Makefile: Fix broken build
[qemu/qmp-unstable.git] / cpu-exec.c
blobaef66f290ca86b0bd453a4cd99e71a56031dc3b1
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
25 int tb_invalidated_flag;
27 //#define CONFIG_DEBUG_EXEC
29 bool qemu_cpu_has_work(CPUState *env)
31 return cpu_has_work(env);
34 void cpu_loop_exit(CPUState *env)
36 env->current_tb = NULL;
37 longjmp(env->jmp_env, 1);
40 /* exit the current TB from a signal handler. The host registers are
41 restored in a state compatible with the CPU emulator
43 #if defined(CONFIG_SOFTMMU)
44 void cpu_resume_from_signal(CPUState *env, void *puc)
46 /* XXX: restore cpu registers saved in host registers */
48 env->exception_index = -1;
49 longjmp(env->jmp_env, 1);
51 #endif
53 /* Execute the code without caching the generated code. An interpreter
54 could be used if available. */
55 static void cpu_exec_nocache(CPUState *env, int max_cycles,
56 TranslationBlock *orig_tb)
58 unsigned long next_tb;
59 TranslationBlock *tb;
61 /* Should never happen.
62 We only end up here when an existing TB is too long. */
63 if (max_cycles > CF_COUNT_MASK)
64 max_cycles = CF_COUNT_MASK;
66 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
67 max_cycles);
68 env->current_tb = tb;
69 /* execute the generated code */
70 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
71 env->current_tb = NULL;
73 if ((next_tb & 3) == 2) {
74 /* Restore PC. This may happen if async event occurs before
75 the TB starts executing. */
76 cpu_pc_from_tb(env, tb);
78 tb_phys_invalidate(tb, -1);
79 tb_free(tb);
82 static TranslationBlock *tb_find_slow(CPUState *env,
83 target_ulong pc,
84 target_ulong cs_base,
85 uint64_t flags)
87 TranslationBlock *tb, **ptb1;
88 unsigned int h;
89 tb_page_addr_t phys_pc, phys_page1;
90 target_ulong virt_page2;
92 tb_invalidated_flag = 0;
94 /* find translated block using physical mappings */
95 phys_pc = get_page_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 tb_page_addr_t phys_page2;
111 virt_page2 = (pc & TARGET_PAGE_MASK) +
112 TARGET_PAGE_SIZE;
113 phys_page2 = get_page_addr_code(env, virt_page2);
114 if (tb->page_addr[1] == phys_page2)
115 goto found;
116 } else {
117 goto found;
120 ptb1 = &tb->phys_hash_next;
122 not_found:
123 /* if no translated code available, then translate it now */
124 tb = tb_gen_code(env, pc, cs_base, flags, 0);
126 found:
127 /* Move the last found TB to the head of the list */
128 if (likely(*ptb1)) {
129 *ptb1 = tb->phys_hash_next;
130 tb->phys_hash_next = tb_phys_hash[h];
131 tb_phys_hash[h] = tb;
133 /* we add the TB in the virtual pc hash table */
134 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
135 return tb;
138 static inline TranslationBlock *tb_find_fast(CPUState *env)
140 TranslationBlock *tb;
141 target_ulong cs_base, pc;
142 int flags;
144 /* we record a subset of the CPU state. It will
145 always be the same before a given translated block
146 is executed. */
147 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
148 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
149 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
150 tb->flags != flags)) {
151 tb = tb_find_slow(env, pc, cs_base, flags);
153 return tb;
156 static CPUDebugExcpHandler *debug_excp_handler;
158 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
160 CPUDebugExcpHandler *old_handler = debug_excp_handler;
162 debug_excp_handler = handler;
163 return old_handler;
166 static void cpu_handle_debug_exception(CPUState *env)
168 CPUWatchpoint *wp;
170 if (!env->watchpoint_hit) {
171 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
172 wp->flags &= ~BP_WATCHPOINT_HIT;
175 if (debug_excp_handler) {
176 debug_excp_handler(env);
180 /* main execution loop */
182 volatile sig_atomic_t exit_request;
184 int cpu_exec(CPUState *env)
186 int ret, interrupt_request;
187 TranslationBlock *tb;
188 uint8_t *tc_ptr;
189 unsigned long next_tb;
191 if (env->halted) {
192 if (!cpu_has_work(env)) {
193 return EXCP_HALTED;
196 env->halted = 0;
199 cpu_single_env = env;
201 if (unlikely(exit_request)) {
202 env->exit_request = 1;
205 #if defined(TARGET_I386)
206 /* put eflags in CPU temporary format */
207 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
208 DF = 1 - (2 * ((env->eflags >> 10) & 1));
209 CC_OP = CC_OP_EFLAGS;
210 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
211 #elif defined(TARGET_SPARC)
212 #elif defined(TARGET_M68K)
213 env->cc_op = CC_OP_FLAGS;
214 env->cc_dest = env->sr & 0xf;
215 env->cc_x = (env->sr >> 4) & 1;
216 #elif defined(TARGET_ALPHA)
217 #elif defined(TARGET_ARM)
218 #elif defined(TARGET_UNICORE32)
219 #elif defined(TARGET_PPC)
220 #elif defined(TARGET_LM32)
221 #elif defined(TARGET_MICROBLAZE)
222 #elif defined(TARGET_MIPS)
223 #elif defined(TARGET_SH4)
224 #elif defined(TARGET_CRIS)
225 #elif defined(TARGET_S390X)
226 #elif defined(TARGET_XTENSA)
227 /* XXXXX */
228 #else
229 #error unsupported target CPU
230 #endif
231 env->exception_index = -1;
233 /* prepare setjmp context for exception handling */
234 for(;;) {
