scripts: qmp-shell: Add verbose flag
[qemu/qmp-unstable.git] / target-arm / helper.c
blobf8f8d76fc0374c5d1fbc3bbb0c16dc394bbe9bd3
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, ARMMMUIdx mmu_idx,
17 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
21 #define PMCRD 0x8
22 #define PMCRC 0x4
23 #define PMCRE 0x1
24 #endif
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 int nregs;
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 return 0;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 int nregs;
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
75 return 0;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 assert(ri->fieldoffset);
123 if (cpreg_field_is_64bit(ri)) {
124 return CPREG_FIELD64(env, ri);
125 } else {
126 return CPREG_FIELD32(env, ri);
130 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
131 uint64_t value)
133 assert(ri->fieldoffset);
134 if (cpreg_field_is_64bit(ri)) {
135 CPREG_FIELD64(env, ri) = value;
136 } else {
137 CPREG_FIELD32(env, ri) = value;
141 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
143 return (char *)env + ri->fieldoffset;
146 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri->type & ARM_CP_CONST) {
150 return ri->resetvalue;
151 } else if (ri->raw_readfn) {
152 return ri->raw_readfn(env, ri);
153 } else if (ri->readfn) {
154 return ri->readfn(env, ri);
155 } else {
156 return raw_read(env, ri);
160 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
161 uint64_t v)
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
166 * value written.
168 if (ri->type & ARM_CP_CONST) {
169 return;
170 } else if (ri->raw_writefn) {
171 ri->raw_writefn(env, ri, v);
172 } else if (ri->writefn) {
173 ri->writefn(env, ri, v);
174 } else {
175 raw_write(env, ri, v);
179 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri->type & ARM_CP_CONST) ||
193 ri->fieldoffset ||
194 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
195 return false;
197 return true;
200 bool write_cpustate_to_list(ARMCPU *cpu)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
203 int i;
204 bool ok = true;
206 for (i = 0; i < cpu->cpreg_array_len; i++) {
207 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
208 const ARMCPRegInfo *ri;
210 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
211 if (!ri) {
212 ok = false;
213 continue;
215 if (ri->type & ARM_CP_NO_RAW) {
216 continue;
218 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
220 return ok;
223 bool write_list_to_cpustate(ARMCPU *cpu)
225 int i;
226 bool ok = true;
228 for (i = 0; i < cpu->cpreg_array_len; i++) {
229 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
230 uint64_t v = cpu->cpreg_values[i];
231 const ARMCPRegInfo *ri;
233 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 if (!ri) {
235 ok = false;
236 continue;
238 if (ri->type & ARM_CP_NO_RAW) {
239 continue;
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu->env, ri, v);
246 if (read_raw_cp_reg(&cpu->env, ri) != v) {
247 ok = false;
250 return ok;
253 static void add_cpreg_to_list(gpointer key, gpointer opaque)
255 ARMCPU *cpu = opaque;
256 uint64_t regidx;
257 const ARMCPRegInfo *ri;
259 regidx = *(uint32_t *)key;
260 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
263 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
264 /* The value array need not be initialized at this point */
265 cpu->cpreg_array_len++;
269 static void count_cpreg(gpointer key, gpointer opaque)
271 ARMCPU *cpu = opaque;
272 uint64_t regidx;
273 const ARMCPRegInfo *ri;
275 regidx = *(uint32_t *)key;
276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
279 cpu->cpreg_array_len++;
283 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
285 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
286 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
288 if (aidx > bidx) {
289 return 1;
291 if (aidx < bidx) {
292 return -1;
294 return 0;
297 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
299 GList **plist = udata;
301 *plist = g_list_prepend(*plist, key);
304 void init_cpreg_list(ARMCPU *cpu)
306 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
307 * Note that we require cpreg_tuples[] to be sorted by key ID.
309 GList *keys = NULL;
310 int arraylen;
312 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
314 keys = g_list_sort(keys, cpreg_key_compare);
316 cpu->cpreg_array_len = 0;
318 g_list_foreach(keys, count_cpreg, cpu);
320 arraylen = cpu->cpreg_array_len;
321 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
322 cpu->cpreg_values = g_new(uint64_t, arraylen);
323 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
324 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
325 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
326 cpu->cpreg_array_len = 0;
328 g_list_foreach(keys, add_cpreg_to_list, cpu);
330 assert(cpu->cpreg_array_len == arraylen);
332 g_list_free(keys);
335 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
337 ARMCPU *cpu = arm_env_get_cpu(env);
339 raw_write(env, ri, value);
340 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
343 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
345 ARMCPU *cpu = arm_env_get_cpu(env);
347 if (raw_read(env, ri) != value) {
348 /* Unlike real hardware the qemu TLB uses virtual addresses,
349 * not modified virtual addresses, so this causes a TLB flush.
351 tlb_flush(CPU(cpu), 1);
352 raw_write(env, ri, value);
356 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
357 uint64_t value)
359 ARMCPU *cpu = arm_env_get_cpu(env);
361 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
362 && !extended_addresses_enabled(env)) {
363 /* For VMSA (when not using the LPAE long descriptor page table
364 * format) this register includes the ASID, so do a TLB flush.
365 * For PMSA it is purely a process ID and no action is needed.
367 tlb_flush(CPU(cpu), 1);
369 raw_write(env, ri, value);
372 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
373 uint64_t value)
375 /* Invalidate all (TLBIALL) */
376 ARMCPU *cpu = arm_env_get_cpu(env);
378 tlb_flush(CPU(cpu), 1);
381 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
382 uint64_t value)
384 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 ARMCPU *cpu = arm_env_get_cpu(env);
387 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
390 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
391 uint64_t value)
393 /* Invalidate by ASID (TLBIASID) */
394 ARMCPU *cpu = arm_env_get_cpu(env);
396 tlb_flush(CPU(cpu), value == 0);
399 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
400 uint64_t value)
402 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 ARMCPU *cpu = arm_env_get_cpu(env);
405 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
408 /* IS variants of TLB operations must affect all cores */
409 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
410 uint64_t value)
412 CPUState *other_cs;
414 CPU_FOREACH(other_cs) {
415 tlb_flush(other_cs, 1);
419 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
420 uint64_t value)
422 CPUState *other_cs;
424 CPU_FOREACH(other_cs) {
425 tlb_flush(other_cs, value == 0);
429 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
430 uint64_t value)
432 CPUState *other_cs;
434 CPU_FOREACH(other_cs) {
435 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
439 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
440 uint64_t value)
442 CPUState *other_cs;
444 CPU_FOREACH(other_cs) {
445 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
449 static const ARMCPRegInfo cp_reginfo[] = {
450 /* Define the secure and non-secure FCSE identifier CP registers
451 * separately because there is no secure bank in V8 (no _EL3). This allows
452 * the secure register to be properly reset and migrated. There is also no
453 * v8 EL1 version of the register so the non-secure instance stands alone.
455 { .name = "FCSEIDR(NS)",
456 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
457 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
458 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
459 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
460 { .name = "FCSEIDR(S)",
461 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
462 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
463 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
464 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
465 /* Define the secure and non-secure context identifier CP registers
466 * separately because there is no secure bank in V8 (no _EL3). This allows
467 * the secure register to be properly reset and migrated. In the
468 * non-secure case, the 32-bit register will have reset and migration
469 * disabled during registration as it is handled by the 64-bit instance.
471 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
472 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
473 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
474 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
475 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
476 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
477 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
478 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
479 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
480 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
481 REGINFO_SENTINEL
484 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
485 /* NB: Some of these registers exist in v8 but with more precise
486 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
488 /* MMU Domain access control / MPU write buffer control */
489 { .name = "DACR",
490 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
491 .access = PL1_RW, .resetvalue = 0,
492 .writefn = dacr_write, .raw_writefn = raw_write,
493 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
494 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
495 /* ??? This covers not just the impdef TLB lockdown registers but also
496 * some v7VMSA registers relating to TEX remap, so it is overly broad.
498 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
499 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
500 /* Cache maintenance ops; some of this space may be overridden later. */
501 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
502 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
503 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
504 REGINFO_SENTINEL
507 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
508 /* Not all pre-v6 cores implemented this WFI, so this is slightly
509 * over-broad.
511 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
512 .access = PL1_W, .type = ARM_CP_WFI },
513 REGINFO_SENTINEL
516 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
517 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
518 * is UNPREDICTABLE; we choose to NOP as most implementations do).
520 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
521 .access = PL1_W, .type = ARM_CP_WFI },
522 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
523 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
524 * OMAPCP will override this space.
526 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
527 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
528 .resetvalue = 0 },
529 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
530 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
531 .resetvalue = 0 },
532 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
533 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
534 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
535 .resetvalue = 0 },
536 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
537 * implementing it as RAZ means the "debug architecture version" bits
538 * will read as a reserved value, which should cause Linux to not try
539 * to use the debug hardware.
541 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
542 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
543 /* MMU TLB control. Note that the wildcarding means we cover not just
544 * the unified TLB ops but also the dside/iside/inner-shareable variants.
546 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
547 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
548 .type = ARM_CP_NO_RAW },
549 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
550 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
551 .type = ARM_CP_NO_RAW },
552 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
553 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
554 .type = ARM_CP_NO_RAW },
555 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
556 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
557 .type = ARM_CP_NO_RAW },
558 REGINFO_SENTINEL
561 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 uint32_t mask = 0;
566 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
567 if (!arm_feature(env, ARM_FEATURE_V8)) {
568 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
569 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
570 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
572 if (arm_feature(env, ARM_FEATURE_VFP)) {
573 /* VFP coprocessor: cp10 & cp11 [23:20] */
574 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
576 if (!arm_feature(env, ARM_FEATURE_NEON)) {
577 /* ASEDIS [31] bit is RAO/WI */
578 value |= (1 << 31);
581 /* VFPv3 and upwards with NEON implement 32 double precision
582 * registers (D0-D31).
584 if (!arm_feature(env, ARM_FEATURE_NEON) ||
585 !arm_feature(env, ARM_FEATURE_VFP3)) {
586 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
587 value |= (1 << 30);
590 value &= mask;
592 env->cp15.cpacr_el1 = value;
595 static const ARMCPRegInfo v6_cp_reginfo[] = {
596 /* prefetch by MVA in v6, NOP in v7 */
597 { .name = "MVA_prefetch",
598 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
599 .access = PL1_W, .type = ARM_CP_NOP },
600 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
601 .access = PL0_W, .type = ARM_CP_NOP },
602 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
603 .access = PL0_W, .type = ARM_CP_NOP },
604 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
605 .access = PL0_W, .type = ARM_CP_NOP },
606 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
607 .access = PL1_RW,
608 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
609 offsetof(CPUARMState, cp15.ifar_ns) },
610 .resetvalue = 0, },
611 /* Watchpoint Fault Address Register : should actually only be present
612 * for 1136, 1176, 11MPCore.
614 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
615 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
616 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
617 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
618 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
619 .resetvalue = 0, .writefn = cpacr_write },
620 REGINFO_SENTINEL
623 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
625 /* Performance monitor registers user accessibility is controlled
626 * by PMUSERENR.
628 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
629 return CP_ACCESS_TRAP;
631 return CP_ACCESS_OK;
634 #ifndef CONFIG_USER_ONLY
636 static inline bool arm_ccnt_enabled(CPUARMState *env)
638 /* This does not support checking PMCCFILTR_EL0 register */
640 if (!(env->cp15.c9_pmcr & PMCRE)) {
641 return false;
644 return true;
647 void pmccntr_sync(CPUARMState *env)
649 uint64_t temp_ticks;
651 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
652 get_ticks_per_sec(), 1000000);
654 if (env->cp15.c9_pmcr & PMCRD) {
655 /* Increment once every 64 processor clock cycles */
656 temp_ticks /= 64;
659 if (arm_ccnt_enabled(env)) {
660 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
664 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
665 uint64_t value)
667 pmccntr_sync(env);
669 if (value & PMCRC) {
670 /* The counter has been reset */
671 env->cp15.c15_ccnt = 0;
674 /* only the DP, X, D and E bits are writable */
675 env->cp15.c9_pmcr &= ~0x39;
676 env->cp15.c9_pmcr |= (value & 0x39);
678 pmccntr_sync(env);
681 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
683 uint64_t total_ticks;
685 if (!arm_ccnt_enabled(env)) {
686 /* Counter is disabled, do not change value */
687 return env->cp15.c15_ccnt;
690 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
691 get_ticks_per_sec(), 1000000);
693 if (env->cp15.c9_pmcr & PMCRD) {
694 /* Increment once every 64 processor clock cycles */
695 total_ticks /= 64;
697 return total_ticks - env->cp15.c15_ccnt;
700 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
701 uint64_t value)
703 uint64_t total_ticks;
705 if (!arm_ccnt_enabled(env)) {
706 /* Counter is disabled, set the absolute value */
707 env->cp15.c15_ccnt = value;
708 return;
711 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
712 get_ticks_per_sec(), 1000000);
714 if (env->cp15.c9_pmcr & PMCRD) {
715 /* Increment once every 64 processor clock cycles */
716 total_ticks /= 64;
718 env->cp15.c15_ccnt = total_ticks - value;
721 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
722 uint64_t value)
724 uint64_t cur_val = pmccntr_read(env, NULL);
726 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
729 #else /* CONFIG_USER_ONLY */
731 void pmccntr_sync(CPUARMState *env)
735 #endif
737 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
738 uint64_t value)
740 pmccntr_sync(env);
741 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
742 pmccntr_sync(env);
745 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
746 uint64_t value)
748 value &= (1 << 31);
749 env->cp15.c9_pmcnten |= value;
752 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
753 uint64_t value)
755 value &= (1 << 31);
756 env->cp15.c9_pmcnten &= ~value;
759 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
760 uint64_t value)
762 env->cp15.c9_pmovsr &= ~value;
765 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
768 env->cp15.c9_pmxevtyper = value & 0xff;
771 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
774 env->cp15.c9_pmuserenr = value & 1;
777 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
778 uint64_t value)
780 /* We have no event counters so only the C bit can be changed */
781 value &= (1 << 31);
782 env->cp15.c9_pminten |= value;
785 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
786 uint64_t value)
788 value &= (1 << 31);
789 env->cp15.c9_pminten &= ~value;
792 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
793 uint64_t value)
795 /* Note that even though the AArch64 view of this register has bits
796 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
797 * architectural requirements for bits which are RES0 only in some
798 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
799 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
801 raw_write(env, ri, value & ~0x1FULL);
804 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
806 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
807 * For bits that vary between AArch32/64, code needs to check the
808 * current execution mode before directly using the feature bit.
810 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
812 if (!arm_feature(env, ARM_FEATURE_EL2)) {
813 valid_mask &= ~SCR_HCE;
815 /* On ARMv7, SMD (or SCD as it is called in v7) is only
816 * supported if EL2 exists. The bit is UNK/SBZP when
817 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
818 * when EL2 is unavailable.
819 * On ARMv8, this bit is always available.
821 if (arm_feature(env, ARM_FEATURE_V7) &&
822 !arm_feature(env, ARM_FEATURE_V8)) {
823 valid_mask &= ~SCR_SMD;
827 /* Clear all-context RES0 bits. */
828 value &= valid_mask;
829 raw_write(env, ri, value);
832 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
834 ARMCPU *cpu = arm_env_get_cpu(env);
836 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
837 * bank
839 uint32_t index = A32_BANKED_REG_GET(env, csselr,
840 ri->secure & ARM_CP_SECSTATE_S);
842 return cpu->ccsidr[index];
845 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
848 raw_write(env, ri, value & 0xf);
851 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
853 CPUState *cs = ENV_GET_CPU(env);
854 uint64_t ret = 0;
856 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
857 ret |= CPSR_I;
859 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
860 ret |= CPSR_F;
862 /* External aborts are not possible in QEMU so A bit is always clear */
863 return ret;
866 static const ARMCPRegInfo v7_cp_reginfo[] = {
867 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
868 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
869 .access = PL1_W, .type = ARM_CP_NOP },
870 /* Performance monitors are implementation defined in v7,
871 * but with an ARM recommended set of registers, which we
872 * follow (although we don't actually implement any counters)
874 * Performance registers fall into three categories:
875 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
876 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
877 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
878 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
879 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
881 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
882 .access = PL0_RW, .type = ARM_CP_ALIAS,
883 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
884 .writefn = pmcntenset_write,
885 .accessfn = pmreg_access,
886 .raw_writefn = raw_write },
887 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
888 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
889 .access = PL0_RW, .accessfn = pmreg_access,
890 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
891 .writefn = pmcntenset_write, .raw_writefn = raw_write },
892 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
893 .access = PL0_RW,
894 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
895 .accessfn = pmreg_access,
896 .writefn = pmcntenclr_write,
897 .type = ARM_CP_ALIAS },
898 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
899 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
900 .access = PL0_RW, .accessfn = pmreg_access,
901 .type = ARM_CP_ALIAS,
902 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
903 .writefn = pmcntenclr_write },
904 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
905 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
906 .accessfn = pmreg_access,
907 .writefn = pmovsr_write,
908 .raw_writefn = raw_write },
909 /* Unimplemented so WI. */
910 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
911 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
912 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
913 * We choose to RAZ/WI.
915 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
916 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
917 .accessfn = pmreg_access },
918 #ifndef CONFIG_USER_ONLY
919 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
920 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
921 .readfn = pmccntr_read, .writefn = pmccntr_write32,
922 .accessfn = pmreg_access },
923 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
925 .access = PL0_RW, .accessfn = pmreg_access,
926 .type = ARM_CP_IO,
927 .readfn = pmccntr_read, .writefn = pmccntr_write, },
928 #endif
929 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
930 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
931 .writefn = pmccfiltr_write,
932 .access = PL0_RW, .accessfn = pmreg_access,
933 .type = ARM_CP_IO,
934 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
935 .resetvalue = 0, },
936 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
937 .access = PL0_RW,
938 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
939 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
940 .raw_writefn = raw_write },
941 /* Unimplemented, RAZ/WI. */
942 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
943 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
944 .accessfn = pmreg_access },
945 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
946 .access = PL0_R | PL1_RW,
947 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
948 .resetvalue = 0,
949 .writefn = pmuserenr_write, .raw_writefn = raw_write },
950 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
951 .access = PL1_RW,
952 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
953 .resetvalue = 0,
954 .writefn = pmintenset_write, .raw_writefn = raw_write },
955 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
956 .access = PL1_RW, .type = ARM_CP_ALIAS,
957 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
958 .resetvalue = 0, .writefn = pmintenclr_write, },
959 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
960 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
961 .access = PL1_RW, .writefn = vbar_write,
962 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
963 offsetof(CPUARMState, cp15.vbar_ns) },
964 .resetvalue = 0 },
965 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
966 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
967 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
968 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
969 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
970 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
971 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
972 offsetof(CPUARMState, cp15.csselr_ns) } },
973 /* Auxiliary ID register: this actually has an IMPDEF value but for now
974 * just RAZ for all cores:
976 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
977 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
978 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
979 /* Auxiliary fault status registers: these also are IMPDEF, and we
980 * choose to RAZ/WI for all cores.
982 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
983 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
984 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
985 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
986 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
987 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
988 /* MAIR can just read-as-written because we don't implement caches
989 * and so don't need to care about memory attributes.
991 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
992 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
993 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
994 .resetvalue = 0 },
995 /* For non-long-descriptor page tables these are PRRR and NMRR;
996 * regardless they still act as reads-as-written for QEMU.
997 * The override is necessary because of the overly-broad TLB_LOCKDOWN
998 * definition.
1000 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1001 * allows them to assign the correct fieldoffset based on the endianness
1002 * handled in the field definitions.
1004 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
1005 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1006 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1007 offsetof(CPUARMState, cp15.mair0_ns) },
1008 .resetfn = arm_cp_reset_ignore },
1009 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
1010 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1011 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1012 offsetof(CPUARMState, cp15.mair1_ns) },
1013 .resetfn = arm_cp_reset_ignore },
1014 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1015 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1016 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1017 /* 32 bit ITLB invalidates */
1018 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1019 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1020 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1021 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1022 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1023 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1024 /* 32 bit DTLB invalidates */
1025 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1026 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1027 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1028 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1029 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1030 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1031 /* 32 bit TLB invalidates */
1032 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1033 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1034 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1035 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1036 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1037 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1038 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1039 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1040 REGINFO_SENTINEL
1043 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1044 /* 32 bit TLB invalidates, Inner Shareable */
1045 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1046 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1047 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1048 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1049 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1050 .type = ARM_CP_NO_RAW, .access = PL1_W,
1051 .writefn = tlbiasid_is_write },
1052 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1053 .type = ARM_CP_NO_RAW, .access = PL1_W,
1054 .writefn = tlbimvaa_is_write },
1055 REGINFO_SENTINEL
1058 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059 uint64_t value)
1061 value &= 1;
1062 env->teecr = value;
1065 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1067 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1068 return CP_ACCESS_TRAP;
1070 return CP_ACCESS_OK;
1073 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1074 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1075 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1076 .resetvalue = 0,
1077 .writefn = teecr_write },
1078 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1079 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1080 .accessfn = teehbr_access, .resetvalue = 0 },
1081 REGINFO_SENTINEL
1084 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1085 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1086 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1087 .access = PL0_RW,
1088 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1089 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1090 .access = PL0_RW,
1091 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1092 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1093 .resetfn = arm_cp_reset_ignore },
1094 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1095 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1096 .access = PL0_R|PL1_W,
1097 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1098 .resetvalue = 0},
1099 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1100 .access = PL0_R|PL1_W,
1101 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1102 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1103 .resetfn = arm_cp_reset_ignore },
1104 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1105 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1106 .access = PL1_RW,
1107 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1108 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1109 .access = PL1_RW,
1110 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1111 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1112 .resetvalue = 0 },
1113 REGINFO_SENTINEL
1116 #ifndef CONFIG_USER_ONLY
1118 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1120 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1121 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1122 return CP_ACCESS_TRAP;
1124 return CP_ACCESS_OK;
1127 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1129 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1130 if (arm_current_el(env) == 0 &&
1131 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1132 return CP_ACCESS_TRAP;
1134 return CP_ACCESS_OK;
1137 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1139 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1140 * EL0[PV]TEN is zero.
1142 if (arm_current_el(env) == 0 &&
1143 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1144 return CP_ACCESS_TRAP;
1146 return CP_ACCESS_OK;
1149 static CPAccessResult gt_pct_access(CPUARMState *env,
1150 const ARMCPRegInfo *ri)
1152 return gt_counter_access(env, GTIMER_PHYS);
1155 static CPAccessResult gt_vct_access(CPUARMState *env,
1156 const ARMCPRegInfo *ri)
1158 return gt_counter_access(env, GTIMER_VIRT);
1161 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1163 return gt_timer_access(env, GTIMER_PHYS);
1166 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1168 return gt_timer_access(env, GTIMER_VIRT);
1171 static uint64_t gt_get_countervalue(CPUARMState *env)
1173 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1176 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1178 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1180 if (gt->ctl & 1) {
1181 /* Timer enabled: calculate and set current ISTATUS, irq, and
1182 * reset timer to when ISTATUS next has to change
1184 uint64_t count = gt_get_countervalue(&cpu->env);
1185 /* Note that this must be unsigned 64 bit arithmetic: */
1186 int istatus = count >= gt->cval;
1187 uint64_t nexttick;
1189 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1190 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1191 (istatus && !(gt->ctl & 2)));
1192 if (istatus) {
1193 /* Next transition is when count rolls back over to zero */
1194 nexttick = UINT64_MAX;
1195 } else {
1196 /* Next transition is when we hit cval */
1197 nexttick = gt->cval;
1199 /* Note that the desired next expiry time might be beyond the
1200 * signed-64-bit range of a QEMUTimer -- in this case we just
1201 * set the timer for as far in the future as possible. When the
1202 * timer expires we will reset the timer for any remaining period.
