE_TIMER(periodic_timer
, RTCState
),
721 VMSTATE_INT64(next_periodic_time
, RTCState
),
723 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
724 VMSTATE_UINT32_V(period
, RTCState
, 2),
725 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
726 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
727 VMSTATE_INT64_V(offset
, RTCState
, 3),
728 VMSTATE_TIMER_V(update_timer
, RTCState
, 3),
729 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
730 VMSTATE_END_OF_LIST()
734 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
736 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
737 int64_t now
= *(int64_t *)data
;
739 rtc_set_date_from_host(&s
->dev
);
740 periodic_timer_update(s
, now
);
741 check_update_timer(s
);
743 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
744 rtc_coalesced_timer_update(s
);
749 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
750 BIOS will read it and start S3 resume at POST Entry */
751 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
753 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
754 rtc_set_memory(&s
->dev
, 0xF, 0xFE);
757 static void rtc_reset(void *opaque
)
759 RTCState
*s
= opaque
;
761 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
762 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
763 check_update_timer(s
);
765 qemu_irq_lower(s
->irq
);
768 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
769 s
->irq_coalesced
= 0;
774 static const MemoryRegionOps cmos_ops
= {
775 .read
= cmos_ioport_read
,
776 .write
= cmos_ioport_write
,
778 .min_access_size
= 1,
779 .max_access_size
= 1,
781 .endianness
= DEVICE_LITTLE_ENDIAN
,
784 static void rtc_get_date(Object
*obj
, Visitor
*v
, void *opaque
,
785 const char *name
, Error
**errp
)
787 ISADevice
*isa
= ISA_DEVICE(obj
);
788 RTCState
*s
= DO_UPCAST(RTCState
, dev
, isa
);
789 struct tm current_tm
;
792 rtc_get_time(s
, ¤t_tm
);
793 visit_start_struct(v
, NULL
, "struct tm", name
, 0, errp
);
794 visit_type_int32(v
, ¤t_tm
.tm_year
, "tm_year", errp
);
795 visit_type_int32(v
, ¤t_tm
.tm_mon
, "tm_mon", errp
);
796 visit_type_int32(v
, ¤t_tm
.tm_mday
, "tm_mday", errp
);
797 visit_type_int32(v
, ¤t_tm
.tm_hour
, "tm_hour", errp
);
798 visit_type_int32(v
, ¤t_tm
.tm_min
, "tm_min", errp
);
799 visit_type_int32(v
, ¤t_tm
.tm_sec
, "tm_sec", errp
);
800 visit_end_struct(v
, errp
);
803 static int rtc_initfn(ISADevice
*dev
)
805 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
808 s
->cmos_data
[RTC_REG_A
] = 0x26;
809 s
->cmos_data
[RTC_REG_B
] = 0x02;
810 s
->cmos_data
[RTC_REG_C
] = 0x00;
811 s
->cmos_data
[RTC_REG_D
] = 0x80;
813 /* This is for historical reasons. The default base year qdev property
814 * was set to 2000 for most machine types before the century byte was
817 * This if statement means that the century byte will be always 0
818 * (at least until 2079...) for base_year = 1980, but will be set
819 * correctly for base_year = 2000.
821 if (s
->base_year
== 2000) {
825 rtc_set_date_from_host(dev
);
828 switch (s
->lost_tick_policy
) {
831 qemu_new_timer_ns(rtc_clock
, rtc_coalesced_timer
, s
);
833 case LOST_TICK_DISCARD
:
840 s
->periodic_timer
= qemu_new_timer_ns(rtc_clock
, rtc_periodic_timer
, s
);
841 s
->update_timer
= qemu_new_timer_ns(rtc_clock
, rtc_update_timer
, s
);
842 check_update_timer(s
);
844 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
845 qemu_register_clock_reset_notifier(rtc_clock
, &s
->clock_reset_notifier
);
847 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
848 qemu_register_suspend_notifier(&s
->suspend_notifier
);
850 memory_region_init_io(&s
->io
, &cmos_ops
, s
, "rtc", 2);
851 isa_register_ioport(dev
, &s
->io
, base
);
853 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 3);
854 qemu_register_reset(rtc_reset
, s
);
856 object_property_add(OBJECT(s
), "date", "struct tm",
857 rtc_get_date
, NULL
, NULL
, s
, NULL
);
862 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
867 dev
= isa_create(bus
, "mc146818rtc");
868 s
= DO_UPCAST(RTCState
, dev
, dev
);
869 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
870 qdev_init_nofail(&dev
->qdev
);
872 s
->irq
= intercept_irq
;
874 isa_init_irq(dev
, &s
->irq
, RTC_ISA_IRQ
);
879 static Property mc146818rtc_properties
[] = {
880 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
881 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
882 lost_tick_policy
, LOST_TICK_DISCARD
),
883 DEFINE_PROP_END_OF_LIST(),
886 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
888 DeviceClass
*dc
= DEVICE_CLASS(klass
);
889 ISADeviceClass
*ic
= ISA_DEVICE_CLASS(klass
);
890 ic
->init
= rtc_initfn
;
892 dc
->vmsd
= &vmstate_rtc
;
893 dc
->props
= mc146818rtc_properties
;
896 static TypeInfo mc146818rtc_info
= {
897 .name
= "mc146818rtc",
898 .parent
= TYPE_ISA_DEVICE
,
899 .instance_size
= sizeof(RTCState
),
900 .class_init
= rtc_class_initfn
,
903 static void mc146818rtc_register_types(void)
905 type_register_static(&mc146818rtc_info
);
908 type_init(mc146818rtc_register_types
)