1204 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1205 nexttick = INT64_MAX / GTIMER_SCALE;
1207 timer_mod(cpu->gt_timer[timeridx], nexttick);
1208 } else {
1209 /* Timer disabled: ISTATUS and timer output always clear */
1210 gt->ctl &= ~4;
1211 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1212 timer_del(cpu->gt_timer[timeridx]);
1216 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1218 ARMCPU *cpu = arm_env_get_cpu(env);
1219 int timeridx = ri->opc1 & 1;
1221 timer_del(cpu->gt_timer[timeridx]);
1224 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1226 return gt_get_countervalue(env);
1229 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1230 uint64_t value)
1232 int timeridx = ri->opc1 & 1;
1234 env->cp15.c14_timer[timeridx].cval = value;
1235 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1238 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1240 int timeridx = ri->crm & 1;
1242 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1243 gt_get_countervalue(env));
1246 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1247 uint64_t value)
1249 int timeridx = ri->crm & 1;
1251 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1252 + sextract64(value, 0, 32);
1253 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1256 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1257 uint64_t value)
1259 ARMCPU *cpu = arm_env_get_cpu(env);
1260 int timeridx = ri->crm & 1;
1261 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1263 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1264 if ((oldval ^ value) & 1) {
1265 /* Enable toggled */
1266 gt_recalc_timer(cpu, timeridx);
1267 } else if ((oldval ^ value) & 2) {
1268 /* IMASK toggled: don't need to recalculate,
1269 * just set the interrupt line based on ISTATUS
1271 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1272 (oldval & 4) && !(value & 2));
1276 void arm_gt_ptimer_cb(void *opaque)
1278 ARMCPU *cpu = opaque;
1280 gt_recalc_timer(cpu, GTIMER_PHYS);
1283 void arm_gt_vtimer_cb(void *opaque)
1285 ARMCPU *cpu = opaque;
1287 gt_recalc_timer(cpu, GTIMER_VIRT);
1290 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1291 /* Note that CNTFRQ is purely reads-as-written for the benefit
1292 * of software; writing it doesn't actually change the timer frequency.
1293 * Our reset value matches the fixed frequency we implement the timer at.
1295 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1296 .type = ARM_CP_ALIAS,
1297 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1298 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1299 .resetfn = arm_cp_reset_ignore,
1301 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1302 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1303 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1304 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1305 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1307 /* overall control: mostly access permissions */
1308 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1309 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1310 .access = PL1_RW,
1311 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1312 .resetvalue = 0,
1314 /* per-timer control */
1315 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1316 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1317 .accessfn = gt_ptimer_access,
1318 .fieldoffset = offsetoflow32(CPUARMState,
1319 cp15.c14_timer[GTIMER_PHYS].ctl),
1320 .resetfn = arm_cp_reset_ignore,
1321 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1323 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1325 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1326 .accessfn = gt_ptimer_access,
1327 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1328 .resetvalue = 0,
1329 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1331 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1332 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1333 .accessfn = gt_vtimer_access,
1334 .fieldoffset = offsetoflow32(CPUARMState,
1335 cp15.c14_timer[GTIMER_VIRT].ctl),
1336 .resetfn = arm_cp_reset_ignore,
1337 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1339 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1340 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1341 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1342 .accessfn = gt_vtimer_access,
1343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1344 .resetvalue = 0,
1345 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1347 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1348 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1349 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1350 .accessfn = gt_ptimer_access,
1351 .readfn = gt_tval_read, .writefn = gt_tval_write,
1353 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1354 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1355 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1356 .readfn = gt_tval_read, .writefn = gt_tval_write,
1358 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1359 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1360 .accessfn = gt_vtimer_access,
1361 .readfn = gt_tval_read, .writefn = gt_tval_write,
1363 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1364 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1365 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1366 .readfn = gt_tval_read, .writefn = gt_tval_write,
1368 /* The counter itself */
1369 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1370 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1371 .accessfn = gt_pct_access,
1372 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1374 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1375 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1376 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1377 .accessfn = gt_pct_access,
1378 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1380 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1381 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1382 .accessfn = gt_vct_access,
1383 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1385 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1386 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1387 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1388 .accessfn = gt_vct_access,
1389 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1391 /* Comparison value, indicating when the timer goes off */
1392 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1393 .access = PL1_RW | PL0_R,
1394 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1395 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1396 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1397 .writefn = gt_cval_write, .raw_writefn = raw_write,
1399 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1400 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1401 .access = PL1_RW | PL0_R,
1402 .type = ARM_CP_IO,
1403 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1404 .resetvalue = 0, .accessfn = gt_vtimer_access,
1405 .writefn = gt_cval_write, .raw_writefn = raw_write,
1407 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1408 .access = PL1_RW | PL0_R,
1409 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1410 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1411 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1412 .writefn = gt_cval_write, .raw_writefn = raw_write,
1414 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1415 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1416 .access = PL1_RW | PL0_R,
1417 .type = ARM_CP_IO,
1418 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1419 .resetvalue = 0, .accessfn = gt_vtimer_access,
1420 .writefn = gt_cval_write, .raw_writefn = raw_write,
1422 REGINFO_SENTINEL
1425 #else
1426 /* In user-mode none of the generic timer registers are accessible,
1427 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1428 * so instead just don't register any of them.
1430 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1431 REGINFO_SENTINEL
1434 #endif
1436 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1438 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1439 raw_write(env, ri, value);
1440 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1441 raw_write(env, ri, value & 0xfffff6ff);
1442 } else {
1443 raw_write(env, ri, value & 0xfffff1ff);
1447 #ifndef CONFIG_USER_ONLY
1448 /* get_phys_addr() isn't present for user-mode-only targets */
1450 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1452 if (ri->opc2 & 4) {
1453 /* Other states are only available with TrustZone; in
1454 * a non-TZ implementation these registers don't exist
1455 * at all, which is an Uncategorized trap. This underdecoding
1456 * is safe because the reginfo is NO_RAW.
1458 return CP_ACCESS_TRAP_UNCATEGORIZED;
1460 return CP_ACCESS_OK;
1463 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1464 int access_type, ARMMMUIdx mmu_idx)
1466 hwaddr phys_addr;
1467 target_ulong page_size;
1468 int prot;
1469 int ret;
1470 uint64_t par64;
1471 MemTxAttrs attrs = {};
1473 ret = get_phys_addr(env, value, access_type, mmu_idx,
1474 &phys_addr, &attrs, &prot, &page_size);
1475 if (extended_addresses_enabled(env)) {
1476 /* ret is a DFSR/IFSR value for the long descriptor
1477 * translation table format, but with WnR always clear.
1478 * Convert it to a 64-bit PAR.
1480 par64 = (1 << 11); /* LPAE bit always set */
1481 if (ret == 0) {
1482 par64 |= phys_addr & ~0xfffULL;
1483 if (!attrs.secure) {
1484 par64 |= (1 << 9); /* NS */
1486 /* We don't set the ATTR or SH fields in the PAR. */
1487 } else {
1488 par64 |= 1; /* F */
1489 par64 |= (ret & 0x3f) << 1; /* FS */
1490 /* Note that S2WLK and FSTAGE are always zero, because we don't
1491 * implement virtualization and therefore there can't be a stage 2
1492 * fault.
1495 } else {
1496 /* ret is a DFSR/IFSR value for the short descriptor
1497 * translation table format (with WnR always clear).
1498 * Convert it to a 32-bit PAR.
1500 if (ret == 0) {
1501 /* We do not set any attribute bits in the PAR */
1502 if (page_size == (1 << 24)
1503 && arm_feature(env, ARM_FEATURE_V7)) {
1504 par64 = (phys_addr & 0xff000000) | (1 << 1);
1505 } else {
1506 par64 = phys_addr & 0xfffff000;
1508 if (!attrs.secure) {
1509 par64 |= (1 << 9); /* NS */
1511 } else {
1512 par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) |
1513 ((ret & 0xf) << 1) | 1;
1516 return par64;
1519 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1521 int access_type = ri->opc2 & 1;
1522 uint64_t par64;
1523 ARMMMUIdx mmu_idx;
1524 int el = arm_current_el(env);
1525 bool secure = arm_is_secure_below_el3(env);
1527 switch (ri->opc2 & 6) {
1528 case 0:
1529 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1530 switch (el) {
1531 case 3:
1532 mmu_idx = ARMMMUIdx_S1E3;
1533 break;
1534 case 2:
1535 mmu_idx = ARMMMUIdx_S1NSE1;
1536 break;
1537 case 1:
1538 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1539 break;
1540 default:
1541 g_assert_not_reached();
1543 break;
1544 case 2:
1545 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1546 switch (el) {
1547 case 3:
1548 mmu_idx = ARMMMUIdx_S1SE0;
1549 break;
1550 case 2:
1551 mmu_idx = ARMMMUIdx_S1NSE0;
1552 break;
1553 case 1:
1554 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1555 break;
1556 default:
1557 g_assert_not_reached();
1559 break;
1560 case 4:
1561 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1562 mmu_idx = ARMMMUIdx_S12NSE1;
1563 break;
1564 case 6:
1565 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1566 mmu_idx = ARMMMUIdx_S12NSE0;
1567 break;
1568 default:
1569 g_assert_not_reached();
1572 par64 = do_ats_write(env, value, access_type, mmu_idx);
1574 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1577 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1580 int access_type = ri->opc2 & 1;
1581 ARMMMUIdx mmu_idx;
1582 int secure = arm_is_secure_below_el3(env);
1584 switch (ri->opc2 & 6) {
1585 case 0:
1586 switch (ri->opc1) {
1587 case 0: /* AT S1E1R, AT S1E1W */
1588 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1589 break;
1590 case 4: /* AT S1E2R, AT S1E2W */
1591 mmu_idx = ARMMMUIdx_S1E2;
1592 break;
1593 case 6: /* AT S1E3R, AT S1E3W */
1594 mmu_idx = ARMMMUIdx_S1E3;
1595 break;
1596 default:
1597 g_assert_not_reached();
1599 break;
1600 case 2: /* AT S1E0R, AT S1E0W */
1601 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1602 break;
1603 case 4: /* AT S12E1R, AT S12E1W */
1604 mmu_idx = ARMMMUIdx_S12NSE1;
1605 break;
1606 case 6: /* AT S12E0R, AT S12E0W */
1607 mmu_idx = ARMMMUIdx_S12NSE0;
1608 break;
1609 default:
1610 g_assert_not_reached();
1613 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1615 #endif
1617 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1618 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1619 .access = PL1_RW, .resetvalue = 0,
1620 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1621 offsetoflow32(CPUARMState, cp15.par_ns) },
1622 .writefn = par_write },
1623 #ifndef CONFIG_USER_ONLY
1624 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1625 .access = PL1_W, .accessfn = ats_access,
1626 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1627 #endif
1628 REGINFO_SENTINEL
1631 /* Return basic MPU access permission bits. */
1632 static uint32_t simple_mpu_ap_bits(uint32_t val)
1634 uint32_t ret;
1635 uint32_t mask;
1636 int i;
1637 ret = 0;
1638 mask = 3;
1639 for (i = 0; i < 16; i += 2) {
1640 ret |= (val >> i) & mask;
1641 mask <<= 2;
1643 return ret;
1646 /* Pad basic MPU access permission bits to extended format. */
1647 static uint32_t extended_mpu_ap_bits(uint32_t val)
1649 uint32_t ret;
1650 uint32_t mask;
1651 int i;
1652 ret = 0;
1653 mask = 3;
1654 for (i = 0; i < 16; i += 2) {
1655 ret |= (val & mask) << i;
1656 mask <<= 2;
1658 return ret;
1661 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1662 uint64_t value)
1664 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1667 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1669 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1672 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1673 uint64_t value)
1675 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1678 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1680 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1683 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1684 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1685 .access = PL1_RW, .type = ARM_CP_ALIAS,
1686 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1687 .resetvalue = 0,
1688 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1689 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1690 .access = PL1_RW, .type = ARM_CP_ALIAS,
1691 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1692 .resetvalue = 0,
1693 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1694 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1695 .access = PL1_RW,
1696 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1697 .resetvalue = 0, },
1698 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1699 .access = PL1_RW,
1700 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1701 .resetvalue = 0, },
1702 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1703 .access = PL1_RW,
1704 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1705 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1706 .access = PL1_RW,
1707 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1708 /* Protection region base and size registers */
1709 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1710 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1711 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1712 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1713 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1714 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1715 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1716 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1717 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1718 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1719 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1720 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1721 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1722 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1723 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1724 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1725 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1726 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1727 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1728 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1729 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1730 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1731 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1732 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1733 REGINFO_SENTINEL
1736 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1737 uint64_t value)
1739 TCR *tcr = raw_ptr(env, ri);
1740 int maskshift = extract32(value, 0, 3);
1742 if (!arm_feature(env, ARM_FEATURE_V8)) {
1743 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1744 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1745 * using Long-desciptor translation table format */
1746 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1747 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1748 /* In an implementation that includes the Security Extensions
1749 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1750 * Short-descriptor translation table format.
1752 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1753 } else {
1754 value &= TTBCR_N;
1758 /* Update the masks corresponding to the the TCR bank being written
1759 * Note that we always calculate mask and base_mask, but
1760 * they are only used for short-descriptor tables (ie if EAE is 0);
1761 * for long-descriptor tables the TCR fields are used differently
1762 * and the mask and base_mask values are meaningless.
1764 tcr->raw_tcr = value;
1765 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1766 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1769 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1770 uint64_t value)
1772 ARMCPU *cpu = arm_env_get_cpu(env);
1774 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1775 /* With LPAE the TTBCR could result in a change of ASID
1776 * via the TTBCR.A1 bit, so do a TLB flush.
1778 tlb_flush(CPU(cpu), 1);
1780 vmsa_ttbcr_raw_write(env, ri, value);
1783 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1785 TCR *tcr = raw_ptr(env, ri);
1787 /* Reset both the TCR as well as the masks corresponding to the bank of
1788 * the TCR being reset.
1790 tcr->raw_tcr = 0;
1791 tcr->mask = 0;
1792 tcr->base_mask = 0xffffc000u;
1795 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 ARMCPU *cpu = arm_env_get_cpu(env);
1799 TCR *tcr = raw_ptr(env, ri);
1801 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1802 tlb_flush(CPU(cpu), 1);
1803 tcr->raw_tcr = value;
1806 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 /* 64 bit accesses to the TTBRs can change the ASID and so we
1810 * must flush the TLB.
1812 if (cpreg_field_is_64bit(ri)) {
1813 ARMCPU *cpu = arm_env_get_cpu(env);
1815 tlb_flush(CPU(cpu), 1);
1817 raw_write(env, ri, value);
1820 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1821 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1822 .access = PL1_RW, .type = ARM_CP_ALIAS,
1823 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
1824 offsetoflow32(CPUARMState, cp15.dfsr_ns) },
1825 .resetfn = arm_cp_reset_ignore, },
1826 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1827 .access = PL1_RW, .resetvalue = 0,
1828 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
1829 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1830 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1831 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1832 .access = PL1_RW,
1833 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1834 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
1836 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
1838 offsetof(CPUARMState, cp15.ttbr0_ns) } },
1839 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
1841 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1842 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
1843 offsetof(CPUARMState, cp15.ttbr1_ns) } },
1844 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1845 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1846 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1847 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1848 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1849 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1850 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1851 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1852 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
1853 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
1854 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
1855 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1856 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1857 .resetvalue = 0, },
1858 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
1859 .access = PL1_RW, .resetvalue = 0,
1860 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
1861 offsetof(CPUARMState, cp15.dfar_ns) } },
1862 REGINFO_SENTINEL
1865 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1866 uint64_t value)
1868 env->cp15.c15_ticonfig = value & 0xe7;
1869 /* The OS_TYPE bit in this register changes the reported CPUID! */
1870 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1871 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1874 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 env->cp15.c15_threadid = value & 0xffff;
1880 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1881 uint64_t value)
1883 /* Wait-for-interrupt (deprecated) */
1884 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1887 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1888 uint64_t value)
1890 /* On OMAP there are registers indicating the max/min index of dcache lines
1891 * containing a dirty line; cache flush operations have to reset these.
1893 env->cp15.c15_i_max = 0x000;
1894 env->cp15.c15_i_min = 0xff0;
1897 static const ARMCPRegInfo omap_cp_reginfo[] = {
1898 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1899 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1900 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1901 .resetvalue = 0, },
1902 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1903 .access = PL1_RW, .type = ARM_CP_NOP },
1904 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1905 .access = PL1_RW,
1906 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1907 .writefn = omap_ticonfig_write },
1908 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1909 .access = PL1_RW,
1910 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1911 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1912 .access = PL1_RW, .resetvalue = 0xff0,
1913 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1914 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1915 .access = PL1_RW,
1916 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1917 .writefn = omap_threadid_write },
1918 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1919 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1920 .type = ARM_CP_NO_RAW,
1921 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1922 /* TODO: Peripheral port remap register:
1923 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1924 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1925 * when MMU is off.
1927 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1928 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1929 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
1930 .writefn = omap_cachemaint_write },
1931 { .name = "C9", .cp = 15, .crn = 9,
1932 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1933 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1934 REGINFO_SENTINEL
1937 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1938 uint64_t value)
1940 env->cp15.c15_cpar = value & 0x3fff;
1943 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1944 { .name = "XSCALE_CPAR",
1945 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1946 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1947 .writefn = xscale_cpar_write, },
1948 { .name = "XSCALE_AUXCR",
1949 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1950 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1951 .resetvalue = 0, },
1952 /* XScale specific cache-lockdown: since we have no cache we NOP these
1953 * and hope the guest does not really rely on cache behaviour.
1955 { .name = "XSCALE_LOCK_ICACHE_LINE",
1956 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1957 .access = PL1_W, .type = ARM_CP_NOP },
1958 { .name = "XSCALE_UNLOCK_ICACHE",
1959 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1960 .access = PL1_W, .type = ARM_CP_NOP },
1961 { .name = "XSCALE_DCACHE_LOCK",
1962 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
1963 .access = PL1_RW, .type = ARM_CP_NOP },
1964 { .name = "XSCALE_UNLOCK_DCACHE",
1965 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
1966 .access = PL1_W, .type = ARM_CP_NOP },
1967 REGINFO_SENTINEL
1970 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1971 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1972 * implementation of this implementation-defined space.
1973 * Ideally this should eventually disappear in favour of actually
1974 * implementing the correct behaviour for all cores.
1976 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1977 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1978 .access = PL1_RW,
1979 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
1980 .resetvalue = 0 },
1981 REGINFO_SENTINEL
1984 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1985 /* Cache status: RAZ because we have no cache so it's always clean */
1986 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1987 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1988 .resetvalue = 0 },
1989 REGINFO_SENTINEL
1992 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1993 /* We never have a a block transfer operation in progress */
1994 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1995 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1996 .resetvalue = 0 },
1997 /* The cache ops themselves: these all NOP for QEMU */
1998 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1999 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2000 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2001 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2002 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2003 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2004 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2005 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2006 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2007 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2008 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2009 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2010 REGINFO_SENTINEL
2013 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2014 /* The cache test-and-clean instructions always return (1 << 30)
2015 * to indicate that there are no dirty cache lines.
2017 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2018 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2019 .resetvalue = (1 << 30) },
2020 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2021 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2022 .resetvalue = (1 << 30) },
2023 REGINFO_SENTINEL
2026 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2027 /* Ignore ReadBuffer accesses */
2028 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2029 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2030 .access = PL1_RW, .resetvalue = 0,
2031 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2032 REGINFO_SENTINEL
2035 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2037 CPUState *cs = CPU(arm_env_get_cpu(env));
2038 uint32_t mpidr = cs->cpu_index;
2039 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2040 * in later ARM ARM versions), or any of the higher affinity level fields,
2041 * so these bits always RAZ.
2043 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2044 mpidr |= (1U << 31);
2045 /* Cores which are uniprocessor (non-coherent)
2046 * but still implement the MP extensions set
2047 * bit 30. (For instance, A9UP.) However we do
2048 * not currently model any of those cores.
2051 return mpidr;
2054 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2055 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2056 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2057 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2058 REGINFO_SENTINEL
2061 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2062 /* NOP AMAIR0/1: the override is because these clash with the rather
2063 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
2065 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2066 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2067 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
2068 .resetvalue = 0 },
2069 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2070 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2071 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
2072 .resetvalue = 0 },
2073 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2074 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2075 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2076 offsetof(CPUARMState, cp15.par_ns)} },
2077 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2078 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2079 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2080 offsetof(CPUARMState, cp15.ttbr0_ns) },
2081 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2082 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2083 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2084 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2085 offsetof(CPUARMState, cp15.ttbr1_ns) },
2086 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2087 REGINFO_SENTINEL
2090 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2092 return vfp_get_fpcr(env);
2095 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2096 uint64_t value)
2098 vfp_set_fpcr(env, value);
2101 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2103 return vfp_get_fpsr(env);
2106 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2107 uint64_t value)
2109 vfp_set_fpsr(env, value);
2112 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2114 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2115 return CP_ACCESS_TRAP;
2117 return CP_ACCESS_OK;
2120 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2121 uint64_t value)
2123 env->daif = value & PSTATE_DAIF;
2126 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2127 const ARMCPRegInfo *ri)
2129 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2130 * SCTLR_EL1.UCI is set.
2132 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2133 return CP_ACCESS_TRAP;
2135 return CP_ACCESS_OK;
2138 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2139 * Page D4-1736 (DDI0487A.b)
2142 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
2143 uint64_t value)
2145 /* Invalidate by VA (AArch64 version) */
2146 ARMCPU *cpu = arm_env_get_cpu(env);
2147 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2149 tlb_flush_page(CPU(cpu), pageaddr);
2152 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
2153 uint64_t value)
2155 /* Invalidate by VA, all ASIDs (AArch64 version) */
2156 ARMCPU *cpu = arm_env_get_cpu(env);
2157 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2159 tlb_flush_page(CPU(cpu), pageaddr);
2162 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2163 uint64_t value)
2165 /* Invalidate by ASID (AArch64 version) */
2166 ARMCPU *cpu = arm_env_get_cpu(env);
2167 int asid = extract64(value, 48, 16);
2168 tlb_flush(CPU(cpu), asid == 0);
2171 static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2172 uint64_t value)
2174 CPUState *other_cs;
2175 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2177 CPU_FOREACH(other_cs) {
2178 tlb_flush_page(other_cs, pageaddr);
2182 static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2183 uint64_t value)
2185 CPUState *other_cs;
2186 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2188 CPU_FOREACH(other_cs) {
2189 tlb_flush_page(other_cs, pageaddr);
2193 static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194 uint64_t value)
2196 CPUState *other_cs;
2197 int asid = extract64(value, 48, 16);
2199 CPU_FOREACH(other_cs) {
2200 tlb_flush(other_cs, asid == 0);
2204 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2206 /* We don't implement EL2, so the only control on DC ZVA is the
2207 * bit in the SCTLR which can prohibit access for EL0.
2209 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2210 return CP_ACCESS_TRAP;
2212 return CP_ACCESS_OK;
2215 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2217 ARMCPU *cpu = arm_env_get_cpu(env);
2218 int dzp_bit = 1 << 4;
2220 /* DZP indicates whether DC ZVA access is allowed */
2221 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2222 dzp_bit = 0;
2224 return cpu->dcz_blocksize | dzp_bit;
2227 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2229 if (!(env->pstate & PSTATE_SP)) {
2230 /* Access to SP_EL0 is undefined if it's being used as
2231 * the stack pointer.
2233 return CP_ACCESS_TRAP_UNCATEGORIZED;
2235 return CP_ACCESS_OK;
2238 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2240 return env->pstate & PSTATE_SP;
2243 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2245 update_spsel(env, val);
2248 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2249 uint64_t value)
2251 ARMCPU *cpu = arm_env_get_cpu(env);
2253 if (raw_read(env, ri) == value) {
2254 /* Skip the TLB flush if nothing actually changed; Linux likes
2255 * to do a lot of pointless SCTLR writes.
2257 return;
2260 raw_write(env, ri, value);
2261 /* ??? Lots of these bits are not implemented. */
2262 /* This may enable/disable the MMU, so do a TLB flush. */
2263 tlb_flush(CPU(cpu), 1);
2266 static const ARMCPRegInfo v8_cp_reginfo[] = {
2267 /* Minimal set of EL0-visible registers. This will need to be expanded
2268 * significantly for system emulation of AArch64 CPUs.
2270 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2271 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2272 .access = PL0_RW, .type = ARM_CP_NZCV },
2273 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2274 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2275 .type = ARM_CP_NO_RAW,
2276 .access = PL0_RW, .accessfn = aa64_daif_access,
2277 .fieldoffset = offsetof(CPUARMState, daif),
2278 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2279 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2280 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2281 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2282 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2283 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2284 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2285 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2286 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2287 .access = PL0_R, .type = ARM_CP_NO_RAW,
2288 .readfn = aa64_dczid_read },
2289 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2290 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2291 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2292 #ifndef CONFIG_USER_ONLY
2293 /* Avoid overhead of an access check that always passes in user-mode */
2294 .accessfn = aa64_zva_access,
2295 #endif
2297 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2298 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2299 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2300 /* Cache ops: all NOPs since we don't emulate caches */
2301 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2302 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2303 .access = PL1_W, .type = ARM_CP_NOP },
2304 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2305 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2306 .access = PL1_W, .type = ARM_CP_NOP },
2307 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2308 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2309 .access = PL0_W, .type = ARM_CP_NOP,
2310 .accessfn = aa64_cacheop_access },
2311 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2312 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2313 .access = PL1_W, .type = ARM_CP_NOP },
2314 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2315 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2316 .access = PL1_W, .type = ARM_CP_NOP },
2317 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2318 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2319 .access = PL0_W, .type = ARM_CP_NOP,
2320 .accessfn = aa64_cacheop_access },
2321 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2322 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2323 .access = PL1_W, .type = ARM_CP_NOP },
2324 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2325 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2326 .access = PL0_W, .type = ARM_CP_NOP,
2327 .accessfn = aa64_cacheop_access },
2328 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2329 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2330 .access = PL0_W, .type = ARM_CP_NOP,
2331 .accessfn = aa64_cacheop_access },
2332 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2333 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2334 .access = PL1_W, .type = ARM_CP_NOP },
2335 /* TLBI operations */
2336 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2337 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2338 .access = PL1_W, .type = ARM_CP_NO_RAW,
2339 .writefn = tlbiall_is_write },
2340 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2341 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2342 .access = PL1_W, .type = ARM_CP_NO_RAW,
2343 .writefn = tlbi_aa64_va_is_write },
2344 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2345 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2346 .access = PL1_W, .type = ARM_CP_NO_RAW,
2347 .writefn = tlbi_aa64_asid_is_write },
2348 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2349 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2350 .access = PL1_W, .type = ARM_CP_NO_RAW,
2351 .writefn = tlbi_aa64_vaa_is_write },
2352 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2353 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2354 .access = PL1_W, .type = ARM_CP_NO_RAW,
2355 .writefn = tlbi_aa64_va_is_write },
2356 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2357 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2358 .access = PL1_W, .type = ARM_CP_NO_RAW,
2359 .writefn = tlbi_aa64_vaa_is_write },
2360 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2362 .access = PL1_W, .type = ARM_CP_NO_RAW,
2363 .writefn = tlbiall_write },
2364 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2366 .access = PL1_W, .type = ARM_CP_NO_RAW,
2367 .writefn = tlbi_aa64_va_write },
2368 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2369 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2370 .access = PL1_W, .type = ARM_CP_NO_RAW,
2371 .writefn = tlbi_aa64_asid_write },
2372 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2373 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2374 .access = PL1_W, .type = ARM_CP_NO_RAW,
2375 .writefn = tlbi_aa64_vaa_write },
2376 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2378 .access = PL1_W, .type = ARM_CP_NO_RAW,
2379 .writefn = tlbi_aa64_va_write },
2380 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2382 .access = PL1_W, .type = ARM_CP_NO_RAW,
2383 .writefn = tlbi_aa64_vaa_write },
2384 #ifndef CONFIG_USER_ONLY
2385 /* 64 bit address translation operations */
2386 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2387 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2388 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2389 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2390 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2391 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2392 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2393 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2394 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2395 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2396 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2397 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2398 #endif
2399 /* TLB invalidate last level of translation table walk */
2400 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2401 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2402 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2403 .type = ARM_CP_NO_RAW, .access = PL1_W,
2404 .writefn = tlbimvaa_is_write },
2405 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2406 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2407 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2408 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2409 /* 32 bit cache operations */
2410 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2411 .type = ARM_CP_NOP, .access = PL1_W },
2412 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2413 .type = ARM_CP_NOP, .access = PL1_W },
2414 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2415 .type = ARM_CP_NOP, .access = PL1_W },
2416 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2417 .type = ARM_CP_NOP, .access = PL1_W },
2418 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2419 .type = ARM_CP_NOP, .access = PL1_W },
2420 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2421 .type = ARM_CP_NOP, .access = PL1_W },
2422 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2423 .type = ARM_CP_NOP, .access = PL1_W },
2424 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2425 .type = ARM_CP_NOP, .access = PL1_W },
2426 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2427 .type = ARM_CP_NOP, .access = PL1_W },
2428 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2429 .type = ARM_CP_NOP, .access = PL1_W },
2430 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2431 .type = ARM_CP_NOP, .access = PL1_W },
2432 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2433 .type = ARM_CP_NOP, .access = PL1_W },
2434 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2435 .type = ARM_CP_NOP, .access = PL1_W },
2436 /* MMU Domain access control / MPU write buffer control */
2437 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2438 .access = PL1_RW, .resetvalue = 0,
2439 .writefn = dacr_write, .raw_writefn = raw_write,
2440 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2441 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2442 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2443 .type = ARM_CP_ALIAS,
2444 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2445 .access = PL1_RW,
2446 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2447 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2448 .type = ARM_CP_ALIAS,
2449 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2450 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2451 /* We rely on the access checks not allowing the guest to write to the
2452 * state field when SPSel indicates that it's being used as the stack
2453 * pointer.
2455 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2456 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2457 .access = PL1_RW, .accessfn = sp_el0_access,
2458 .type = ARM_CP_ALIAS,
2459 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2460 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2461 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2462 .access = PL2_RW, .type = ARM_CP_ALIAS,
2463 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2464 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2465 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2466 .type = ARM_CP_NO_RAW,
2467 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2468 REGINFO_SENTINEL
2471 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2472 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
2473 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2474 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2475 .access = PL2_RW,
2476 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2477 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2478 .type = ARM_CP_NO_RAW,
2479 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2480 .access = PL2_RW,
2481 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2482 REGINFO_SENTINEL
2485 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2487 ARMCPU *cpu = arm_env_get_cpu(env);
2488 uint64_t valid_mask = HCR_MASK;
2490 if (arm_feature(env, ARM_FEATURE_EL3)) {
2491 valid_mask &= ~HCR_HCD;
2492 } else {
2493 valid_mask &= ~HCR_TSC;
2496 /* Clear RES0 bits. */
2497 value &= valid_mask;
2499 /* These bits change the MMU setup:
2500 * HCR_VM enables stage 2 translation
2501 * HCR_PTW forbids certain page-table setups
2502 * HCR_DC Disables stage1 and enables stage2 translation
2504 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2505 tlb_flush(CPU(cpu), 1);
2507 raw_write(env, ri, value);
2510 static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
2511 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2512 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2513 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2514 .writefn = hcr_write },
2515 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
2516 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
2517 .access = PL2_RW, .resetvalue = 0,
2518 .writefn = dacr_write, .raw_writefn = raw_write,
2519 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2520 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2521 .type = ARM_CP_ALIAS,
2522 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2523 .access = PL2_RW,
2524 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2525 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2526 .type = ARM_CP_ALIAS,
2527 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2528 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2529 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
2530 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
2531 .access = PL2_RW, .resetvalue = 0,
2532 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2533 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2534 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2535 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2536 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2537 .type = ARM_CP_ALIAS,
2538 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2539 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2540 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2541 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2542 .access = PL2_RW, .writefn = vbar_write,
2543 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2544 .resetvalue = 0 },
2545 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
2546 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2547 .access = PL3_RW, .type = ARM_CP_ALIAS,
2548 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2549 REGINFO_SENTINEL
2552 static const ARMCPRegInfo el3_cp_reginfo[] = {
2553 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
2554 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
2555 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
2556 .resetvalue = 0, .writefn = scr_write },
2557 { .name = "SCR", .type = ARM_CP_ALIAS,
2558 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
2559 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
2560 .resetfn = arm_cp_reset_ignore, .writefn = scr_write },
2561 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
2562 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
2563 .access = PL3_RW, .resetvalue = 0,
2564 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
2565 { .name = "SDER",
2566 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
2567 .access = PL3_RW, .resetvalue = 0,
2568 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
2569 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2570 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
2571 .access = PL3_W | PL1_R, .resetvalue = 0,
2572 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
2573 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
2574 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
2575 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2576 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
2577 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
2578 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2579 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
2580 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
2581 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
2582 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2583 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
2584 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
2585 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
2586 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
2587 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2588 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2589 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2590 .type = ARM_CP_ALIAS,
2591 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2592 .access = PL3_RW,
2593 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2594 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2595 .type = ARM_CP_ALIAS,
2596 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2597 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2598 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2599 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2600 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2601 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2602 .type = ARM_CP_ALIAS,
2603 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2604 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2605 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2606 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2607 .access = PL3_RW, .writefn = vbar_write,
2608 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2609 .resetvalue = 0 },
2610 REGINFO_SENTINEL
2613 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2615 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2616 * but the AArch32 CTR has its own reginfo struct)
2618 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2619 return CP_ACCESS_TRAP;
2621 return CP_ACCESS_OK;
2624 static const ARMCPRegInfo debug_cp_reginfo[] = {
2625 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2626 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2627 * unlike DBGDRAR it is never accessible from EL0.
2628 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2629 * accessor.
2631 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2632 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2633 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
2634 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
2635 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2636 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2637 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2638 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2639 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
2640 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2641 .access = PL1_RW,
2642 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2643 .resetvalue = 0 },
2644 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2645 * We don't implement the configurable EL0 access.
2647 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
2648 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2649 .type = ARM_CP_ALIAS,
2650 .access = PL1_R,
2651 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2652 .resetfn = arm_cp_reset_ignore },
2653 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2654 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
2655 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2656 .access = PL1_W, .type = ARM_CP_NOP },
2657 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2658 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
2659 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
2660 .access = PL1_RW, .type = ARM_CP_NOP },
2661 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2662 * implement vector catch debug events yet.
2664 { .name = "DBGVCR",
2665 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2666 .access = PL1_RW, .type = ARM_CP_NOP },
2667 REGINFO_SENTINEL
2670 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
2671 /* 64 bit access versions of the (dummy) debug registers */
2672 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
2673 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2674 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
2675 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2676 REGINFO_SENTINEL
2679 void hw_watchpoint_update(ARMCPU *cpu, int n)
2681 CPUARMState *env = &cpu->env;
2682 vaddr len = 0;
2683 vaddr wvr = env->cp15.dbgwvr[n];
2684 uint64_t wcr = env->cp15.dbgwcr[n];
2685 int mask;
2686 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
2688 if (env->cpu_watchpoint[n]) {
2689 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
2690 env->cpu_watchpoint[n] = NULL;
2693 if (!extract64(wcr, 0, 1)) {
2694 /* E bit clear : watchpoint disabled */
2695 return;
2698 switch (extract64(wcr, 3, 2)) {
2699 case 0:
2700 /* LSC 00 is reserved and must behave as if the wp is disabled */
2701 return;
2702 case 1:
2703 flags |= BP_MEM_READ;
2704 break;
2705 case 2:
2706 flags |= BP_MEM_WRITE;
2707 break;
2708 case 3:
2709 flags |= BP_MEM_ACCESS;
2710 break;
2713 /* Attempts to use both MASK and BAS fields simultaneously are
2714 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2715 * thus generating a watchpoint for every byte in the masked region.
2717 mask = extract64(wcr, 24, 4);
2718 if (mask == 1 || mask == 2) {
2719 /* Reserved values of MASK; we must act as if the mask value was
2720 * some non-reserved value, or as if the watchpoint were disabled.
2721 * We choose the latter.
2723 return;
2724 } else if (mask) {
2725 /* Watchpoint covers an aligned area up to 2GB in size */
2726 len = 1ULL << mask;
2727 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2728 * whether the watchpoint fires when the unmasked bits match; we opt
2729 * to generate the exceptions.
2731 wvr &= ~(len - 1);
2732 } else {
2733 /* Watchpoint covers bytes defined by the byte address select bits */
2734 int bas = extract64(wcr, 5, 8);
2735 int basstart;
2737 if (bas == 0) {
2738 /* This must act as if the watchpoint is disabled */
2739 return;
2742 if (extract64(wvr, 2, 1)) {
2743 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2744 * ignored, and BAS[3:0] define which bytes to watch.
2746 bas &= 0xf;
2748 /* The BAS bits are supposed to be programmed to indicate a contiguous
2749 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2750 * we fire for each byte in the word/doubleword addressed by the WVR.
2751 * We choose to ignore any non-zero bits after the first range of 1s.
2753 basstart = ctz32(bas);
2754 len = cto32(bas >> basstart);
2755 wvr += basstart;
2758 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
2759 &env->cpu_watchpoint[n]);
2762 void hw_watchpoint_update_all(ARMCPU *cpu)
2764 int i;
2765 CPUARMState *env = &cpu->env;
2767 /* Completely clear out existing QEMU watchpoints and our array, to
2768 * avoid possible stale entries following migration load.
2770 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
2771 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
2773 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
2774 hw_watchpoint_update(cpu, i);
2778 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2779 uint64_t value)
2781 ARMCPU *cpu = arm_env_get_cpu(env);
2782 int i = ri->crm;
2784 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2785 * register reads and behaves as if values written are sign extended.
2786 * Bits [1:0] are RES0.
2788 value = sextract64(value, 0, 49) & ~3ULL;
2790 raw_write(env, ri, value);
2791 hw_watchpoint_update(cpu, i);
2794 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795 uint64_t value)
2797 ARMCPU *cpu = arm_env_get_cpu(env);
2798 int i = ri->crm;
2800 raw_write(env, ri, value);
2801 hw_watchpoint_update(cpu, i);
2804 void hw_breakpoint_update(ARMCPU *cpu, int n)
2806 CPUARMState *env = &cpu->env;
2807 uint64_t bvr = env->cp15.dbgbvr[n];
2808 uint64_t bcr = env->cp15.dbgbcr[n];
2809 vaddr addr;
2810 int bt;
2811 int flags = BP_CPU;
2813 if (env->cpu_breakpoint[n]) {
2814 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
2815 env->cpu_breakpoint[n] = NULL;
2818 if (!extract64(bcr, 0, 1)) {
2819 /* E bit clear : watchpoint disabled */
2820 return;
2823 bt = extract64(bcr, 20, 4);
2825 switch (bt) {
2826 case 4: /* unlinked address mismatch (reserved if AArch64) */
2827 case 5: /* linked address mismatch (reserved if AArch64) */
2828 qemu_log_mask(LOG_UNIMP,
2829 "arm: address mismatch breakpoint types not implemented");
2830 return;
2831 case 0: /* unlinked address match */
2832 case 1: /* linked address match */
2834 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2835 * we behave as if the register was sign extended. Bits [1:0] are
2836 * RES0. The BAS field is used to allow setting breakpoints on 16
2837 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2838 * a bp will fire if the addresses covered by the bp and the addresses
2839 * covered by the insn overlap but the insn doesn't start at the
2840 * start of the bp address range. We choose to require the insn and
2841 * the bp to have the same address. The constraints on writing to
2842 * BAS enforced in dbgbcr_write mean we have only four cases:
2843 * 0b0000 => no breakpoint
2844 * 0b0011 => breakpoint on addr
2845 * 0b1100 => breakpoint on addr + 2
2846 * 0b1111 => breakpoint on addr
2847 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2849 int bas = extract64(bcr, 5, 4);
2850 addr = sextract64(bvr, 0, 49) & ~3ULL;
2851 if (bas == 0) {
2852 return;
2854 if (bas == 0xc) {
2855 addr += 2;
2857 break;
2859 case 2: /* unlinked context ID match */
2860 case 8: /* unlinked VMID match (reserved if no EL2) */
2861 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2862 qemu_log_mask(LOG_UNIMP,
2863 "arm: unlinked context breakpoint types not implemented");
2864 return;
2865 case 9: /* linked VMID match (reserved if no EL2) */
2866 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2867 case 3: /* linked context ID match */
2868 default:
2869 /* We must generate no events for Linked context matches (unless
2870 * they are linked to by some other bp/wp, which is handled in
2871 * updates for the linking bp/wp). We choose to also generate no events
2872 * for reserved values.
2874 return;
2877 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
2880 void hw_breakpoint_update_all(ARMCPU *cpu)
2882 int i;
2883 CPUARMState *env = &cpu->env;
2885 /* Completely clear out existing QEMU breakpoints and our array, to
2886 * avoid possible stale entries following migration load.
2888 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
2889 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
2891 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
2892 hw_breakpoint_update(cpu, i);
2896 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2897 uint64_t value)
2899 ARMCPU *cpu = arm_env_get_cpu(env);
2900 int i = ri->crm;
2902 raw_write(env, ri, value);
2903 hw_breakpoint_update(cpu, i);
2906 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907 uint64_t value)
2909 ARMCPU *cpu = arm_env_get_cpu(env);
2910 int i = ri->crm;
2912 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2913 * copy of BAS[0].
2915 value = deposit64(value, 6, 1, extract64(value, 5, 1));
2916 value = deposit64(value, 8, 1, extract64(value, 7, 1));
2918 raw_write(env, ri, value);
2919 hw_breakpoint_update(cpu, i);
2922 static void define_debug_regs(ARMCPU *cpu)
2924 /* Define v7 and v8 architectural debug registers.
2925 * These are just dummy implementations for now.
2927 int i;
2928 int wrps, brps, ctx_cmps;
2929 ARMCPRegInfo dbgdidr = {
2930 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
2931 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
2934 /* Note that all these register fields hold "number of Xs minus 1". */
2935 brps = extract32(cpu->dbgdidr, 24, 4);
2936 wrps = extract32(cpu->dbgdidr, 28, 4);
2937 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
2939 assert(ctx_cmps <= brps);
2941 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2942 * of the debug registers such as number of breakpoints;
2943 * check that if they both exist then they agree.
2945 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2946 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
2947 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
2948 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
2951 define_one_arm_cp_reg(cpu, &dbgdidr);
2952 define_arm_cp_regs(cpu, debug_cp_reginfo);
2954 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
2955 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
2958 for (i = 0; i < brps + 1; i++) {
2959 ARMCPRegInfo dbgregs[] = {
2960 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
2961 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2962 .access = PL1_RW,
2963 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
2964 .writefn = dbgbvr_write, .raw_writefn = raw_write
2966 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
2967 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2968 .access = PL1_RW,
2969 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
2970 .writefn = dbgbcr_write, .raw_writefn = raw_write
2972 REGINFO_SENTINEL
2974 define_arm_cp_regs(cpu, dbgregs);
2977 for (i = 0; i < wrps + 1; i++) {
2978 ARMCPRegInfo dbgregs[] = {
2979 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
2980 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2981 .access = PL1_RW,
2982 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
2983 .writefn = dbgwvr_write, .raw_writefn = raw_write
2985 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
2986 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2987 .access = PL1_RW,
2988 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
2989 .writefn = dbgwcr_write, .raw_writefn = raw_write
2991 REGINFO_SENTINEL
2993 define_arm_cp_regs(cpu, dbgregs);
2997 void register_cp_regs_for_features(ARMCPU *cpu)
2999 /* Register all the coprocessor registers based on feature bits */
3000 CPUARMState *env = &cpu->env;
3001 if (arm_feature(env, ARM_FEATURE_M)) {
3002 /* M profile has no coprocessor registers */
3003 return;
3006 define_arm_cp_regs(cpu, cp_reginfo);
3007 if (!arm_feature(env, ARM_FEATURE_V8)) {
3008 /* Must go early as it is full of wildcards that may be
3009 * overridden by later definitions.
3011 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3014 if (arm_feature(env, ARM_FEATURE_V6)) {
3015 /* The ID registers all have impdef reset values */
3016 ARMCPRegInfo v6_idregs[] = {
3017 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3019 .access = PL1_R, .type = ARM_CP_CONST,
3020 .resetvalue = cpu->id_pfr0 },
3021 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3023 .access = PL1_R, .type = ARM_CP_CONST,
3024 .resetvalue = cpu->id_pfr1 },
3025 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3027 .access = PL1_R, .type = ARM_CP_CONST,
3028 .resetvalue = cpu->id_dfr0 },
3029 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3031 .access = PL1_R, .type = ARM_CP_CONST,
3032 .resetvalue = cpu->id_afr0 },
3033 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3035 .access = PL1_R, .type = ARM_CP_CONST,
3036 .resetvalue = cpu->id_mmfr0 },
3037 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3039 .access = PL1_R, .type = ARM_CP_CONST,
3040 .resetvalue = cpu->id_mmfr1 },
3041 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3043 .access = PL1_R, .type = ARM_CP_CONST,
3044 .resetvalue = cpu->id_mmfr2 },
3045 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3047 .access = PL1_R, .type = ARM_CP_CONST,
3048 .resetvalue = cpu->id_mmfr3 },
3049 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3051 .access = PL1_R, .type = ARM_CP_CONST,
3052 .resetvalue = cpu->id_isar0 },
3053 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3055 .access = PL1_R, .type = ARM_CP_CONST,
3056 .resetvalue = cpu->id_isar1 },
3057 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3059 .access = PL1_R, .type = ARM_CP_CONST,
3060 .resetvalue = cpu->id_isar2 },
3061 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3063 .access = PL1_R, .type = ARM_CP_CONST,
3064 .resetvalue = cpu->id_isar3 },
3065 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3067 .access = PL1_R, .type = ARM_CP_CONST,
3068 .resetvalue = cpu->id_isar4 },
3069 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3071 .access = PL1_R, .type = ARM_CP_CONST,
3072 .resetvalue = cpu->id_isar5 },
3073 /* 6..7 are as yet unallocated and must RAZ */
3074 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3075 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3076 .resetvalue = 0 },
3077 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3078 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3079 .resetvalue = 0 },
3080 REGINFO_SENTINEL
3082 define_arm_cp_regs(cpu, v6_idregs);
3083 define_arm_cp_regs(cpu, v6_cp_reginfo);
3084 } else {
3085 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3087 if (arm_feature(env, ARM_FEATURE_V6K)) {
3088 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3090 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3091 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3093 if (arm_feature(env, ARM_FEATURE_V7)) {
3094 /* v7 performance monitor control register: same implementor
3095 * field as main ID register, and we implement only the cycle
3096 * count register.
3098 #ifndef CONFIG_USER_ONLY
3099 ARMCPRegInfo pmcr = {
3100 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3101 .access = PL0_RW,
3102 .type = ARM_CP_IO | ARM_CP_ALIAS,
3103 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3104 .accessfn = pmreg_access, .writefn = pmcr_write,
3105 .raw_writefn = raw_write,
3107 ARMCPRegInfo pmcr64 = {
3108 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3109 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3110 .access = PL0_RW, .accessfn = pmreg_access,
3111 .type = ARM_CP_IO,
3112 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3113 .resetvalue = cpu->midr & 0xff000000,
3114 .writefn = pmcr_write, .raw_writefn = raw_write,
3116 define_one_arm_cp_reg(cpu, &pmcr);
3117 define_one_arm_cp_reg(cpu, &pmcr64);
3118 #endif
3119 ARMCPRegInfo clidr = {
3120 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3121 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3122 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3124 define_one_arm_cp_reg(cpu, &clidr);
3125 define_arm_cp_regs(cpu, v7_cp_reginfo);
3126 define_debug_regs(cpu);
3127 } else {
3128 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3130 if (arm_feature(env, ARM_FEATURE_V8)) {
3131 /* AArch64 ID registers, which all have impdef reset values */
3132 ARMCPRegInfo v8_idregs[] = {
3133 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3135 .access = PL1_R, .type = ARM_CP_CONST,
3136 .resetvalue = cpu->id_aa64pfr0 },
3137 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3139 .access = PL1_R, .type = ARM_CP_CONST,
3140 .resetvalue = cpu->id_aa64pfr1},
3141 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3143 .access = PL1_R, .type = ARM_CP_CONST,
3144 /* We mask out the PMUVer field, because we don't currently
3145 * implement the PMU. Not advertising it prevents the guest
3146 * from trying to use it and getting UNDEFs on registers we
3147 * don't implement.
3149 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3150 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3152 .access = PL1_R, .type = ARM_CP_CONST,
3153 .resetvalue = cpu->id_aa64dfr1 },
3154 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3156 .access = PL1_R, .type = ARM_CP_CONST,
3157 .resetvalue = cpu->id_aa64afr0 },
3158 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3160 .access = PL1_R, .type = ARM_CP_CONST,
3161 .resetvalue = cpu->id_aa64afr1 },
3162 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3164 .access = PL1_R, .type = ARM_CP_CONST,
3165 .resetvalue = cpu->id_aa64isar0 },
3166 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3168 .access = PL1_R, .type = ARM_CP_CONST,
3169 .resetvalue = cpu->id_aa64isar1 },
3170 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3172 .access = PL1_R, .type = ARM_CP_CONST,
3173 .resetvalue = cpu->id_aa64mmfr0 },
3174 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3176 .access = PL1_R, .type = ARM_CP_CONST,
3177 .resetvalue = cpu->id_aa64mmfr1 },
3178 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3180 .access = PL1_R, .type = ARM_CP_CONST,
3181 .resetvalue = cpu->mvfr0 },
3182 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3184 .access = PL1_R, .type = ARM_CP_CONST,
3185 .resetvalue = cpu->mvfr1 },
3186 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3188 .access = PL1_R, .type = ARM_CP_CONST,
3189 .resetvalue = cpu->mvfr2 },
3190 REGINFO_SENTINEL
3192 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3193 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3194 !arm_feature(env, ARM_FEATURE_EL2)) {
3195 ARMCPRegInfo rvbar = {
3196 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3197 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3198 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3200 define_one_arm_cp_reg(cpu, &rvbar);
3202 define_arm_cp_regs(cpu, v8_idregs);
3203 define_arm_cp_regs(cpu, v8_cp_reginfo);
3205 if (arm_feature(env, ARM_FEATURE_EL2)) {
3206 define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
3207 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3208 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3209 ARMCPRegInfo rvbar = {
3210 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3211 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3212 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3214 define_one_arm_cp_reg(cpu, &rvbar);
3216 } else {
3217 /* If EL2 is missing but higher ELs are enabled, we need to
3218 * register the no_el2 reginfos.
3220 if (arm_feature(env, ARM_FEATURE_EL3)) {
3221 define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
3224 if (arm_feature(env, ARM_FEATURE_EL3)) {
3225 define_arm_cp_regs(cpu, el3_cp_reginfo);
3226 ARMCPRegInfo rvbar = {
3227 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3228 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3229 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3231 define_one_arm_cp_reg(cpu, &rvbar);
3233 if (arm_feature(env, ARM_FEATURE_MPU)) {
3234 /* These are the MPU registers prior to PMSAv6. Any new
3235 * PMSA core later than the ARM946 will require that we
3236 * implement the PMSAv6 or PMSAv7 registers, which are
3237 * completely different.
3239 assert(!arm_feature(env, ARM_FEATURE_V6));
3240 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3241 } else {
3242 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3244 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3245 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3247 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3248 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3250 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3251 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3253 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3254 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3256 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3257 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3259 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3260 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3262 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3263 define_arm_cp_regs(cpu, omap_cp_reginfo);
3265 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3266 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3268 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3269 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3271 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3272 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3274 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3275 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3277 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3278 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3279 * be read-only (ie write causes UNDEF exception).
3282 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3283 /* Pre-v8 MIDR space.
3284 * Note that the MIDR isn't a simple constant register because
3285 * of the TI925 behaviour where writes to another register can
3286 * cause the MIDR value to change.
3288 * Unimplemented registers in the c15 0 0 0 space default to
3289 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3290 * and friends override accordingly.
3292 { .name = "MIDR",
3293 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3294 .access = PL1_R, .resetvalue = cpu->midr,
3295 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3296 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3297 .type = ARM_CP_OVERRIDE },
3298 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3299 { .name = "DUMMY",
3300 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3301 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3302 { .name = "DUMMY",
3303 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3304 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3305 { .name = "DUMMY",
3306 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3307 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3308 { .name = "DUMMY",
3309 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3310 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3311 { .name = "DUMMY",
3312 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3313 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3314 REGINFO_SENTINEL
3316 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
3317 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3318 * variable-MIDR TI925 behaviour. Instead we have a single
3319 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3321 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3322 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3323 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3324 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3326 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3327 REGINFO_SENTINEL
3329 ARMCPRegInfo id_cp_reginfo[] = {
3330 /* These are common to v8 and pre-v8 */
3331 { .name = "CTR",
3332 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3333 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3334 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3336 .access = PL0_R, .accessfn = ctr_el0_access,
3337 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3338 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3339 { .name = "TCMTR",
3340 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3341 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3342 { .name = "TLBTR",
3343 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3344 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3345 REGINFO_SENTINEL
3347 ARMCPRegInfo crn0_wi_reginfo = {
3348 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3349 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3350 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3352 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3353 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3354 ARMCPRegInfo *r;
3355 /* Register the blanket "writes ignored" value first to cover the
3356 * whole space. Then update the specific ID registers to allow write
3357 * access, so that they ignore writes rather than causing them to
3358 * UNDEF.
3360 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3361 for (r = id_pre_v8_midr_cp_reginfo;
3362 r->type != ARM_CP_SENTINEL; r++) {
3363 r->access = PL1_RW;
3365 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3366 r->access = PL1_RW;
3369 if (arm_feature(env, ARM_FEATURE_V8)) {
3370 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3371 } else {
3372 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3374 define_arm_cp_regs(cpu, id_cp_reginfo);
3377 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
3378 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
3381 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
3382 ARMCPRegInfo auxcr = {
3383 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
3384 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3385 .access = PL1_RW, .type = ARM_CP_CONST,
3386 .resetvalue = cpu->reset_auxcr
3388 define_one_arm_cp_reg(cpu, &auxcr);
3391 if (arm_feature(env, ARM_FEATURE_CBAR)) {
3392 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3393 /* 32 bit view is [31:18] 0...0 [43:32]. */
3394 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
3395 | extract64(cpu->reset_cbar, 32, 12);
3396 ARMCPRegInfo cbar_reginfo[] = {
3397 { .name = "CBAR",
3398 .type = ARM_CP_CONST,
3399 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3400 .access = PL1_R, .resetvalue = cpu->reset_cbar },
3401 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
3402 .type = ARM_CP_CONST,
3403 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
3404 .access = PL1_R, .resetvalue = cbar32 },
3405 REGINFO_SENTINEL
3407 /* We don't implement a r/w 64 bit CBAR currently */
3408 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
3409 define_arm_cp_regs(cpu, cbar_reginfo);
3410 } else {
3411 ARMCPRegInfo cbar = {
3412 .name = "CBAR",
3413 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3414 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
3415 .fieldoffset = offsetof(CPUARMState,
3416 cp15.c15_config_base_address)
3418 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
3419 cbar.access = PL1_R;
3420 cbar.fieldoffset = 0;
3421 cbar.type = ARM_CP_CONST;
3423 define_one_arm_cp_reg(cpu, &cbar);
3427 /* Generic registers whose values depend on the implementation */
3429 ARMCPRegInfo sctlr = {
3430 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3431 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3432 .access = PL1_RW,
3433 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
3434 offsetof(CPUARMState, cp15.sctlr_ns) },
3435 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
3436 .raw_writefn = raw_write,
3438 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3439 /* Normally we would always end the TB on an SCTLR write, but Linux
3440 * arch/arm/mach-pxa/sleep.S expects two instructions following
3441 * an MMU enable to execute from cache. Imitate this behaviour.
3443 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
3445 define_one_arm_cp_reg(cpu, &sctlr);
3449 ARMCPU *cpu_arm_init(const char *cpu_model)
3451 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3454 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
3456 CPUState *cs = CPU(cpu);
3457 CPUARMState *env = &cpu->env;
3459 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3460 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
3461 aarch64_fpu_gdb_set_reg,
3462 34, "aarch64-fpu.xml", 0);
3463 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3464 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3465 51, "arm-neon.xml", 0);
3466 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3467 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3468 35, "arm-vfp3.xml", 0);
3469 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3470 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3471 19, "arm-vfp.xml", 0);
3475 /* Sort alphabetically by type name, except for "any". */
3476 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
3478 ObjectClass *class_a = (ObjectClass *)a;
3479 ObjectClass *class_b = (ObjectClass *)b;
3480 const char *name_a, *name_b;
3482 name_a = object_class_get_name(class_a);
3483 name_b = object_class_get_name(class_b);
3484 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3485 return 1;
3486 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3487 return -1;
3488 } else {
3489 return strcmp(name_a, name_b);
3493 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
3495 ObjectClass *oc = data;
3496 CPUListState *s = user_data;
3497 const char *typename;
3498 char *name;
3500 typename = object_class_get_name(oc);
3501 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3502 (*s->cpu_fprintf)(s->file, " %s\n",
3503 name);
3504 g_free(name);
3507 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
3509 CPUListState s = {
3510 .file = f,
3511 .cpu_fprintf = cpu_fprintf,
3513 GSList *list;
3515 list = object_class_get_list(TYPE_ARM_CPU, false);
3516 list = g_slist_sort(list, arm_cpu_list_compare);
3517 (*cpu_fprintf)(f, "Available CPUs:\n");
3518 g_slist_foreach(list, arm_cpu_list_entry, &s);
3519 g_slist_free(list);
3520 #ifdef CONFIG_KVM
3521 /* The 'host' CPU type is dynamically registered only if KVM is
3522 * enabled, so we have to special-case it here:
3524 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
3525 #endif
3528 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
3530 ObjectClass *oc = data;
3531 CpuDefinitionInfoList **cpu_list = user_data;
3532 CpuDefinitionInfoList *entry;
3533 CpuDefinitionInfo *info;
3534 const char *typename;
3536 typename = object_class_get_name(oc);
3537 info = g_malloc0(sizeof(*info));
3538 info->name = g_strndup(typename,
3539 strlen(typename) - strlen("-" TYPE_ARM_CPU));
3541 entry = g_malloc0(sizeof(*entry));
3542 entry->value = info;
3543 entry->next = *cpu_list;
3544 *cpu_list = entry;
3547 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
3549 CpuDefinitionInfoList *cpu_list = NULL;
3550 GSList *list;
3552 list = object_class_get_list(TYPE_ARM_CPU, false);
3553 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
3554 g_slist_free(list);
3556 return cpu_list;
3559 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3560 void *opaque, int state, int secstate,
3561 int crm, int opc1, int opc2)
3563 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3564 * add a single reginfo struct to the hash table.
3566 uint32_t *key = g_new(uint32_t, 1);
3567 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
3568 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3569 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
3571 /* Reset the secure state to the specific incoming state. This is
3572 * necessary as the register may have been defined with both states.
3574 r2->secure = secstate;
3576 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3577 /* Register is banked (using both entries in array).
3578 * Overwriting fieldoffset as the array is only used to define
3579 * banked registers but later only fieldoffset is used.
3581 r2->fieldoffset = r->bank_fieldoffsets[ns];
3584 if (state == ARM_CP_STATE_AA32) {
3585 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3586 /* If the register is banked then we don't need to migrate or
3587 * reset the 32-bit instance in certain cases:
3589 * 1) If the register has both 32-bit and 64-bit instances then we
3590 * can count on the 64-bit instance taking care of the
3591 * non-secure bank.
3592 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3593 * taking care of the secure bank. This requires that separate
3594 * 32 and 64-bit definitions are provided.
3596 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
3597 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3598 r2->type |= ARM_CP_ALIAS;
3599 r2->resetfn = arm_cp_reset_ignore;
3601 } else if ((secstate != r->secure) && !ns) {
3602 /* The register is not banked so we only want to allow migration of
3603 * the non-secure instance.
3605 r2->type |= ARM_CP_ALIAS;
3606 r2->resetfn = arm_cp_reset_ignore;
3609 if (r->state == ARM_CP_STATE_BOTH) {
3610 /* We assume it is a cp15 register if the .cp field is left unset.
3612 if (r2->cp == 0) {
3613 r2->cp = 15;
3616 #ifdef HOST_WORDS_BIGENDIAN
3617 if (r2->fieldoffset) {
3618 r2->fieldoffset += sizeof(uint32_t);
3620 #endif
3623 if (state == ARM_CP_STATE_AA64) {
3624 /* To allow abbreviation of ARMCPRegInfo
3625 * definitions, we treat cp == 0 as equivalent to
3626 * the value for "standard guest-visible sysreg".
3627 * STATE_BOTH definitions are also always "standard
3628 * sysreg" in their AArch64 view (the .cp value may
3629 * be non-zero for the benefit of the AArch32 view).
3631 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3632 r2->cp = CP_REG_ARM64_SYSREG_CP;
3634 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
3635 r2->opc0, opc1, opc2);
3636 } else {
3637 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3639 if (opaque) {
3640 r2->opaque = opaque;
3642 /* reginfo passed to helpers is correct for the actual access,
3643 * and is never ARM_CP_STATE_BOTH:
3645 r2->state = state;
3646 /* Make sure reginfo passed to helpers for wildcarded regs
3647 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3649 r2->crm = crm;
3650 r2->opc1 = opc1;
3651 r2->opc2 = opc2;
3652 /* By convention, for wildcarded registers only the first
3653 * entry is used for migration; the others are marked as
3654 * ALIAS so we don't try to transfer the register
3655 * multiple times. Special registers (ie NOP/WFI) are
3656 * never migratable and not even raw-accessible.
3658 if ((r->type & ARM_CP_SPECIAL)) {
3659 r2->type |= ARM_CP_NO_RAW;
3661 if (((r->crm == CP_ANY) && crm != 0) ||
3662 ((r->opc1 == CP_ANY) && opc1 != 0) ||
3663 ((r->opc2 == CP_ANY) && opc2 != 0)) {
3664 r2->type |= ARM_CP_ALIAS;
3667 /* Check that raw accesses are either forbidden or handled. Note that
3668 * we can't assert this earlier because the setup of fieldoffset for
3669 * banked registers has to be done first.
3671 if (!(r2->type & ARM_CP_NO_RAW)) {
3672 assert(!raw_accessors_invalid(r2));
3675 /* Overriding of an existing definition must be explicitly
3676 * requested.
3678 if (!(r->type & ARM_CP_OVERRIDE)) {
3679 ARMCPRegInfo *oldreg;
3680 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
3681 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
3682 fprintf(stderr, "Register redefined: cp=%d %d bit "
3683 "crn=%d crm=%d opc1=%d opc2=%d, "
3684 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
3685 r2->crn, r2->crm, r2->opc1, r2->opc2,
3686 oldreg->name, r2->name);
3687 g_assert_not_reached();
3690 g_hash_table_insert(cpu->cp_regs, key, r2);
3694 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
3695 const ARMCPRegInfo *r, void *opaque)
3697 /* Define implementations of coprocessor registers.
3698 * We store these in a hashtable because typically
3699 * there are less than 150 registers in a space which
3700 * is 16*16*16*8*8 = 262144 in size.
3701 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3702 * If a register is defined twice then the second definition is
3703 * used, so this can be used to define some generic registers and
3704 * then override them with implementation specific variations.
3705 * At least one of the original and the second definition should
3706 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3707 * against accidental use.
3709 * The state field defines whether the register is to be
3710 * visible in the AArch32 or AArch64 execution state. If the
3711 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3712 * reginfo structure for the AArch32 view, which sees the lower
3713 * 32 bits of the 64 bit register.
3715 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3716 * be wildcarded. AArch64 registers are always considered to be 64
3717 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3718 * the register, if any.
3720 int crm, opc1, opc2, state;
3721 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
3722 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
3723 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
3724 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
3725 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
3726 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
3727 /* 64 bit registers have only CRm and Opc1 fields */
3728 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3729 /* op0 only exists in the AArch64 encodings */
3730 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
3731 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3732 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
3733 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3734 * encodes a minimum access level for the register. We roll this
3735 * runtime check into our general permission check code, so check
3736 * here that the reginfo's specified permissions are strict enough
3737 * to encompass the generic architectural permission check.
3739 if (r->state != ARM_CP_STATE_AA32) {
3740 int mask = 0;
3741 switch (r->opc1) {
3742 case 0: case 1: case 2:
3743 /* min_EL EL1 */
3744 mask = PL1_RW;
3745 break;
3746 case 3:
3747 /* min_EL EL0 */
3748 mask = PL0_RW;
3749 break;
3750 case 4:
3751 /* min_EL EL2 */
3752 mask = PL2_RW;
3753 break;
3754 case 5:
3755 /* unallocated encoding, so not possible */
3756 assert(false);
3757 break;
3758 case 6:
3759 /* min_EL EL3 */
3760 mask = PL3_RW;
3761 break;
3762 case 7:
3763 /* min_EL EL1, secure mode only (we don't check the latter) */
3764 mask = PL1_RW;
3765 break;
3766 default:
3767 /* broken reginfo with out-of-range opc1 */
3768 assert(false);
3769 break;
3771 /* assert our permissions are not too lax (stricter is fine) */
3772 assert((r->access & ~mask) == 0);
3775 /* Check that the register definition has enough info to handle
3776 * reads and writes if they are permitted.
3778 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
3779 if (r->access & PL3_R) {
3780 assert((r->fieldoffset ||
3781 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3782 r->readfn);
3784 if (r->access & PL3_W) {
3785 assert((r->fieldoffset ||
3786 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3787 r->writefn);
3790 /* Bad type field probably means missing sentinel at end of reg list */
3791 assert(cptype_valid(r->type));
3792 for (crm = crmmin; crm <= crmmax; crm++) {
3793 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
3794 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3795 for (state = ARM_CP_STATE_AA32;
3796 state <= ARM_CP_STATE_AA64; state++) {
3797 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
3798 continue;
3800 if (state == ARM_CP_STATE_AA32) {
3801 /* Under AArch32 CP registers can be common
3802 * (same for secure and non-secure world) or banked.
3804 switch (r->secure) {
3805 case ARM_CP_SECSTATE_S:
3806 case ARM_CP_SECSTATE_NS:
3807 add_cpreg_to_hashtable(cpu, r, opaque, state,
3808 r->secure, crm, opc1, opc2);
3809 break;
3810 default:
3811 add_cpreg_to_hashtable(cpu, r, opaque, state,
3812 ARM_CP_SECSTATE_S,
3813 crm, opc1, opc2);
3814 add_cpreg_to_hashtable(cpu, r, opaque, state,
3815 ARM_CP_SECSTATE_NS,
3816 crm, opc1, opc2);
3817 break;
3819 } else {
3820 /* AArch64 registers get mapped to non-secure instance
3821 * of AArch32 */
3822 add_cpreg_to_hashtable(cpu, r, opaque, state,
3823 ARM_CP_SECSTATE_NS,
3824 crm, opc1, opc2);
3832 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
3833 const ARMCPRegInfo *regs, void *opaque)
3835 /* Define a whole list of registers */
3836 const ARMCPRegInfo *r;
3837 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
3838 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
3842 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3844 return g_hash_table_lookup(cpregs, &encoded_cp);
3847 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
3848 uint64_t value)
3850 /* Helper coprocessor write function for write-ignore registers */
3853 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3855 /* Helper coprocessor write function for read-as-zero registers */
3856 return 0;
3859 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
3861 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3864 static int bad_mode_switch(CPUARMState *env, int mode)
3866 /* Return true if it is not valid for us to switch to
3867 * this CPU mode (ie all the UNPREDICTABLE cases in
3868 * the ARM ARM CPSRWriteByInstr pseudocode).
3870 switch (mode) {
3871 case ARM_CPU_MODE_USR:
3872 case ARM_CPU_MODE_SYS:
3873 case ARM_CPU_MODE_SVC:
3874 case ARM_CPU_MODE_ABT:
3875 case ARM_CPU_MODE_UND:
3876 case ARM_CPU_MODE_IRQ:
3877 case ARM_CPU_MODE_FIQ:
3878 return 0;
3879 case ARM_CPU_MODE_MON:
3880 return !arm_is_secure(env);
3881 default:
3882 return 1;
3886 uint32_t cpsr_read(CPUARMState *env)
3888 int ZF;
3889 ZF = (env->ZF == 0);
3890 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
3891 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
3892 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
3893 | ((env->condexec_bits & 0xfc) << 8)
3894 | (env->GE << 16) | (env->daif & CPSR_AIF);
3897 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
3899 uint32_t changed_daif;
3901 if (mask & CPSR_NZCV) {
3902 env->ZF = (~val) & CPSR_Z;
3903 env->NF = val;
3904 env->CF = (val >> 29) & 1;
3905 env->VF = (val << 3) & 0x80000000;
3907 if (mask & CPSR_Q)
3908 env->QF = ((val & CPSR_Q) != 0);
3909 if (mask & CPSR_T)
3910 env->thumb = ((val & CPSR_T) != 0);
3911 if (mask & CPSR_IT_0_1) {
3912 env->condexec_bits &= ~3;
3913 env->condexec_bits |= (val >> 25) & 3;
3915 if (mask & CPSR_IT_2_7) {
3916 env->condexec_bits &= 3;
3917 env->condexec_bits |= (val >> 8) & 0xfc;
3919 if (mask & CPSR_GE) {
3920 env->GE = (val >> 16) & 0xf;
3923 /* In a V7 implementation that includes the security extensions but does
3924 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
3925 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
3926 * bits respectively.
3928 * In a V8 implementation, it is permitted for privileged software to
3929 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
3931 if (!arm_feature(env, ARM_FEATURE_V8) &&
3932 arm_feature(env, ARM_FEATURE_EL3) &&
3933 !arm_feature(env, ARM_FEATURE_EL2) &&
3934 !arm_is_secure(env)) {
3936 changed_daif = (env->daif ^ val) & mask;
3938 if (changed_daif & CPSR_A) {
3939 /* Check to see if we are allowed to change the masking of async
3940 * abort exceptions from a non-secure state.
3942 if (!(env->cp15.scr_el3 & SCR_AW)) {
3943 qemu_log_mask(LOG_GUEST_ERROR,
3944 "Ignoring attempt to switch CPSR_A flag from "
3945 "non-secure world with SCR.AW bit clear\n");
3946 mask &= ~CPSR_A;
3950 if (changed_daif & CPSR_F) {
3951 /* Check to see if we are allowed to change the masking of FIQ
3952 * exceptions from a non-secure state.
3954 if (!(env->cp15.scr_el3 & SCR_FW)) {
3955 qemu_log_mask(LOG_GUEST_ERROR,
3956 "Ignoring attempt to switch CPSR_F flag from "
3957 "non-secure world with SCR.FW bit clear\n");
3958 mask &= ~CPSR_F;
3961 /* Check whether non-maskable FIQ (NMFI) support is enabled.
3962 * If this bit is set software is not allowed to mask
3963 * FIQs, but is allowed to set CPSR_F to 0.
3965 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
3966 (val & CPSR_F)) {
3967 qemu_log_mask(LOG_GUEST_ERROR,
3968 "Ignoring attempt to enable CPSR_F flag "
3969 "(non-maskable FIQ [NMFI] support enabled)\n");
3970 mask &= ~CPSR_F;
3975 env->daif &= ~(CPSR_AIF & mask);
3976 env->daif |= val & CPSR_AIF & mask;
3978 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
3979 if (bad_mode_switch(env, val & CPSR_M)) {
3980 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3981 * We choose to ignore the attempt and leave the CPSR M field
3982 * untouched.
3984 mask &= ~CPSR_M;
3985 } else {
3986 switch_mode(env, val & CPSR_M);
3989 mask &= ~CACHED_CPSR_BITS;
3990 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
3993 /* Sign/zero extend */
3994 uint32_t HELPER(sxtb16)(uint32_t x)
3996 uint32_t res;
3997 res = (uint16_t)(int8_t)x;
3998 res |= (uint32_t)(int8_t)(x >> 16) << 16;
3999 return res;
4002 uint32_t HELPER(uxtb16)(uint32_t x)
4004 uint32_t res;
4005 res = (uint16_t)(uint8_t)x;
4006 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4007 return res;
4010 uint32_t HELPER(clz)(uint32_t x)
4012 return clz32(x);
4015 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4017 if (den == 0)
4018 return 0;
4019 if (num == INT_MIN && den == -1)
4020 return INT_MIN;
4021 return num / den;
4024 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4026 if (den == 0)
4027 return 0;
4028 return num / den;
4031 uint32_t HELPER(rbit)(uint32_t x)
4033 x = ((x & 0xff000000) >> 24)
4034 | ((x & 0x00ff0000) >> 8)
4035 | ((x & 0x0000ff00) << 8)
4036 | ((x & 0x000000ff) << 24);
4037 x = ((x & 0xf0f0f0f0) >> 4)
4038 | ((x & 0x0f0f0f0f) << 4);
4039 x = ((x & 0x88888888) >> 3)
4040 | ((x & 0x44444444) >> 1)
4041 | ((x & 0x22222222) << 1)
4042 | ((x & 0x11111111) << 3);
4043 return x;
4046 #if defined(CONFIG_USER_ONLY)
4048 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
4049 int mmu_idx)
4051 ARMCPU *cpu = ARM_CPU(cs);
4052 CPUARMState *env = &cpu->env;
4054 env->exception.vaddress = address;
4055 if (rw == 2) {
4056 cs->exception_index = EXCP_PREFETCH_ABORT;
4057 } else {
4058 cs->exception_index = EXCP_DATA_ABORT;
4060 return 1;
4063 /* These should probably raise undefined insn exceptions. */
4064 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4066 ARMCPU *cpu = arm_env_get_cpu(env);
4068 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
4071 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4073 ARMCPU *cpu = arm_env_get_cpu(env);
4075 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
4076 return 0;
4079 void switch_mode(CPUARMState *env, int mode)
4081 ARMCPU *cpu = arm_env_get_cpu(env);
4083 if (mode != ARM_CPU_MODE_USR) {
4084 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4088 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4090 ARMCPU *cpu = arm_env_get_cpu(env);
4092 cpu_abort(CPU(cpu), "banked r13 write\n");
4095 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4097 ARMCPU *cpu = arm_env_get_cpu(env);
4099 cpu_abort(CPU(cpu), "banked r13 read\n");
4100 return 0;
4103 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
4105 return 1;
4108 void aarch64_sync_64_to_32(CPUARMState *env)
4110 g_assert_not_reached();
4113 #else
4115 /* Map CPU modes onto saved register banks. */
4116 int bank_number(int mode)
4118 switch (mode) {
4119 case ARM_CPU_MODE_USR:
4120 case ARM_CPU_MODE_SYS:
4121 return 0;
4122 case ARM_CPU_MODE_SVC:
4123 return 1;
4124 case ARM_CPU_MODE_ABT:
4125 return 2;
4126 case ARM_CPU_MODE_UND:
4127 return 3;
4128 case ARM_CPU_MODE_IRQ:
4129 return 4;
4130 case ARM_CPU_MODE_FIQ:
4131 return 5;
4132 case ARM_CPU_MODE_HYP:
4133 return 6;
4134 case ARM_CPU_MODE_MON:
4135 return 7;
4137 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
4140 void switch_mode(CPUARMState *env, int mode)
4142 int old_mode;
4143 int i;
4145 old_mode = env->uncached_cpsr & CPSR_M;
4146 if (mode == old_mode)
4147 return;
4149 if (old_mode == ARM_CPU_MODE_FIQ) {
4150 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
4151 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
4152 } else if (mode == ARM_CPU_MODE_FIQ) {
4153 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
4154 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
4157 i = bank_number(old_mode);
4158 env->banked_r13[i] = env->regs[13];
4159 env->banked_r14[i] = env->regs[14];
4160 env->banked_spsr[i] = env->spsr;
4162 i = bank_number(mode);
4163 env->regs[13] = env->banked_r13[i];
4164 env->regs[14] = env->banked_r14[i];
4165 env->spsr = env->banked_spsr[i];
4168 /* Physical Interrupt Target EL Lookup Table
4170 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4172 * The below multi-dimensional table is used for looking up the target
4173 * exception level given numerous condition criteria. Specifically, the
4174 * target EL is based on SCR and HCR routing controls as well as the
4175 * currently executing EL and secure state.
4177 * Dimensions:
4178 * target_el_table[2][2][2][2][2][4]
4179 * | | | | | +--- Current EL
4180 * | | | | +------ Non-secure(0)/Secure(1)
4181 * | | | +--------- HCR mask override
4182 * | | +------------ SCR exec state control
4183 * | +--------------- SCR mask override
4184 * +------------------ 32-bit(0)/64-bit(1) EL3
4186 * The table values are as such:
4187 * 0-3 = EL0-EL3
4188 * -1 = Cannot occur
4190 * The ARM ARM target EL table includes entries indicating that an "exception
4191 * is not taken". The two cases where this is applicable are:
4192 * 1) An exception is taken from EL3 but the SCR does not have the exception
4193 * routed to EL3.
4194 * 2) An exception is taken from EL2 but the HCR does not have the exception
4195 * routed to EL2.
4196 * In these two cases, the below table contain a target of EL1. This value is
4197 * returned as it is expected that the consumer of the table data will check
4198 * for "target EL >= current EL" to ensure the exception is not taken.
4200 * SCR HCR
4201 * 64 EA AMO From
4202 * BIT IRQ IMO Non-secure Secure
4203 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4205 const int8_t target_el_table[2][2][2][2][2][4] = {
4206 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4207 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4208 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4209 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4210 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4211 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4212 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4213 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4214 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4215 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4216 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4217 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4218 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4219 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4220 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4221 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4225 * Determine the target EL for physical exceptions
4227 static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4228 uint32_t cur_el, bool secure)
4230 CPUARMState *env = cs->env_ptr;
4231 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4232 int scr;
4233 int hcr;
4234 int target_el;
4235 int is64 = arm_el_is_aa64(env, 3);
4237 switch (excp_idx) {
4238 case EXCP_IRQ:
4239 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4240 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4241 break;
4242 case EXCP_FIQ:
4243 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4244 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4245 break;
4246 default:
4247 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4248 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4249 break;
4252 /* If HCR.TGE is set then HCR is treated as being 1 */
4253 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4255 /* Perform a table-lookup for the target EL given the current state */
4256 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4258 assert(target_el > 0);
4260 return target_el;
4264 * Determine the target EL for a given exception type.
4266 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
4268 ARMCPU *cpu = ARM_CPU(cs);
4269 CPUARMState *env = &cpu->env;
4270 unsigned int cur_el = arm_current_el(env);
4271 unsigned int target_el;
4272 bool secure = arm_is_secure(env);
4274 switch (excp_idx) {
4275 case EXCP_HVC:
4276 case EXCP_HYP_TRAP:
4277 target_el = 2;
4278 break;
4279 case EXCP_SMC:
4280 target_el = 3;
4281 break;
4282 case EXCP_FIQ:
4283 case EXCP_IRQ:
4284 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
4285 break;
4286 case EXCP_VIRQ:
4287 case EXCP_VFIQ:
4288 target_el = 1;
4289 break;
4290 default:
4291 target_el = MAX(cur_el, 1);
4292 break;
4294 return target_el;
4297 static void v7m_push(CPUARMState *env, uint32_t val)
4299 CPUState *cs = CPU(arm_env_get_cpu(env));
4301 env->regs[13] -= 4;
4302 stl_phys(cs->as, env->regs[13], val);
4305 static uint32_t v7m_pop(CPUARMState *env)
4307 CPUState *cs = CPU(arm_env_get_cpu(env));
4308 uint32_t val;
4310 val = ldl_phys(cs->as, env->regs[13]);
4311 env->regs[13] += 4;
4312 return val;
4315 /* Switch to V7M main or process stack pointer. */
4316 static void switch_v7m_sp(CPUARMState *env, int process)
4318 uint32_t tmp;
4319 if (env->v7m.current_sp != process) {
4320 tmp = env->v7m.other_sp;
4321 env->v7m.other_sp = env->regs[13];
4322 env->regs[13] = tmp;
4323 env->v7m.current_sp = process;
4327 static void do_v7m_exception_exit(CPUARMState *env)
4329 uint32_t type;
4330 uint32_t xpsr;
4332 type = env->regs[15];
4333 if (env->v7m.exception != 0)
4334 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
4336 /* Switch to the target stack. */
4337 switch_v7m_sp(env, (type & 4) != 0);
4338 /* Pop registers. */
4339 env->regs[0] = v7m_pop(env);
4340 env->regs[1] = v7m_pop(env);
4341 env->regs[2] = v7m_pop(env);
4342 env->regs[3] = v7m_pop(env);
4343 env->regs[12] = v7m_pop(env);
4344 env->regs[14] = v7m_pop(env);
4345 env->regs[15] = v7m_pop(env);
4346 if (env->regs[15] & 1) {
4347 qemu_log_mask(LOG_GUEST_ERROR,
4348 "M profile return from interrupt with misaligned "
4349 "PC is UNPREDICTABLE\n");
4350 /* Actual hardware seems to ignore the lsbit, and there are several
4351 * RTOSes out there which incorrectly assume the r15 in the stack
4352 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4354 env->regs[15] &= ~1U;
4356 xpsr = v7m_pop(env);
4357 xpsr_write(env, xpsr, 0xfffffdff);
4358 /* Undo stack alignment. */
4359 if (xpsr & 0x200)
4360 env->regs[13] |= 4;
4361 /* ??? The exception return type specifies Thread/Handler mode. However
4362 this is also implied by the xPSR value. Not sure what to do
4363 if there is a mismatch. */
4364 /* ??? Likewise for mismatches between the CONTROL register and the stack
4365 pointer. */
4368 void arm_v7m_cpu_do_interrupt(CPUState *cs)
4370 ARMCPU *cpu = ARM_CPU(cs);
4371 CPUARMState *env = &cpu->env;
4372 uint32_t xpsr = xpsr_read(env);
4373 uint32_t lr;
4374 uint32_t addr;
4376 arm_log_exception(cs->exception_index);
4378 lr = 0xfffffff1;
4379 if (env->v7m.current_sp)
4380 lr |= 4;
4381 if (env->v7m.exception == 0)
4382 lr |= 8;
4384 /* For exceptions we just mark as pending on the NVIC, and let that
4385 handle it. */
4386 /* TODO: Need to escalate if the current priority is higher than the
4387 one we're raising. */
4388 switch (cs->exception_index) {
4389 case EXCP_UDEF:
4390 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
4391 return;
4392 case EXCP_SWI:
4393 /* The PC already points to the next instruction. */
4394 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
4395 return;
4396 case EXCP_PREFETCH_ABORT:
4397 case EXCP_DATA_ABORT:
4398 /* TODO: if we implemented the MPU registers, this is where we
4399 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4401 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
4402 return;
4403 case EXCP_BKPT:
4404 if (semihosting_enabled) {
4405 int nr;
4406 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4407 if (nr == 0xab) {
4408 env->regs[15] += 2;
4409 env->regs[0] = do_arm_semihosting(env);
4410 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4411 return;
4414 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
4415 return;
4416 case EXCP_IRQ:
4417 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
4418 break;
4419 case EXCP_EXCEPTION_EXIT:
4420 do_v7m_exception_exit(env);
4421 return;
4422 default:
4423 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4424 return; /* Never happens. Keep compiler happy. */
4427 /* Align stack pointer. */
4428 /* ??? Should only do this if Configuration Control Register
4429 STACKALIGN bit is set. */
4430 if (env->regs[13] & 4) {
4431 env->regs[13] -= 4;
4432 xpsr |= 0x200;
4434 /* Switch to the handler mode. */
4435 v7m_push(env, xpsr);
4436 v7m_push(env, env->regs[15]);
4437 v7m_push(env, env->regs[14]);
4438 v7m_push(env, env->regs[12]);
4439 v7m_push(env, env->regs[3]);
4440 v7m_push(env, env->regs[2]);
4441 v7m_push(env, env->regs[1]);
4442 v7m_push(env, env->regs[0]);
4443 switch_v7m_sp(env, 0);
4444 /* Clear IT bits */
4445 env->condexec_bits = 0;
4446 env->regs[14] = lr;
4447 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
4448 env->regs[15] = addr & 0xfffffffe;
4449 env->thumb = addr & 1;
4452 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4453 * register set. This is necessary when switching between AArch32 and AArch64
4454 * execution state.
4456 void aarch64_sync_32_to_64(CPUARMState *env)
4458 int i;
4459 uint32_t mode = env->uncached_cpsr & CPSR_M;
4461 /* We can blanket copy R[0:7] to X[0:7] */
4462 for (i = 0; i < 8; i++) {
4463 env->xregs[i] = env->regs[i];
4466 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4467 * Otherwise, they come from the banked user regs.
4469 if (mode == ARM_CPU_MODE_FIQ) {
4470 for (i = 8; i < 13; i++) {
4471 env->xregs[i] = env->usr_regs[i - 8];
4473 } else {
4474 for (i = 8; i < 13; i++) {
4475 env->xregs[i] = env->regs[i];
4479 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4480 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4481 * from the mode banked register.
4483 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4484 env->xregs[13] = env->regs[13];
4485 env->xregs[14] = env->regs[14];
4486 } else {
4487 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
4488 /* HYP is an exception in that it is copied from r14 */
4489 if (mode == ARM_CPU_MODE_HYP) {
4490 env->xregs[14] = env->regs[14];
4491 } else {
4492 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
4496 if (mode == ARM_CPU_MODE_HYP) {
4497 env->xregs[15] = env->regs[13];
4498 } else {
4499 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
4502 if (mode == ARM_CPU_MODE_IRQ) {
4503 env->xregs[16] = env->regs[13];
4504 env->xregs[17] = env->regs[14];
4505 } else {
4506 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
4507 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
4510 if (mode == ARM_CPU_MODE_SVC) {
4511 env->xregs[18] = env->regs[13];
4512 env->xregs[19] = env->regs[14];
4513 } else {
4514 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
4515 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
4518 if (mode == ARM_CPU_MODE_ABT) {
4519 env->xregs[20] = env->regs[13];
4520 env->xregs[21] = env->regs[14];
4521 } else {
4522 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
4523 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
4526 if (mode == ARM_CPU_MODE_UND) {
4527 env->xregs[22] = env->regs[13];
4528 env->xregs[23] = env->regs[14];
4529 } else {
4530 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
4531 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
4534 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4535 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4536 * FIQ bank for r8-r14.
4538 if (mode == ARM_CPU_MODE_FIQ) {
4539 for (i = 24; i < 31; i++) {
4540 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
4542 } else {
4543 for (i = 24; i < 29; i++) {
4544 env->xregs[i] = env->fiq_regs[i - 24];
4546 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
4547 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
4550 env->pc = env->regs[15];
4553 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4554 * register set. This is necessary when switching between AArch32 and AArch64
4555 * execution state.
4557 void aarch64_sync_64_to_32(CPUARMState *env)
4559 int i;
4560 uint32_t mode = env->uncached_cpsr & CPSR_M;
4562 /* We can blanket copy X[0:7] to R[0:7] */
4563 for (i = 0; i < 8; i++) {
4564 env->regs[i] = env->xregs[i];
4567 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4568 * Otherwise, we copy x8-x12 into the banked user regs.
4570 if (mode == ARM_CPU_MODE_FIQ) {
4571 for (i = 8; i < 13; i++) {
4572 env->usr_regs[i - 8] = env->xregs[i];
4574 } else {
4575 for (i = 8; i < 13; i++) {
4576 env->regs[i] = env->xregs[i];
4580 /* Registers r13 & r14 depend on the current mode.
4581 * If we are in a given mode, we copy the corresponding x registers to r13
4582 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4583 * for the mode.
4585 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4586 env->regs[13] = env->xregs[13];
4587 env->regs[14] = env->xregs[14];
4588 } else {
4589 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
4591 /* HYP is an exception in that it does not have its own banked r14 but
4592 * shares the USR r14
4594 if (mode == ARM_CPU_MODE_HYP) {
4595 env->regs[14] = env->xregs[14];
4596 } else {
4597 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
4601 if (mode == ARM_CPU_MODE_HYP) {
4602 env->regs[13] = env->xregs[15];
4603 } else {
4604 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
4607 if (mode == ARM_CPU_MODE_IRQ) {
4608 env->regs[13] = env->xregs[16];
4609 env->regs[14] = env->xregs[17];
4610 } else {
4611 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
4612 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
4615 if (mode == ARM_CPU_MODE_SVC) {
4616 env->regs[13] = env->xregs[18];
4617 env->regs[14] = env->xregs[19];
4618 } else {
4619 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
4620 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
4623 if (mode == ARM_CPU_MODE_ABT) {
4624 env->regs[13] = env->xregs[20];
4625 env->regs[14] = env->xregs[21];
4626 } else {
4627 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
4628 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
4631 if (mode == ARM_CPU_MODE_UND) {
4632 env->regs[13] = env->xregs[22];
4633 env->regs[14] = env->xregs[23];
4634 } else {
4635 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
4636 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
4639 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4640 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4641 * FIQ bank for r8-r14.
4643 if (mode == ARM_CPU_MODE_FIQ) {
4644 for (i = 24; i < 31; i++) {
4645 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
4647 } else {
4648 for (i = 24; i < 29; i++) {
4649 env->fiq_regs[i - 24] = env->xregs[i];
4651 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
4652 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
4655 env->regs[15] = env->pc;
4658 /* Handle a CPU exception. */
4659 void arm_cpu_do_interrupt(CPUState *cs)
4661 ARMCPU *cpu = ARM_CPU(cs);
4662 CPUARMState *env = &cpu->env;
4663 uint32_t addr;
4664 uint32_t mask;
4665 int new_mode;
4666 uint32_t offset;
4667 uint32_t moe;
4669 assert(!IS_M(env));
4671 arm_log_exception(cs->exception_index);
4673 if (arm_is_psci_call(cpu, cs->exception_index)) {
4674 arm_handle_psci_call(cpu);
4675 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
4676 return;
4679 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4680 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
4681 case EC_BREAKPOINT:
4682 case EC_BREAKPOINT_SAME_EL:
4683 moe = 1;
4684 break;
4685 case EC_WATCHPOINT:
4686 case EC_WATCHPOINT_SAME_EL:
4687 moe = 10;
4688 break;
4689 case EC_AA32_BKPT:
4690 moe = 3;
4691 break;
4692 case EC_VECTORCATCH:
4693 moe = 5;
4694 break;
4695 default:
4696 moe = 0;
4697 break;
4700 if (moe) {
4701 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
4704 /* TODO: Vectored interrupt controller. */
4705 switch (cs->exception_index) {
4706 case EXCP_UDEF:
4707 new_mode = ARM_CPU_MODE_UND;
4708 addr = 0x04;
4709 mask = CPSR_I;
4710 if (env->thumb)
4711 offset = 2;
4712 else
4713 offset = 4;
4714 break;
4715 case EXCP_SWI:
4716 if (semihosting_enabled) {
4717 /* Check for semihosting interrupt. */
4718 if (env->thumb) {
4719 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
4720 & 0xff;
4721 } else {
4722 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
4723 & 0xffffff;
4725 /* Only intercept calls from privileged modes, to provide some
4726 semblance of security. */
4727 if (((mask == 0x123456 && !env->thumb)
4728 || (mask == 0xab && env->thumb))
4729 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4730 env->regs[0] = do_arm_semihosting(env);
4731 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4732 return;
4735 new_mode = ARM_CPU_MODE_SVC;
4736 addr = 0x08;
4737 mask = CPSR_I;
4738 /* The PC already points to the next instruction. */
4739 offset = 0;
4740 break;
4741 case EXCP_BKPT:
4742 /* See if this is a semihosting syscall. */
4743 if (env->thumb && semihosting_enabled) {
4744 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4745 if (mask == 0xab
4746 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4747 env->regs[15] += 2;
4748 env->regs[0] = do_arm_semihosting(env);
4749 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4750 return;
4753 env->exception.fsr = 2;
4754 /* Fall through to prefetch abort. */
4755 case EXCP_PREFETCH_ABORT:
4756 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
4757 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4758 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
4759 env->exception.fsr, (uint32_t)env->exception.vaddress);
4760 new_mode = ARM_CPU_MODE_ABT;
4761 addr = 0x0c;
4762 mask = CPSR_A | CPSR_I;
4763 offset = 4;
4764 break;
4765 case EXCP_DATA_ABORT:
4766 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
4767 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4768 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4769 env->exception.fsr,
4770 (uint32_t)env->exception.vaddress);
4771 new_mode = ARM_CPU_MODE_ABT;
4772 addr = 0x10;
4773 mask = CPSR_A | CPSR_I;
4774 offset = 8;
4775 break;
4776 case EXCP_IRQ:
4777 new_mode = ARM_CPU_MODE_IRQ;
4778 addr = 0x18;
4779 /* Disable IRQ and imprecise data aborts. */
4780 mask = CPSR_A | CPSR_I;
4781 offset = 4;
4782 if (env->cp15.scr_el3 & SCR_IRQ) {
4783 /* IRQ routed to monitor mode */
4784 new_mode = ARM_CPU_MODE_MON;
4785 mask |= CPSR_F;
4787 break;
4788 case EXCP_FIQ:
4789 new_mode = ARM_CPU_MODE_FIQ;
4790 addr = 0x1c;
4791 /* Disable FIQ, IRQ and imprecise data aborts. */
4792 mask = CPSR_A | CPSR_I | CPSR_F;
4793 if (env->cp15.scr_el3 & SCR_FIQ) {
4794 /* FIQ routed to monitor mode */
4795 new_mode = ARM_CPU_MODE_MON;
4797 offset = 4;
4798 break;
4799 case EXCP_SMC:
4800 new_mode = ARM_CPU_MODE_MON;
4801 addr = 0x08;
4802 mask = CPSR_A | CPSR_I | CPSR_F;
4803 offset = 0;
4804 break;
4805 default:
4806 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4807 return; /* Never happens. Keep compiler happy. */
4810 if (new_mode == ARM_CPU_MODE_MON) {
4811 addr += env->cp15.mvbar;
4812 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
4813 /* High vectors. When enabled, base address cannot be remapped. */
4814 addr += 0xffff0000;
4815 } else {
4816 /* ARM v7 architectures provide a vector base address register to remap
4817 * the interrupt vector table.
4818 * This register is only followed in non-monitor mode, and is banked.
4819 * Note: only bits 31:5 are valid.
4821 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
4824 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
4825 env->cp15.scr_el3 &= ~SCR_NS;
4828 switch_mode (env, new_mode);
4829 /* For exceptions taken to AArch32 we must clear the SS bit in both
4830 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4832 env->uncached_cpsr &= ~PSTATE_SS;
4833 env->spsr = cpsr_read(env);
4834 /* Clear IT bits. */
4835 env->condexec_bits = 0;
4836 /* Switch to the new mode, and to the correct instruction set. */
4837 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4838 env->daif |= mask;
4839 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4840 * and we should just guard the thumb mode on V4 */
4841 if (arm_feature(env, ARM_FEATURE_V4T)) {
4842 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4844 env->regs[14] = env->regs[15] + offset;
4845 env->regs[15] = addr;
4846 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
4850 /* Return the exception level which controls this address translation regime */
4851 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
4853 switch (mmu_idx) {
4854 case ARMMMUIdx_S2NS:
4855 case ARMMMUIdx_S1E2:
4856 return 2;
4857 case ARMMMUIdx_S1E3:
4858 return 3;
4859 case ARMMMUIdx_S1SE0:
4860 return arm_el_is_aa64(env, 3) ? 1 : 3;
4861 case ARMMMUIdx_S1SE1:
4862 case ARMMMUIdx_S1NSE0:
4863 case ARMMMUIdx_S1NSE1:
4864 return 1;
4865 default:
4866 g_assert_not_reached();
4870 /* Return true if this address translation regime is secure */
4871 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
4873 switch (mmu_idx) {
4874 case ARMMMUIdx_S12NSE0:
4875 case ARMMMUIdx_S12NSE1:
4876 case ARMMMUIdx_S1NSE0:
4877 case ARMMMUIdx_S1NSE1:
4878 case ARMMMUIdx_S1E2:
4879 case ARMMMUIdx_S2NS:
4880 return false;
4881 case ARMMMUIdx_S1E3:
4882 case ARMMMUIdx_S1SE0:
4883 case ARMMMUIdx_S1SE1:
4884 return true;
4885 default:
4886 g_assert_not_reached();
4890 /* Return the SCTLR value which controls this address translation regime */
4891 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
4893 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
4896 /* Return true if the specified stage of address translation is disabled */
4897 static inline bool regime_translation_disabled(CPUARMState *env,
4898 ARMMMUIdx mmu_idx)
4900 if (mmu_idx == ARMMMUIdx_S2NS) {
4901 return (env->cp15.hcr_el2 & HCR_VM) == 0;
4903 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
4906 /* Return the TCR controlling this translation regime */
4907 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
4909 if (mmu_idx == ARMMMUIdx_S2NS) {
4910 /* TODO: return VTCR_EL2 */
4911 g_assert_not_reached();
4913 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
4916 /* Return true if the translation regime is using LPAE format page tables */
4917 static inline bool regime_using_lpae_format(CPUARMState *env,
4918 ARMMMUIdx mmu_idx)
4920 int el = regime_el(env, mmu_idx);
4921 if (el == 2 || arm_el_is_aa64(env, el)) {
4922 return true;
4924 if (arm_feature(env, ARM_FEATURE_LPAE)
4925 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
4926 return true;
4928 return false;
4931 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
4933 switch (mmu_idx) {
4934 case ARMMMUIdx_S1SE0:
4935 case ARMMMUIdx_S1NSE0:
4936 return true;
4937 default:
4938 return false;
4939 case ARMMMUIdx_S12NSE0:
4940 case ARMMMUIdx_S12NSE1:
4941 g_assert_not_reached();
4945 /* Translate section/page access permissions to page
4946 * R/W protection flags
4948 * @env: CPUARMState
4949 * @mmu_idx: MMU index indicating required translation regime
4950 * @ap: The 3-bit access permissions (AP[2:0])
4951 * @domain_prot: The 2-bit domain access permissions
4953 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
4954 int ap, int domain_prot)
4956 bool is_user = regime_is_user(env, mmu_idx);
4958 if (domain_prot == 3) {
4959 return PAGE_READ | PAGE_WRITE;
4962 switch (ap) {
4963 case 0:
4964 if (arm_feature(env, ARM_FEATURE_V7)) {
4965 return 0;
4967 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
4968 case SCTLR_S:
4969 return is_user ? 0 : PAGE_READ;
4970 case SCTLR_R:
4971 return PAGE_READ;
4972 default:
4973 return 0;
4975 case 1:
4976 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
4977 case 2:
4978 if (is_user) {
4979 return PAGE_READ;
4980 } else {
4981 return PAGE_READ | PAGE_WRITE;
4983 case 3:
4984 return PAGE_READ | PAGE_WRITE;
4985 case 4: /* Reserved. */
4986 return 0;
4987 case 5:
4988 return is_user ? 0 : PAGE_READ;
4989 case 6:
4990 return PAGE_READ;
4991 case 7:
4992 if (!arm_feature(env, ARM_FEATURE_V6K)) {
4993 return 0;
4995 return PAGE_READ;
4996 default:
4997 g_assert_not_reached();
5001 /* Translate section/page access permissions to page
5002 * R/W protection flags.
5004 * @ap: The 2-bit simple AP (AP[2:1])
5005 * @is_user: TRUE if accessing from PL0
5007 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5009 switch (ap) {
5010 case 0:
5011 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5012 case 1:
5013 return PAGE_READ | PAGE_WRITE;
5014 case 2:
5015 return is_user ? 0 : PAGE_READ;
5016 case 3:
5017 return PAGE_READ;
5018 default:
5019 g_assert_not_reached();
5023 static inline int
5024 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5026 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5029 /* Translate section/page access permissions to protection flags
5031 * @env: CPUARMState
5032 * @mmu_idx: MMU index indicating required translation regime
5033 * @is_aa64: TRUE if AArch64
5034 * @ap: The 2-bit simple AP (AP[2:1])
5035 * @ns: NS (non-secure) bit
5036 * @xn: XN (execute-never) bit
5037 * @pxn: PXN (privileged execute-never) bit
5039 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5040 int ap, int ns, int xn, int pxn)
5042 bool is_user = regime_is_user(env, mmu_idx);
5043 int prot_rw, user_rw;
5044 bool have_wxn;
5045 int wxn = 0;
5047 assert(mmu_idx != ARMMMUIdx_S2NS);
5049 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5050 if (is_user) {
5051 prot_rw = user_rw;
5052 } else {
5053 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5056 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5057 return prot_rw;
5060 /* TODO have_wxn should be replaced with
5061 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5062 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5063 * compatible processors have EL2, which is required for [U]WXN.
5065 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5067 if (have_wxn) {
5068 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5071 if (is_aa64) {
5072 switch (regime_el(env, mmu_idx)) {
5073 case 1:
5074 if (!is_user) {
5075 xn = pxn || (user_rw & PAGE_WRITE);
5077 break;
5078 case 2:
5079 case 3:
5080 break;
5082 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5083 switch (regime_el(env, mmu_idx)) {
5084 case 1:
5085 case 3:
5086 if (is_user) {
5087 xn = xn || !(user_rw & PAGE_READ);
5088 } else {
5089 int uwxn = 0;
5090 if (have_wxn) {
5091 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5093 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5094 (uwxn && (user_rw & PAGE_WRITE));
5096 break;
5097 case 2:
5098 break;
5100 } else {
5101 xn = wxn = 0;
5104 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5105 return prot_rw;
5107 return prot_rw | PAGE_EXEC;
5110 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5111 uint32_t *table, uint32_t address)
5113 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5114 int el = regime_el(env, mmu_idx);
5115 TCR *tcr = regime_tcr(env, mmu_idx);
5117 if (address & tcr->mask) {
5118 if (tcr->raw_tcr & TTBCR_PD1) {
5119 /* Translation table walk disabled for TTBR1 */
5120 return false;
5122 *table = env->cp15.ttbr1_el[el] & 0xffffc000;
5123 } else {
5124 if (tcr->raw_tcr & TTBCR_PD0) {
5125 /* Translation table walk disabled for TTBR0 */
5126 return false;
5128 *table = env->cp15.ttbr0_el[el] & tcr->base_mask;
5130 *table |= (address >> 18) & 0x3ffc;
5131 return true;
5134 /* All loads done in the course of a page table walk go through here.
5135 * TODO: rather than ignoring errors from physical memory reads (which
5136 * are external aborts in ARM terminology) we should propagate this
5137 * error out so that we can turn it into a Data Abort if this walk
5138 * was being done for a CPU load/store or an address translation instruction
5139 * (but not if it was for a debug access).
5141 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5143 MemTxAttrs attrs = {};
5145 attrs.secure = is_secure;
5146 return address_space_ldl(cs->as, addr, attrs, NULL);
5149 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5151 MemTxAttrs attrs = {};
5153 attrs.secure = is_secure;
5154 return address_space_ldq(cs->as, addr, attrs, NULL);
5157 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
5158 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5159 int *prot, target_ulong *page_size)
5161 CPUState *cs = CPU(arm_env_get_cpu(env));
5162 int code;
5163 uint32_t table;
5164 uint32_t desc;
5165 int type;
5166 int ap;
5167 int domain = 0;
5168 int domain_prot;
5169 hwaddr phys_addr;
5170 uint32_t dacr;
5172 /* Pagetable walk. */
5173 /* Lookup l1 descriptor. */
5174 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5175 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5176 code = 5;
5177 goto do_fault;
5179 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5180 type = (desc & 3);
5181 domain = (desc >> 5) & 0x0f;
5182 if (regime_el(env, mmu_idx) == 1) {
5183 dacr = env->cp15.dacr_ns;
5184 } else {
5185 dacr = env->cp15.dacr_s;
5187 domain_prot = (dacr >> (domain * 2)) & 3;
5188 if (type == 0) {
5189 /* Section translation fault. */
5190 code = 5;
5191 goto do_fault;
5193 if (domain_prot == 0 || domain_prot == 2) {
5194 if (type == 2)
5195 code = 9; /* Section domain fault. */
5196 else
5197 code = 11; /* Page domain fault. */
5198 goto do_fault;
5200 if (type == 2) {
5201 /* 1Mb section. */
5202 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5203 ap = (desc >> 10) & 3;
5204 code = 13;
5205 *page_size = 1024 * 1024;
5206 } else {
5207 /* Lookup l2 entry. */
5208 if (type == 1) {
5209 /* Coarse pagetable. */
5210 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5211 } else {
5212 /* Fine pagetable. */
5213 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5215 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5216 switch (desc & 3) {
5217 case 0: /* Page translation fault. */
5218 code = 7;
5219 goto do_fault;
5220 case 1: /* 64k page. */
5221 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5222 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
5223 *page_size = 0x10000;
5224 break;
5225 case 2: /* 4k page. */
5226 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5227 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
5228 *page_size = 0x1000;
5229 break;
5230 case 3: /* 1k page. */
5231 if (type == 1) {
5232 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5233 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5234 } else {
5235 /* Page translation fault. */
5236 code = 7;
5237 goto do_fault;
5239 } else {
5240 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5242 ap = (desc >> 4) & 3;
5243 *page_size = 0x400;
5244 break;
5245 default:
5246 /* Never happens, but compiler isn't smart enough to tell. */
5247 abort();
5249 code = 15;
5251 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5252 *prot |= *prot ? PAGE_EXEC : 0;
5253 if (!(*prot & (1 << access_type))) {
5254 /* Access permission fault. */
5255 goto do_fault;
5257 *phys_ptr = phys_addr;
5258 return 0;
5259 do_fault:
5260 return code | (domain << 4);
5263 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
5264 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5265 MemTxAttrs *attrs,
5266 int *prot, target_ulong *page_size)
5268 CPUState *cs = CPU(arm_env_get_cpu(env));
5269 int code;
5270 uint32_t table;
5271 uint32_t desc;
5272 uint32_t xn;
5273 uint32_t pxn = 0;
5274 int type;
5275 int ap;
5276 int domain = 0;
5277 int domain_prot;
5278 hwaddr phys_addr;
5279 uint32_t dacr;
5280 bool ns;
5282 /* Pagetable walk. */
5283 /* Lookup l1 descriptor. */
5284 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5285 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5286 code = 5;
5287 goto do_fault;
5289 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5290 type = (desc & 3);
5291 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
5292 /* Section translation fault, or attempt to use the encoding
5293 * which is Reserved on implementations without PXN.
5295 code = 5;
5296 goto do_fault;
5298 if ((type == 1) || !(desc & (1 << 18))) {
5299 /* Page or Section. */
5300 domain = (desc >> 5) & 0x0f;
5302 if (regime_el(env, mmu_idx) == 1) {
5303 dacr = env->cp15.dacr_ns;
5304 } else {
5305 dacr = env->cp15.dacr_s;
5307 domain_prot = (dacr >> (domain * 2)) & 3;
5308 if (domain_prot == 0 || domain_prot == 2) {
5309 if (type != 1) {
5310 code = 9; /* Section domain fault. */
5311 } else {
5312 code = 11; /* Page domain fault. */
5314 goto do_fault;
5316 if (type != 1) {
5317 if (desc & (1 << 18)) {
5318 /* Supersection. */
5319 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5320 *page_size = 0x1000000;
5321 } else {
5322 /* Section. */
5323 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5324 *page_size = 0x100000;
5326 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
5327 xn = desc & (1 << 4);
5328 pxn = desc & 1;
5329 code = 13;
5330 ns = extract32(desc, 19, 1);
5331 } else {
5332 if (arm_feature(env, ARM_FEATURE_PXN)) {
5333 pxn = (desc >> 2) & 1;
5335 ns = extract32(desc, 3, 1);
5336 /* Lookup l2 entry. */
5337 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5338 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5339 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
5340 switch (desc & 3) {
5341 case 0: /* Page translation fault. */
5342 code = 7;
5343 goto do_fault;
5344 case 1: /* 64k page. */
5345 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5346 xn = desc & (1 << 15);
5347 *page_size = 0x10000;
5348 break;
5349 case 2: case 3: /* 4k page. */
5350 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5351 xn = desc & 1;
5352 *page_size = 0x1000;
5353 break;
5354 default:
5355 /* Never happens, but compiler isn't smart enough to tell. */
5356 abort();
5358 code = 15;
5360 if (domain_prot == 3) {
5361 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5362 } else {
5363 if (pxn && !regime_is_user(env, mmu_idx)) {
5364 xn = 1;
5366 if (xn && access_type == 2)
5367 goto do_fault;
5369 if (arm_feature(env, ARM_FEATURE_V6K) &&
5370 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
5371 /* The simplified model uses AP[0] as an access control bit. */
5372 if ((ap & 1) == 0) {
5373 /* Access flag fault. */
5374 code = (code == 15) ? 6 : 3;
5375 goto do_fault;
5377 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
5378 } else {
5379 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5381 if (*prot && !xn) {
5382 *prot |= PAGE_EXEC;
5384 if (!(*prot & (1 << access_type))) {
5385 /* Access permission fault. */
5386 goto do_fault;
5389 if (ns) {
5390 /* The NS bit will (as required by the architecture) have no effect if
5391 * the CPU doesn't support TZ or this is a non-secure translation
5392 * regime, because the attribute will already be non-secure.
5394 attrs->secure = false;
5396 *phys_ptr = phys_addr;
5397 return 0;
5398 do_fault:
5399 return code | (domain << 4);
5402 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5403 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5405 typedef enum {
5406 translation_fault = 1,
5407 access_fault = 2,
5408 permission_fault = 3,
5409 } MMUFaultType;
5411 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
5412 int access_type, ARMMMUIdx mmu_idx,
5413 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
5414 target_ulong *page_size_ptr)
5416 CPUState *cs = CPU(arm_env_get_cpu(env));
5417 /* Read an LPAE long-descriptor translation table. */
5418 MMUFaultType fault_type = translation_fault;
5419 uint32_t level = 1;
5420 uint32_t epd;
5421 int32_t tsz;
5422 uint32_t tg;
5423 uint64_t ttbr;
5424 int ttbr_select;
5425 hwaddr descaddr, descmask;
5426 uint32_t tableattrs;
5427 target_ulong page_size;
5428 uint32_t attrs;
5429 int32_t granule_sz = 9;
5430 int32_t va_size = 32;
5431 int32_t tbi = 0;
5432 TCR *tcr = regime_tcr(env, mmu_idx);
5433 int ap, ns, xn, pxn;
5435 /* TODO:
5436 * This code assumes we're either a 64-bit EL1 or a 32-bit PL1;
5437 * it doesn't handle the different format TCR for TCR_EL2, TCR_EL3,
5438 * and VTCR_EL2, or the fact that those regimes don't have a split
5439 * TTBR0/TTBR1. Attribute and permission bit handling should also
5440 * be checked when adding support for those page table walks.
5442 if (arm_el_is_aa64(env, regime_el(env, mmu_idx))) {
5443 va_size = 64;
5444 if (extract64(address, 55, 1))
5445 tbi = extract64(tcr->raw_tcr, 38, 1);
5446 else
5447 tbi = extract64(tcr->raw_tcr, 37, 1);
5448 tbi *= 8;
5451 /* Determine whether this address is in the region controlled by
5452 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5453 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5454 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5456 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5457 if (va_size == 64) {
5458 t0sz = MIN(t0sz, 39);
5459 t0sz = MAX(t0sz, 16);
5461 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5462 if (va_size == 64) {
5463 t1sz = MIN(t1sz, 39);
5464 t1sz = MAX(t1sz, 16);
5466 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5467 /* there is a ttbr0 region and we are in it (high bits all zero) */
5468 ttbr_select = 0;
5469 } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5470 /* there is a ttbr1 region and we are in it (high bits all one) */
5471 ttbr_select = 1;
5472 } else if (!t0sz) {
5473 /* ttbr0 region is "everything not in the ttbr1 region" */
5474 ttbr_select = 0;
5475 } else if (!t1sz) {
5476 /* ttbr1 region is "everything not in the ttbr0 region" */
5477 ttbr_select = 1;
5478 } else {
5479 /* in the gap between the two regions, this is a Translation fault */
5480 fault_type = translation_fault;
5481 goto do_fault;
5484 /* Note that QEMU ignores shareability and cacheability attributes,
5485 * so we don't need to do anything with the SH, ORGN, IRGN fields
5486 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5487 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5488 * implement any ASID-like capability so we can ignore it (instead
5489 * we will always flush the TLB any time the ASID is changed).
5491 if (ttbr_select == 0) {
5492 ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr0);
5493 epd = extract32(tcr->raw_tcr, 7, 1);
5494 tsz = t0sz;
5496 tg = extract32(tcr->raw_tcr, 14, 2);
5497 if (tg == 1) { /* 64KB pages */
5498 granule_sz = 13;
5500 if (tg == 2) { /* 16KB pages */
5501 granule_sz = 11;
5503 } else {
5504 ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr1);
5505 epd = extract32(tcr->raw_tcr, 23, 1);
5506 tsz = t1sz;
5508 tg = extract32(tcr->raw_tcr, 30, 2);
5509 if (tg == 3) { /* 64KB pages */
5510 granule_sz = 13;
5512 if (tg == 1) { /* 16KB pages */
5513 granule_sz = 11;
5517 /* Here we should have set up all the parameters for the translation:
5518 * va_size, ttbr, epd, tsz, granule_sz, tbi
5521 if (epd) {
5522 /* Translation table walk disabled => Translation fault on TLB miss */
5523 goto do_fault;
5526 /* The starting level depends on the virtual address size (which can be
5527 * up to 48 bits) and the translation granule size. It indicates the number
5528 * of strides (granule_sz bits at a time) needed to consume the bits
5529 * of the input address. In the pseudocode this is:
5530 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5531 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5532 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5533 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5534 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5535 * = 4 - (va_size - tsz - 4) / granule_sz;
5537 level = 4 - (va_size - tsz - 4) / granule_sz;
5539 /* Clear the vaddr bits which aren't part of the within-region address,
5540 * so that we don't have to special case things when calculating the
5541 * first descriptor address.
5543 if (tsz) {
5544 address &= (1ULL << (va_size - tsz)) - 1;
5547 descmask = (1ULL << (granule_sz + 3)) - 1;
5549 /* Now we can extract the actual base address from the TTBR */
5550 descaddr = extract64(ttbr, 0, 48);
5551 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5553 /* Secure accesses start with the page table in secure memory and
5554 * can be downgraded to non-secure at any step. Non-secure accesses
5555 * remain non-secure. We implement this by just ORing in the NSTable/NS
5556 * bits at each step.
5558 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
5559 for (;;) {
5560 uint64_t descriptor;
5561 bool nstable;
5563 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
5564 descaddr &= ~7ULL;
5565 nstable = extract32(tableattrs, 4, 1);
5566 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
5567 if (!(descriptor & 1) ||
5568 (!(descriptor & 2) && (level == 3))) {
5569 /* Invalid, or the Reserved level 3 encoding */
5570 goto do_fault;
5572 descaddr = descriptor & 0xfffffff000ULL;
5574 if ((descriptor & 2) && (level < 3)) {
5575 /* Table entry. The top five bits are attributes which may
5576 * propagate down through lower levels of the table (and
5577 * which are all arranged so that 0 means "no effect", so
5578 * we can gather them up by ORing in the bits at each level).
5580 tableattrs |= extract64(descriptor, 59, 5);
5581 level++;
5582 continue;
5584 /* Block entry at level 1 or 2, or page entry at level 3.
5585 * These are basically the same thing, although the number
5586 * of bits we pull in from the vaddr varies.
5588 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5589 descaddr |= (address & (page_size - 1));
5590 /* Extract attributes from the descriptor and merge with table attrs */
5591 attrs = extract64(descriptor, 2, 10)
5592 | (extract64(descriptor, 52, 12) << 10);
5593 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
5594 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
5595 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5596 * means "force PL1 access only", which means forcing AP[1] to 0.
5598 if (extract32(tableattrs, 2, 1)) {
5599 attrs &= ~(1 << 4);
5601 attrs |= nstable << 3; /* NS */
5602 break;
5604 /* Here descaddr is the final physical address, and attributes
5605 * are all in attrs.
5607 fault_type = access_fault;
5608 if ((attrs & (1 << 8)) == 0) {
5609 /* Access flag */
5610 goto do_fault;
5613 ap = extract32(attrs, 4, 2);
5614 ns = extract32(attrs, 3, 1);
5615 xn = extract32(attrs, 12, 1);
5616 pxn = extract32(attrs, 11, 1);
5618 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
5620 fault_type = permission_fault;
5621 if (!(*prot & (1 << access_type))) {
5622 goto do_fault;
5625 if (ns) {
5626 /* The NS bit will (as required by the architecture) have no effect if
5627 * the CPU doesn't support TZ or this is a non-secure translation
5628 * regime, because the attribute will already be non-secure.
5630 txattrs->secure = false;
5632 *phys_ptr = descaddr;
5633 *page_size_ptr = page_size;
5634 return 0;
5636 do_fault:
5637 /* Long-descriptor format IFSR/DFSR value */
5638 return (1 << 9) | (fault_type << 2) | level;
5641 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
5642 int access_type, ARMMMUIdx mmu_idx,
5643 hwaddr *phys_ptr, int *prot)
5645 int n;
5646 uint32_t mask;
5647 uint32_t base;
5648 bool is_user = regime_is_user(env, mmu_idx);
5650 *phys_ptr = address;
5651 for (n = 7; n >= 0; n--) {
5652 base = env->cp15.c6_region[n];
5653 if ((base & 1) == 0) {
5654 continue;
5656 mask = 1 << ((base >> 1) & 0x1f);
5657 /* Keep this shift separate from the above to avoid an
5658 (undefined) << 32. */
5659 mask = (mask << 1) - 1;
5660 if (((base ^ address) & ~mask) == 0) {
5661 break;
5664 if (n < 0) {
5665 return 2;
5668 if (access_type == 2) {
5669 mask = env->cp15.pmsav5_insn_ap;
5670 } else {
5671 mask = env->cp15.pmsav5_data_ap;
5673 mask = (mask >> (n * 4)) & 0xf;
5674 switch (mask) {
5675 case 0:
5676 return 1;
5677 case 1:
5678 if (is_user) {
5679 return 1;
5681 *prot = PAGE_READ | PAGE_WRITE;
5682 break;
5683 case 2:
5684 *prot = PAGE_READ;
5685 if (!is_user) {
5686 *prot |= PAGE_WRITE;
5688 break;
5689 case 3:
5690 *prot = PAGE_READ | PAGE_WRITE;
5691 break;
5692 case 5:
5693 if (is_user) {
5694 return 1;
5696 *prot = PAGE_READ;
5697 break;
5698 case 6:
5699 *prot = PAGE_READ;
5700 break;
5701 default:
5702 /* Bad permission. */
5703 return 1;
5705 *prot |= PAGE_EXEC;
5706 return 0;
5709 /* get_phys_addr - get the physical address for this virtual address
5711 * Find the physical address corresponding to the given virtual address,
5712 * by doing a translation table walk on MMU based systems or using the
5713 * MPU state on MPU based systems.
5715 * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs,
5716 * prot and page_size may not be filled in, and the return value provides
5717 * information on why the translation aborted, in the format of a
5718 * DFSR/IFSR fault register, with the following caveats:
5719 * * we honour the short vs long DFSR format differences.
5720 * * the WnR bit is never set (the caller must do this).
5721 * * for MPU based systems we don't bother to return a full FSR format
5722 * value.
5724 * @env: CPUARMState
5725 * @address: virtual address to get physical address for
5726 * @access_type: 0 for read, 1 for write, 2 for execute
5727 * @mmu_idx: MMU index indicating required translation regime
5728 * @phys_ptr: set to the physical address corresponding to the virtual address
5729 * @attrs: set to the memory transaction attributes to use
5730 * @prot: set to the permissions for the page containing phys_ptr
5731 * @page_size: set to the size of the page containing phys_ptr
5733 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
5734 int access_type, ARMMMUIdx mmu_idx,
5735 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
5736 target_ulong *page_size)
5738 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
5739 /* TODO: when we support EL2 we should here call ourselves recursively
5740 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
5741 * functions will also need changing to perform ARMMMUIdx_S2NS loads
5742 * rather than direct physical memory loads when appropriate.
5743 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5745 assert(!arm_feature(env, ARM_FEATURE_EL2));
5746 mmu_idx += ARMMMUIdx_S1NSE0;
5749 /* The page table entries may downgrade secure to non-secure, but
5750 * cannot upgrade an non-secure translation regime's attributes
5751 * to secure.
5753 attrs->secure = regime_is_secure(env, mmu_idx);
5754 attrs->user = regime_is_user(env, mmu_idx);
5756 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5757 * In v7 and earlier it affects all stage 1 translations.
5759 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
5760 && !arm_feature(env, ARM_FEATURE_V8)) {
5761 if (regime_el(env, mmu_idx) == 3) {
5762 address += env->cp15.fcseidr_s;
5763 } else {
5764 address += env->cp15.fcseidr_ns;
5768 if (regime_translation_disabled(env, mmu_idx)) {
5769 /* MMU/MPU disabled. */
5770 *phys_ptr = address;
5771 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5772 *page_size = TARGET_PAGE_SIZE;
5773 return 0;
5776 if (arm_feature(env, ARM_FEATURE_MPU)) {
5777 *page_size = TARGET_PAGE_SIZE;
5778 return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr,
5779 prot);
5782 if (regime_using_lpae_format(env, mmu_idx)) {
5783 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5784 attrs, prot, page_size);
5785 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
5786 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
5787 attrs, prot, page_size);
5788 } else {
5789 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
5790 prot, page_size);
5794 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
5795 int access_type, int mmu_idx)
5797 ARMCPU *cpu = ARM_CPU(cs);
5798 CPUARMState *env = &cpu->env;
5799 hwaddr phys_addr;
5800 target_ulong page_size;
5801 int prot;
5802 int ret;
5803 uint32_t syn;
5804 bool same_el = (arm_current_el(env) != 0);
5805 MemTxAttrs attrs = {};
5807 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
5808 &attrs, &prot, &page_size);
5809 if (ret == 0) {
5810 /* Map a single [sub]page. */
5811 phys_addr &= TARGET_PAGE_MASK;
5812 address &= TARGET_PAGE_MASK;
5813 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
5814 prot, mmu_idx, page_size);
5815 return 0;
5818 /* AArch64 syndrome does not have an LPAE bit */
5819 syn = ret & ~(1 << 9);
5821 /* For insn and data aborts we assume there is no instruction syndrome
5822 * information; this is always true for exceptions reported to EL1.
5824 if (access_type == 2) {
5825 syn = syn_insn_abort(same_el, 0, 0, syn);
5826 cs->exception_index = EXCP_PREFETCH_ABORT;
5827 } else {
5828 syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
5829 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
5830 ret |= (1 << 11);
5832 cs->exception_index = EXCP_DATA_ABORT;
5835 env->exception.syndrome = syn;
5836 env->exception.vaddress = address;
5837 env->exception.fsr = ret;
5838 return 1;
5841 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
5843 ARMCPU *cpu = ARM_CPU(cs);
5844 CPUARMState *env = &cpu->env;
5845 hwaddr phys_addr;
5846 target_ulong page_size;
5847 int prot;
5848 int ret;
5849 MemTxAttrs attrs = {};
5851 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
5852 &attrs, &prot, &page_size);
5854 if (ret != 0) {
5855 return -1;
5858 return phys_addr;
5861 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5863 if ((env->uncached_cpsr & CPSR_M) == mode) {
5864 env->regs[13] = val;
5865 } else {
5866 env->banked_r13[bank_number(mode)] = val;
5870 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5872 if ((env->uncached_cpsr & CPSR_M) == mode) {
5873 return env->regs[13];
5874 } else {
5875 return env->banked_r13[bank_number(mode)];
5879 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5881 ARMCPU *cpu = arm_env_get_cpu(env);
5883 switch (reg) {
5884 case 0: /* APSR */
5885 return xpsr_read(env) & 0xf8000000;
5886 case 1: /* IAPSR */
5887 return xpsr_read(env) & 0xf80001ff;
5888 case 2: /* EAPSR */
5889 return xpsr_read(env) & 0xff00fc00;
5890 case 3: /* xPSR */
5891 return xpsr_read(env) & 0xff00fdff;
5892 case 5: /* IPSR */
5893 return xpsr_read(env) & 0x000001ff;
5894 case 6: /* EPSR */
5895 return xpsr_read(env) & 0x0700fc00;
5896 case 7: /* IEPSR */
5897 return xpsr_read(env) & 0x0700edff;
5898 case 8: /* MSP */
5899 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
5900 case 9: /* PSP */
5901 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
5902 case 16: /* PRIMASK */
5903 return (env->daif & PSTATE_I) != 0;
5904 case 17: /* BASEPRI */
5905 case 18: /* BASEPRI_MAX */
5906 return env->v7m.basepri;
5907 case 19: /* FAULTMASK */
5908 return (env->daif & PSTATE_F) != 0;
5909 case 20: /* CONTROL */
5910 return env->v7m.control;
5911 default:
5912 /* ??? For debugging only. */
5913 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
5914 return 0;
5918 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5920 ARMCPU *cpu = arm_env_get_cpu(env);
5922 switch (reg) {
5923 case 0: /* APSR */
5924 xpsr_write(env, val, 0xf8000000);
5925 break;
5926 case 1: /* IAPSR */
5927 xpsr_write(env, val, 0xf8000000);
5928 break;
5929 case 2: /* EAPSR */
5930 xpsr_write(env, val, 0xfe00fc00);
5931 break;
5932 case 3: /* xPSR */
5933 xpsr_write(env, val, 0xfe00fc00);
5934 break;
5935 case 5: /* IPSR */
5936 /* IPSR bits are readonly. */
5937 break;
5938 case 6: /* EPSR */
5939 xpsr_write(env, val, 0x0600fc00);
5940 break;
5941 case 7: /* IEPSR */
5942 xpsr_write(env, val, 0x0600fc00);
5943 break;
5944 case 8: /* MSP */
5945 if (env->v7m.current_sp)
5946 env->v7m.other_sp = val;
5947 else
5948 env->regs[13] = val;
5949 break;
5950 case 9: /* PSP */
5951 if (env->v7m.current_sp)
5952 env->regs[13] = val;
5953 else
5954 env->v7m.other_sp = val;
5955 break;
5956 case 16: /* PRIMASK */
5957 if (val & 1) {
5958 env->daif |= PSTATE_I;
5959 } else {
5960 env->daif &= ~PSTATE_I;
5962 break;
5963 case 17: /* BASEPRI */
5964 env->v7m.basepri = val & 0xff;
5965 break;
5966 case 18: /* BASEPRI_MAX */
5967 val &= 0xff;
5968 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
5969 env->v7m.basepri = val;
5970 break;
5971 case 19: /* FAULTMASK */
5972 if (val & 1) {
5973 env->daif |= PSTATE_F;
5974 } else {
5975 env->daif &= ~PSTATE_F;
5977 break;
5978 case 20: /* CONTROL */
5979 env->v7m.control = val & 3;
5980 switch_v7m_sp(env, (val & 2) != 0);
5981 break;
5982 default:
5983 /* ??? For debugging only. */
5984 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
5985 return;
5989 #endif
5991 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
5993 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
5994 * Note that we do not implement the (architecturally mandated)
5995 * alignment fault for attempts to use this on Device memory
5996 * (which matches the usual QEMU behaviour of not implementing either
5997 * alignment faults or any memory attribute handling).
6000 ARMCPU *cpu = arm_env_get_cpu(env);
6001 uint64_t blocklen = 4 << cpu->dcz_blocksize;
6002 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
6004 #ifndef CONFIG_USER_ONLY
6006 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6007 * the block size so we might have to do more than one TLB lookup.
6008 * We know that in fact for any v8 CPU the page size is at least 4K
6009 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6010 * 1K as an artefact of legacy v5 subpage support being present in the
6011 * same QEMU executable.
6013 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
6014 void *hostaddr[maxidx];
6015 int try, i;
6017 for (try = 0; try < 2; try++) {
6019 for (i = 0; i < maxidx; i++) {
6020 hostaddr[i] = tlb_vaddr_to_host(env,
6021 vaddr + TARGET_PAGE_SIZE * i,
6022 1, cpu_mmu_index(env));
6023 if (!hostaddr[i]) {
6024 break;
6027 if (i == maxidx) {
6028 /* If it's all in the TLB it's fair game for just writing to;
6029 * we know we don't need to update dirty status, etc.
6031 for (i = 0; i < maxidx - 1; i++) {
6032 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
6034 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
6035 return;
6037 /* OK, try a store and see if we can populate the tlb. This
6038 * might cause an exception if the memory isn't writable,
6039 * in which case we will longjmp out of here. We must for
6040 * this purpose use the actual register value passed to us
6041 * so that we get the fault address right.
6043 helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
6044 /* Now we can populate the other TLB entries, if any */
6045 for (i = 0; i < maxidx; i++) {
6046 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
6047 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6048 helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
6053 /* Slow path (probably attempt to do this to an I/O device or
6054 * similar, or clearing of a block of code we have translations
6055 * cached for). Just do a series of byte writes as the architecture
6056 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6057 * memset(), unmap() sequence here because:
6058 * + we'd need to account for the blocksize being larger than a page
6059 * + the direct-RAM access case is almost always going to be dealt
6060 * with in the fastpath code above, so there's no speed benefit
6061 * + we would have to deal with the map returning NULL because the
6062 * bounce buffer was in use
6064 for (i = 0; i < blocklen; i++) {
6065 helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
6068 #else
6069 memset(g2h(vaddr), 0, blocklen);
6070 #endif
6073 /* Note that signed overflow is undefined in C. The following routines are
6074 careful to use unsigned types where modulo arithmetic is required.
6075 Failure to do so _will_ break on newer gcc. */
6077 /* Signed saturating arithmetic. */
6079 /* Perform 16-bit signed saturating addition. */
6080 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
6082 uint16_t res;
6084 res = a + b;
6085 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
6086 if (a & 0x8000)
6087 res = 0x8000;
6088 else
6089 res = 0x7fff;
6091 return res;
6094 /* Perform 8-bit signed saturating addition. */
6095 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
6097 uint8_t res;
6099 res = a + b;
6100 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
6101 if (a & 0x80)
6102 res = 0x80;
6103 else
6104 res = 0x7f;
6106 return res;
6109 /* Perform 16-bit signed saturating subtraction. */
6110 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
6112 uint16_t res;
6114 res = a - b;
6115 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
6116 if (a & 0x8000)
6117 res = 0x8000;
6118 else
6119 res = 0x7fff;
6121 return res;
6124 /* Perform 8-bit signed saturating subtraction. */
6125 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
6127 uint8_t res;
6129 res = a - b;
6130 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
6131 if (a & 0x80)
6132 res = 0x80;
6133 else
6134 res = 0x7f;
6136 return res;
6139 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6140 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6141 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6142 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6143 #define PFX q
6145 #include "op_addsub.h"
6147 /* Unsigned saturating arithmetic. */
6148 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6150 uint16_t res;
6151 res = a + b;
6152 if (res < a)
6153 res = 0xffff;
6154 return res;
6157 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6159 if (a > b)
6160 return a - b;
6161 else
6162 return 0;
6165 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
6167 uint8_t res;
6168 res = a + b;
6169 if (res < a)
6170 res = 0xff;
6171 return res;
6174 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
6176 if (a > b)
6177 return a - b;
6178 else
6179 return 0;
6182 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6183 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6184 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6185 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6186 #define PFX uq
6188 #include "op_addsub.h"
6190 /* Signed modulo arithmetic. */
6191 #define SARITH16(a, b, n, op) do { \
6192 int32_t sum; \
6193 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6194 RESULT(sum, n, 16); \
6195 if (sum >= 0) \
6196 ge |= 3 << (n * 2); \
6197 } while(0)
6199 #define SARITH8(a, b, n, op) do { \
6200 int32_t sum; \
6201 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6202 RESULT(sum, n, 8); \
6203 if (sum >= 0) \
6204 ge |= 1 << n; \
6205 } while(0)
6208 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6209 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6210 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6211 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6212 #define PFX s
6213 #define ARITH_GE
6215 #include "op_addsub.h"
6217 /* Unsigned modulo arithmetic. */
6218 #define ADD16(a, b, n) do { \
6219 uint32_t sum; \
6220 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6221 RESULT(sum, n, 16); \
6222 if ((sum >> 16) == 1) \
6223 ge |= 3 << (n * 2); \
6224 } while(0)
6226 #define ADD8(a, b, n) do { \
6227 uint32_t sum; \
6228 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6229 RESULT(sum, n, 8); \
6230 if ((sum >> 8) == 1) \
6231 ge |= 1 << n; \
6232 } while(0)
6234 #define SUB16(a, b, n) do { \
6235 uint32_t sum; \
6236 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6237 RESULT(sum, n, 16); \
6238 if ((sum >> 16) == 0) \
6239 ge |= 3 << (n * 2); \
6240 } while(0)
6242 #define SUB8(a, b, n) do { \
6243 uint32_t sum; \
6244 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6245 RESULT(sum, n, 8); \
6246 if ((sum >> 8) == 0) \
6247 ge |= 1 << n; \
6248 } while(0)
6250 #define PFX u
6251 #define ARITH_GE
6253 #include "op_addsub.h"
6255 /* Halved signed arithmetic. */
6256 #define ADD16(a, b, n) \
6257 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6258 #define SUB16(a, b, n) \
6259 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6260 #define ADD8(a, b, n) \
6261 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6262 #define SUB8(a, b, n) \
6263 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6264 #define PFX sh
6266 #include "op_addsub.h"
6268 /* Halved unsigned arithmetic. */
6269 #define ADD16(a, b, n) \
6270 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6271 #define SUB16(a, b, n) \
6272 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6273 #define ADD8(a, b, n) \
6274 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6275 #define SUB8(a, b, n) \
6276 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6277 #define PFX uh
6279 #include "op_addsub.h"
6281 static inline uint8_t do_usad(uint8_t a, uint8_t b)
6283 if (a > b)
6284 return a - b;
6285 else
6286 return b - a;
6289 /* Unsigned sum of absolute byte differences. */
6290 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
6292 uint32_t sum;
6293 sum = do_usad(a, b);
6294 sum += do_usad(a >> 8, b >> 8);
6295 sum += do_usad(a >> 16, b >>16);
6296 sum += do_usad(a >> 24, b >> 24);
6297 return sum;
6300 /* For ARMv6 SEL instruction. */
6301 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
6303 uint32_t mask;
6305 mask = 0;
6306 if (flags & 1)
6307 mask |= 0xff;
6308 if (flags & 2)
6309 mask |= 0xff00;
6310 if (flags & 4)
6311 mask |= 0xff0000;
6312 if (flags & 8)
6313 mask |= 0xff000000;
6314 return (a & mask) | (b & ~mask);
6317 /* VFP support. We follow the convention used for VFP instructions:
6318 Single precision routines have a "s" suffix, double precision a
6319 "d" suffix. */
6321 /* Convert host exception flags to vfp form. */
6322 static inline int vfp_exceptbits_from_host(int host_bits)
6324 int target_bits = 0;
6326 if (host_bits & float_flag_invalid)
6327 target_bits |= 1;
6328 if (host_bits & float_flag_divbyzero)
6329 target_bits |= 2;
6330 if (host_bits & float_flag_overflow)
6331 target_bits |= 4;
6332 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
6333 target_bits |= 8;
6334 if (host_bits & float_flag_inexact)
6335 target_bits |= 0x10;
6336 if (host_bits & float_flag_input_denormal)
6337 target_bits |= 0x80;
6338 return target_bits;
6341 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
6343 int i;
6344 uint32_t fpscr;
6346 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
6347 | (env->vfp.vec_len << 16)
6348 | (env->vfp.vec_stride << 20);
6349 i = get_float_exception_flags(&env->vfp.fp_status);
6350 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
6351 fpscr |= vfp_exceptbits_from_host(i);
6352 return fpscr;
6355 uint32_t vfp_get_fpscr(CPUARMState *env)
6357 return HELPER(vfp_get_fpscr)(env);
6360 /* Convert vfp exception flags to target form. */
6361 static inline int vfp_exceptbits_to_host(int target_bits)
6363 int host_bits = 0;
6365 if (target_bits & 1)
6366 host_bits |= float_flag_invalid;
6367 if (target_bits & 2)
6368 host_bits |= float_flag_divbyzero;
6369 if (target_bits & 4)
6370 host_bits |= float_flag_overflow;
6371 if (target_bits & 8)
6372 host_bits |= float_flag_underflow;
6373 if (target_bits & 0x10)
6374 host_bits |= float_flag_inexact;
6375 if (target_bits & 0x80)
6376 host_bits |= float_flag_input_denormal;
6377 return host_bits;
6380 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
6382 int i;
6383 uint32_t changed;
6385 changed = env->vfp.xregs[ARM_VFP_FPSCR];
6386 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
6387 env->vfp.vec_len = (val >> 16) & 7;
6388 env->vfp.vec_stride = (val >> 20) & 3;
6390 changed ^= val;
6391 if (changed & (3 << 22)) {
6392 i = (val >> 22) & 3;
6393 switch (i) {
6394 case FPROUNDING_TIEEVEN:
6395 i = float_round_nearest_even;
6396 break;
6397 case FPROUNDING_POSINF:
6398 i = float_round_up;
6399 break;
6400 case FPROUNDING_NEGINF:
6401 i = float_round_down;
6402 break;
6403 case FPROUNDING_ZERO:
6404 i = float_round_to_zero;
6405 break;
6407 set_float_rounding_mode(i, &env->vfp.fp_status);
6409 if (changed & (1 << 24)) {
6410 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6411 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6413 if (changed & (1 << 25))
6414 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
6416 i = vfp_exceptbits_to_host(val);
6417 set_float_exception_flags(i, &env->vfp.fp_status);
6418 set_float_exception_flags(0, &env->vfp.standard_fp_status);
6421 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6423 HELPER(vfp_set_fpscr)(env, val);
6426 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6428 #define VFP_BINOP(name) \
6429 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6431 float_status *fpst = fpstp; \
6432 return float32_ ## name(a, b, fpst); \
6434 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6436 float_status *fpst = fpstp; \
6437 return float64_ ## name(a, b, fpst); \
6439 VFP_BINOP(add)
6440 VFP_BINOP(sub)
6441 VFP_BINOP(mul)
6442 VFP_BINOP(div)
6443 VFP_BINOP(min)
6444 VFP_BINOP(max)
6445 VFP_BINOP(minnum)
6446 VFP_BINOP(maxnum)
6447 #undef VFP_BINOP
6449 float32 VFP_HELPER(neg, s)(float32 a)
6451 return float32_chs(a);
6454 float64 VFP_HELPER(neg, d)(float64 a)
6456 return float64_chs(a);
6459 float32 VFP_HELPER(abs, s)(float32 a)
6461 return float32_abs(a);
6464 float64 VFP_HELPER(abs, d)(float64 a)
6466 return float64_abs(a);
6469 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
6471 return float32_sqrt(a, &env->vfp.fp_status);
6474 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
6476 return float64_sqrt(a, &env->vfp.fp_status);
6479 /* XXX: check quiet/signaling case */
6480 #define DO_VFP_cmp(p, type) \
6481 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6483 uint32_t flags; \
6484 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6485 case 0: flags = 0x6; break; \
6486 case -1: flags = 0x8; break; \
6487 case 1: flags = 0x2; break; \
6488 default: case 2: flags = 0x3; break; \
6490 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6491 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6493 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6495 uint32_t flags; \
6496 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6497 case 0: flags = 0x6; break; \
6498 case -1: flags = 0x8; break; \
6499 case 1: flags = 0x2; break; \
6500 default: case 2: flags = 0x3; break; \
6502 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6503 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6505 DO_VFP_cmp(s, float32)
6506 DO_VFP_cmp(d, float64)
6507 #undef DO_VFP_cmp
6509 /* Integer to float and float to integer conversions */
6511 #define CONV_ITOF(name, fsz, sign) \
6512 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6514 float_status *fpst = fpstp; \
6515 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6518 #define CONV_FTOI(name, fsz, sign, round) \
6519 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6521 float_status *fpst = fpstp; \
6522 if (float##fsz##_is_any_nan(x)) { \
6523 float_raise(float_flag_invalid, fpst); \
6524 return 0; \
6526 return float##fsz##_to_##sign##int32##round(x, fpst); \
6529 #define FLOAT_CONVS(name, p, fsz, sign) \
6530 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6531 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6532 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6534 FLOAT_CONVS(si, s, 32, )
6535 FLOAT_CONVS(si, d, 64, )
6536 FLOAT_CONVS(ui, s, 32, u)
6537 FLOAT_CONVS(ui, d, 64, u)
6539 #undef CONV_ITOF
6540 #undef CONV_FTOI
6541 #undef FLOAT_CONVS
6543 /* floating point conversion */
6544 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
6546 float64 r = float32_to_float64(x, &env->vfp.fp_status);
6547 /* ARM requires that S<->D conversion of any kind of NaN generates
6548 * a quiet NaN by forcing the most significant frac bit to 1.
6550 return float64_maybe_silence_nan(r);
6553 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
6555 float32 r = float64_to_float32(x, &env->vfp.fp_status);
6556 /* ARM requires that S<->D conversion of any kind of NaN generates
6557 * a quiet NaN by forcing the most significant frac bit to 1.
6559 return float32_maybe_silence_nan(r);
6562 /* VFP3 fixed point conversion. */
6563 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6564 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6565 void *fpstp) \
6567 float_status *fpst = fpstp; \
6568 float##fsz tmp; \
6569 tmp = itype##_to_##float##fsz(x, fpst); \
6570 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6573 /* Notice that we want only input-denormal exception flags from the
6574 * scalbn operation: the other possible flags (overflow+inexact if
6575 * we overflow to infinity, output-denormal) aren't correct for the
6576 * complete scale-and-convert operation.
6578 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6579 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6580 uint32_t shift, \
6581 void *fpstp) \
6583 float_status *fpst = fpstp; \
6584 int old_exc_flags = get_float_exception_flags(fpst); \
6585 float##fsz tmp; \
6586 if (float##fsz##_is_any_nan(x)) { \
6587 float_raise(float_flag_invalid, fpst); \
6588 return 0; \
6590 tmp = float##fsz##_scalbn(x, shift, fpst); \
6591 old_exc_flags |= get_float_exception_flags(fpst) \
6592 & float_flag_input_denormal; \
6593 set_float_exception_flags(old_exc_flags, fpst); \
6594 return float##fsz##_to_##itype##round(tmp, fpst); \
6597 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6598 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6599 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6600 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6602 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6603 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6604 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6606 VFP_CONV_FIX(sh, d, 64, 64, int16)
6607 VFP_CONV_FIX(sl, d, 64, 64, int32)
6608 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6609 VFP_CONV_FIX(uh, d, 64, 64, uint16)
6610 VFP_CONV_FIX(ul, d, 64, 64, uint32)
6611 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6612 VFP_CONV_FIX(sh, s, 32, 32, int16)
6613 VFP_CONV_FIX(sl, s, 32, 32, int32)
6614 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6615 VFP_CONV_FIX(uh, s, 32, 32, uint16)
6616 VFP_CONV_FIX(ul, s, 32, 32, uint32)
6617 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
6618 #undef VFP_CONV_FIX
6619 #undef VFP_CONV_FIX_FLOAT
6620 #undef VFP_CONV_FLOAT_FIX_ROUND
6622 /* Set the current fp rounding mode and return the old one.
6623 * The argument is a softfloat float_round_ value.
6625 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
6627 float_status *fp_status = &env->vfp.fp_status;
6629 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6630 set_float_rounding_mode(rmode, fp_status);
6632 return prev_rmode;
6635 /* Set the current fp rounding mode in the standard fp status and return
6636 * the old one. This is for NEON instructions that need to change the
6637 * rounding mode but wish to use the standard FPSCR values for everything
6638 * else. Always set the rounding mode back to the correct value after
6639 * modifying it.
6640 * The argument is a softfloat float_round_ value.
6642 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
6644 float_status *fp_status = &env->vfp.standard_fp_status;
6646 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6647 set_float_rounding_mode(rmode, fp_status);
6649 return prev_rmode;
6652 /* Half precision conversions. */
6653 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
6655 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6656 float32 r = float16_to_float32(make_float16(a), ieee, s);
6657 if (ieee) {
6658 return float32_maybe_silence_nan(r);
6660 return r;
6663 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
6665 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6666 float16 r = float32_to_float16(a, ieee, s);
6667 if (ieee) {
6668 r = float16_maybe_silence_nan(r);
6670 return float16_val(r);
6673 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6675 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
6678 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6680 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
6683 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6685 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
6688 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6690 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
6693 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
6695 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6696 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
6697 if (ieee) {
6698 return float64_maybe_silence_nan(r);
6700 return r;
6703 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
6705 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6706 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
6707 if (ieee) {
6708 r = float16_maybe_silence_nan(r);
6710 return float16_val(r);
6713 #define float32_two make_float32(0x40000000)
6714 #define float32_three make_float32(0x40400000)
6715 #define float32_one_point_five make_float32(0x3fc00000)
6717 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
6719 float_status *s = &env->vfp.standard_fp_status;
6720 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6721 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6722 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6723 float_raise(float_flag_input_denormal, s);
6725 return float32_two;
6727 return float32_sub(float32_two, float32_mul(a, b, s), s);
6730 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
6732 float_status *s = &env->vfp.standard_fp_status;
6733 float32 product;
6734 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6735 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6736 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6737 float_raise(float_flag_input_denormal, s);
6739 return float32_one_point_five;
6741 product = float32_mul(a, b, s);
6742 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
6745 /* NEON helpers. */
6747 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6748 * int->float conversions at run-time. */
6749 #define float64_256 make_float64(0x4070000000000000LL)
6750 #define float64_512 make_float64(0x4080000000000000LL)
6751 #define float32_maxnorm make_float32(0x7f7fffff)
6752 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6754 /* Reciprocal functions
6756 * The algorithm that must be used to calculate the estimate
6757 * is specified by the ARM ARM, see FPRecipEstimate()
6760 static float64 recip_estimate(float64 a, float_status *real_fp_status)
6762 /* These calculations mustn't set any fp exception flags,
6763 * so we use a local copy of the fp_status.
6765 float_status dummy_status = *real_fp_status;
6766 float_status *s = &dummy_status;
6767 /* q = (int)(a * 512.0) */
6768 float64 q = float64_mul(float64_512, a, s);
6769 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6771 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6772 q = int64_to_float64(q_int, s);
6773 q = float64_add(q, float64_half, s);
6774 q = float64_div(q, float64_512, s);
6775 q = float64_div(float64_one, q, s);
6777 /* s = (int)(256.0 * r + 0.5) */
6778 q = float64_mul(q, float64_256, s);
6779 q = float64_add(q, float64_half, s);
6780 q_int = float64_to_int64_round_to_zero(q, s);
6782 /* return (double)s / 256.0 */
6783 return float64_div(int64_to_float64(q_int, s), float64_256, s);
6786 /* Common wrapper to call recip_estimate */
6787 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
6789 uint64_t val64 = float64_val(num);
6790 uint64_t frac = extract64(val64, 0, 52);
6791 int64_t exp = extract64(val64, 52, 11);
6792 uint64_t sbit;
6793 float64 scaled, estimate;
6795 /* Generate the scaled number for the estimate function */
6796 if (exp == 0) {
6797 if (extract64(frac, 51, 1) == 0) {
6798 exp = -1;
6799 frac = extract64(frac, 0, 50) << 2;
6800 } else {
6801 frac = extract64(frac, 0, 51) << 1;
6805 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6806 scaled = make_float64((0x3feULL << 52)
6807 | extract64(frac, 44, 8) << 44);
6809 estimate = recip_estimate(scaled, fpst);
6811 /* Build new result */
6812 val64 = float64_val(estimate);
6813 sbit = 0x8000000000000000ULL & val64;
6814 exp = off - exp;
6815 frac = extract64(val64, 0, 52);
6817 if (exp == 0) {
6818 frac = 1ULL << 51 | extract64(frac, 1, 51);
6819 } else if (exp == -1) {
6820 frac = 1ULL << 50 | extract64(frac, 2, 50);
6821 exp = 0;
6824 return make_float64(sbit | (exp << 52) | frac);
6827 static bool round_to_inf(float_status *fpst, bool sign_bit)
6829 switch (fpst->float_rounding_mode) {
6830 case float_round_nearest_even: /* Round to Nearest */
6831 return true;
6832 case float_round_up: /* Round to +Inf */
6833 return !sign_bit;
6834 case float_round_down: /* Round to -Inf */
6835 return sign_bit;
6836 case float_round_to_zero: /* Round to Zero */
6837 return false;
6840 g_assert_not_reached();
6843 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
6845 float_status *fpst = fpstp;
6846 float32 f32 = float32_squash_input_denormal(input, fpst);
6847 uint32_t f32_val = float32_val(f32);
6848 uint32_t f32_sbit = 0x80000000ULL & f32_val;
6849 int32_t f32_exp = extract32(f32_val, 23, 8);
6850 uint32_t f32_frac = extract32(f32_val, 0, 23);
6851 float64 f64, r64;
6852 uint64_t r64_val;
6853 int64_t r64_exp;
6854 uint64_t r64_frac;
6856 if (float32_is_any_nan(f32)) {
6857 float32 nan = f32;
6858 if (float32_is_signaling_nan(f32)) {
6859 float_raise(float_flag_invalid, fpst);
6860 nan = float32_maybe_silence_nan(f32);
6862 if (fpst->default_nan_mode) {
6863 nan = float32_default_nan;
6865 return nan;
6866 } else if (float32_is_infinity(f32)) {
6867 return float32_set_sign(float32_zero, float32_is_neg(f32));
6868 } else if (float32_is_zero(f32)) {
6869 float_raise(float_flag_divbyzero, fpst);
6870 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6871 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
6872 /* Abs(value) < 2.0^-128 */
6873 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6874 if (round_to_inf(fpst, f32_sbit)) {
6875 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6876 } else {
6877 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
6879 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
6880 float_raise(float_flag_underflow, fpst);
6881 return float32_set_sign(float32_zero, float32_is_neg(f32));
6885 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
6886 r64 = call_recip_estimate(f64, 253, fpst);
6887 r64_val = float64_val(r64);
6888 r64_exp = extract64(r64_val, 52, 11);
6889 r64_frac = extract64(r64_val, 0, 52);
6891 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6892 return make_float32(f32_sbit |
6893 (r64_exp & 0xff) << 23 |
6894 extract64(r64_frac, 29, 24));
6897 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
6899 float_status *fpst = fpstp;
6900 float64 f64 = float64_squash_input_denormal(input, fpst);
6901 uint64_t f64_val = float64_val(f64);
6902 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
6903 int64_t f64_exp = extract64(f64_val, 52, 11);
6904 float64 r64;
6905 uint64_t r64_val;
6906 int64_t r64_exp;
6907 uint64_t r64_frac;
6909 /* Deal with any special cases */
6910 if (float64_is_any_nan(f64)) {
6911 float64 nan = f64;
6912 if (float64_is_signaling_nan(f64)) {
6913 float_raise(float_flag_invalid, fpst);
6914 nan = float64_maybe_silence_nan(f64);
6916 if (fpst->default_nan_mode) {
6917 nan = float64_default_nan;
6919 return nan;
6920 } else if (float64_is_infinity(f64)) {
6921 return float64_set_sign(float64_zero, float64_is_neg(f64));
6922 } else if (float64_is_zero(f64)) {
6923 float_raise(float_flag_divbyzero, fpst);
6924 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6925 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
6926 /* Abs(value) < 2.0^-1024 */
6927 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6928 if (round_to_inf(fpst, f64_sbit)) {
6929 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6930 } else {
6931 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
6933 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
6934 float_raise(float_flag_underflow, fpst);
6935 return float64_set_sign(float64_zero, float64_is_neg(f64));
6938 r64 = call_recip_estimate(f64, 2045, fpst);
6939 r64_val = float64_val(r64);
6940 r64_exp = extract64(r64_val, 52, 11);
6941 r64_frac = extract64(r64_val, 0, 52);
6943 /* result = sign : result_exp<10:0> : fraction<51:0> */
6944 return make_float64(f64_sbit |
6945 ((r64_exp & 0x7ff) << 52) |
6946 r64_frac);
6949 /* The algorithm that must be used to calculate the estimate
6950 * is specified by the ARM ARM.
6952 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
6954 /* These calculations mustn't set any fp exception flags,
6955 * so we use a local copy of the fp_status.
6957 float_status dummy_status = *real_fp_status;
6958 float_status *s = &dummy_status;
6959 float64 q;
6960 int64_t q_int;
6962 if (float64_lt(a, float64_half, s)) {
6963 /* range 0.25 <= a < 0.5 */
6965 /* a in units of 1/512 rounded down */
6966 /* q0 = (int)(a * 512.0); */
6967 q = float64_mul(float64_512, a, s);
6968 q_int = float64_to_int64_round_to_zero(q, s);
6970 /* reciprocal root r */
6971 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
6972 q = int64_to_float64(q_int, s);
6973 q = float64_add(q, float64_half, s);
6974 q = float64_div(q, float64_512, s);
6975 q = float64_sqrt(q, s);
6976 q = float64_div(float64_one, q, s);
6977 } else {
6978 /* range 0.5 <= a < 1.0 */
6980 /* a in units of 1/256 rounded down */
6981 /* q1 = (int)(a * 256.0); */
6982 q = float64_mul(float64_256, a, s);
6983 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6985 /* reciprocal root r */
6986 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
6987 q = int64_to_float64(q_int, s);
6988 q = float64_add(q, float64_half, s);
6989 q = float64_div(q, float64_256, s);
6990 q = float64_sqrt(q, s);
6991 q = float64_div(float64_one, q, s);
6993 /* r in units of 1/256 rounded to nearest */
6994 /* s = (int)(256.0 * r + 0.5); */
6996 q = float64_mul(q, float64_256,s );
6997 q = float64_add(q, float64_half, s);
6998 q_int = float64_to_int64_round_to_zero(q, s);
7000 /* return (double)s / 256.0;*/
7001 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7004 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
7006 float_status *s = fpstp;
7007 float32 f32 = float32_squash_input_denormal(input, s);
7008 uint32_t val = float32_val(f32);
7009 uint32_t f32_sbit = 0x80000000 & val;
7010 int32_t f32_exp = extract32(val, 23, 8);
7011 uint32_t f32_frac = extract32(val, 0, 23);
7012 uint64_t f64_frac;
7013 uint64_t val64;
7014 int result_exp;
7015 float64 f64;
7017 if (float32_is_any_nan(f32)) {
7018 float32 nan = f32;
7019 if (float32_is_signaling_nan(f32)) {
7020 float_raise(float_flag_invalid, s);
7021 nan = float32_maybe_silence_nan(f32);
7023 if (s->default_nan_mode) {
7024 nan = float32_default_nan;
7026 return nan;
7027 } else if (float32_is_zero(f32)) {
7028 float_raise(float_flag_divbyzero, s);
7029 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7030 } else if (float32_is_neg(f32)) {
7031 float_raise(float_flag_invalid, s);
7032 return float32_default_nan;
7033 } else if (float32_is_infinity(f32)) {
7034 return float32_zero;
7037 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7038 * preserving the parity of the exponent. */
7040 f64_frac = ((uint64_t) f32_frac) << 29;
7041 if (f32_exp == 0) {
7042 while (extract64(f64_frac, 51, 1) == 0) {
7043 f64_frac = f64_frac << 1;
7044 f32_exp = f32_exp-1;
7046 f64_frac = extract64(f64_frac, 0, 51) << 1;
7049 if (extract64(f32_exp, 0, 1) == 0) {
7050 f64 = make_float64(((uint64_t) f32_sbit) << 32
7051 | (0x3feULL << 52)
7052 | f64_frac);
7053 } else {
7054 f64 = make_float64(((uint64_t) f32_sbit) << 32
7055 | (0x3fdULL << 52)
7056 | f64_frac);
7059 result_exp = (380 - f32_exp) / 2;
7061 f64 = recip_sqrt_estimate(f64, s);
7063 val64 = float64_val(f64);
7065 val = ((result_exp & 0xff) << 23)
7066 | ((val64 >> 29) & 0x7fffff);
7067 return make_float32(val);
7070 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
7072 float_status *s = fpstp;
7073 float64 f64 = float64_squash_input_denormal(input, s);
7074 uint64_t val = float64_val(f64);
7075 uint64_t f64_sbit = 0x8000000000000000ULL & val;
7076 int64_t f64_exp = extract64(val, 52, 11);
7077 uint64_t f64_frac = extract64(val, 0, 52);
7078 int64_t result_exp;
7079 uint64_t result_frac;
7081 if (float64_is_any_nan(f64)) {
7082 float64 nan = f64;
7083 if (float64_is_signaling_nan(f64)) {
7084 float_raise(float_flag_invalid, s);
7085 nan = float64_maybe_silence_nan(f64);
7087 if (s->default_nan_mode) {
7088 nan = float64_default_nan;
7090 return nan;
7091 } else if (float64_is_zero(f64)) {
7092 float_raise(float_flag_divbyzero, s);
7093 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7094 } else if (float64_is_neg(f64)) {
7095 float_raise(float_flag_invalid, s);
7096 return float64_default_nan;
7097 } else if (float64_is_infinity(f64)) {
7098 return float64_zero;
7101 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7102 * preserving the parity of the exponent. */
7104 if (f64_exp == 0) {
7105 while (extract64(f64_frac, 51, 1) == 0) {
7106 f64_frac = f64_frac << 1;
7107 f64_exp = f64_exp - 1;
7109 f64_frac = extract64(f64_frac, 0, 51) << 1;
7112 if (extract64(f64_exp, 0, 1) == 0) {
7113 f64 = make_float64(f64_sbit
7114 | (0x3feULL << 52)
7115 | f64_frac);
7116 } else {
7117 f64 = make_float64(f64_sbit
7118 | (0x3fdULL << 52)
7119 | f64_frac);
7122 result_exp = (3068 - f64_exp) / 2;
7124 f64 = recip_sqrt_estimate(f64, s);
7126 result_frac = extract64(float64_val(f64), 0, 52);
7128 return make_float64(f64_sbit |
7129 ((result_exp & 0x7ff) << 52) |
7130 result_frac);
7133 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
7135 float_status *s = fpstp;
7136 float64 f64;
7138 if ((a & 0x80000000) == 0) {
7139 return 0xffffffff;
7142 f64 = make_float64((0x3feULL << 52)
7143 | ((int64_t)(a & 0x7fffffff) << 21));
7145 f64 = recip_estimate(f64, s);
7147 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7150 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
7152 float_status *fpst = fpstp;
7153 float64 f64;
7155 if ((a & 0xc0000000) == 0) {
7156 return 0xffffffff;
7159 if (a & 0x80000000) {
7160 f64 = make_float64((0x3feULL << 52)
7161 | ((uint64_t)(a & 0x7fffffff) << 21));
7162 } else { /* bits 31-30 == '01' */
7163 f64 = make_float64((0x3fdULL << 52)
7164 | ((uint64_t)(a & 0x3fffffff) << 22));
7167 f64 = recip_sqrt_estimate(f64, fpst);
7169 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7172 /* VFPv4 fused multiply-accumulate */
7173 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
7175 float_status *fpst = fpstp;
7176 return float32_muladd(a, b, c, 0, fpst);
7179 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
7181 float_status *fpst = fpstp;
7182 return float64_muladd(a, b, c, 0, fpst);
7185 /* ARMv8 round to integral */
7186 float32 HELPER(rints_exact)(float32 x, void *fp_status)
7188 return float32_round_to_int(x, fp_status);
7191 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
7193 return float64_round_to_int(x, fp_status);
7196 float32 HELPER(rints)(float32 x, void *fp_status)
7198 int old_flags = get_float_exception_flags(fp_status), new_flags;
7199 float32 ret;
7201 ret = float32_round_to_int(x, fp_status);
7203 /* Suppress any inexact exceptions the conversion produced */
7204 if (!(old_flags & float_flag_inexact)) {
7205 new_flags = get_float_exception_flags(fp_status);
7206 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7209 return ret;
7212 float64 HELPER(rintd)(float64 x, void *fp_status)
7214 int old_flags = get_float_exception_flags(fp_status), new_flags;
7215 float64 ret;
7217 ret = float64_round_to_int(x, fp_status);
7219 new_flags = get_float_exception_flags(fp_status);
7221 /* Suppress any inexact exceptions the conversion produced */
7222 if (!(old_flags & float_flag_inexact)) {
7223 new_flags = get_float_exception_flags(fp_status);
7224 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7227 return ret;
7230 /* Convert ARM rounding mode to softfloat */
7231 int arm_rmode_to_sf(int rmode)
7233 switch (rmode) {
7234 case FPROUNDING_TIEAWAY:
7235 rmode = float_round_ties_away;
7236 break;
7237 case FPROUNDING_ODD:
7238 /* FIXME: add support for TIEAWAY and ODD */
7239 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
7240 rmode);
7241 case FPROUNDING_TIEEVEN:
7242 default:
7243 rmode = float_round_nearest_even;
7244 break;
7245 case FPROUNDING_POSINF:
7246 rmode = float_round_up;
7247 break;
7248 case FPROUNDING_NEGINF:
7249 rmode = float_round_down;
7250 break;
7251 case FPROUNDING_ZERO:
7252 rmode = float_round_to_zero;
7253 break;
7255 return rmode;
7258 /* CRC helpers.
7259 * The upper bytes of val (above the number specified by 'bytes') must have
7260 * been zeroed out by the caller.
7262 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
7264 uint8_t buf[4];
7266 stl_le_p(buf, val);
7268 /* zlib crc32 converts the accumulator and output to one's complement. */
7269 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
7272 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
7274 uint8_t buf[4];
7276 stl_le_p(buf, val);
7278 /* Linux crc32c converts the output to one's complement. */
7279 return crc32c(acc, buf, bytes) ^ 0xffffffff;