235 if (setjmp(env->jmp_env) == 0) {
236 /* if an exception is pending, we execute it here */
237 if (env->exception_index >= 0) {
238 if (env->exception_index >= EXCP_INTERRUPT) {
239 /* exit request from the cpu execution loop */
240 ret = env->exception_index;
241 if (ret == EXCP_DEBUG) {
242 cpu_handle_debug_exception(env);
244 break;
245 } else {
246 #if defined(CONFIG_USER_ONLY)
247 /* if user mode only, we simulate a fake exception
248 which will be handled outside the cpu execution
249 loop */
250 #if defined(TARGET_I386)
251 do_interrupt(env);
252 #endif
253 ret = env->exception_index;
254 break;
255 #else
256 do_interrupt(env);
257 env->exception_index = -1;
258 #endif
262 next_tb = 0; /* force lookup of first TB */
263 for(;;) {
264 interrupt_request = env->interrupt_request;
265 if (unlikely(interrupt_request)) {
266 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
267 /* Mask out external interrupts for this step. */
268 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
270 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
271 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
272 env->exception_index = EXCP_DEBUG;
273 cpu_loop_exit(env);
275 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
276 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
277 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
278 if (interrupt_request & CPU_INTERRUPT_HALT) {
279 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
280 env->halted = 1;
281 env->exception_index = EXCP_HLT;
282 cpu_loop_exit(env);
284 #endif
285 #if defined(TARGET_I386)
286 if (interrupt_request & CPU_INTERRUPT_INIT) {
287 svm_check_intercept(env, SVM_EXIT_INIT);
288 do_cpu_init(env);
289 env->exception_index = EXCP_HALTED;
290 cpu_loop_exit(env);
291 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
292 do_cpu_sipi(env);
293 } else if (env->hflags2 & HF2_GIF_MASK) {
294 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
295 !(env->hflags & HF_SMM_MASK)) {
296 svm_check_intercept(env, SVM_EXIT_SMI);
297 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
298 do_smm_enter(env);
299 next_tb = 0;
300 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
301 !(env->hflags2 & HF2_NMI_MASK)) {
302 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
303 env->hflags2 |= HF2_NMI_MASK;
304 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
305 next_tb = 0;
306 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
307 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
308 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
309 next_tb = 0;
310 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
311 (((env->hflags2 & HF2_VINTR_MASK) &&
312 (env->hflags2 & HF2_HIF_MASK)) ||
313 (!(env->hflags2 & HF2_VINTR_MASK) &&
314 (env->eflags & IF_MASK &&
315 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
316 int intno;
317 svm_check_intercept(env, SVM_EXIT_INTR);
318 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
319 intno = cpu_get_pic_interrupt(env);
320 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
321 do_interrupt_x86_hardirq(env, intno, 1);
322 /* ensure that no TB jump will be modified as
323 the program flow was changed */
324 next_tb = 0;
325 #if !defined(CONFIG_USER_ONLY)
326 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
327 (env->eflags & IF_MASK) &&
328 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
329 int intno;
330 /* FIXME: this should respect TPR */
331 svm_check_intercept(env, SVM_EXIT_VINTR);
332 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
333 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
334 do_interrupt_x86_hardirq(env, intno, 1);
335 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
336 next_tb = 0;
337 #endif
340 #elif defined(TARGET_PPC)
341 #if 0
342 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
343 cpu_reset(env);
345 #endif
346 if (interrupt_request & CPU_INTERRUPT_HARD) {
347 ppc_hw_interrupt(env);
348 if (env->pending_interrupts == 0)
349 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
350 next_tb = 0;
352 #elif defined(TARGET_LM32)
353 if ((interrupt_request & CPU_INTERRUPT_HARD)
354 && (env->ie & IE_IE)) {
355 env->exception_index = EXCP_IRQ;
356 do_interrupt(env);
357 next_tb = 0;
359 #elif defined(TARGET_MICROBLAZE)
360 if ((interrupt_request & CPU_INTERRUPT_HARD)
361 && (env->sregs[SR_MSR] & MSR_IE)
362 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
363 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
364 env->exception_index = EXCP_IRQ;
365 do_interrupt(env);
366 next_tb = 0;
368 #elif defined(TARGET_MIPS)
369 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
370 cpu_mips_hw_interrupts_pending(env)) {
371 /* Raise it */
372 env->exception_index = EXCP_EXT_INTERRUPT;
373 env->error_code = 0;
374 do_interrupt(env);
375 next_tb = 0;
377 #elif defined(TARGET_SPARC)
378 if (interrupt_request & CPU_INTERRUPT_HARD) {
379 if (cpu_interrupts_enabled(env) &&
380 env->interrupt_index > 0) {
381 int pil = env->interrupt_index & 0xf;
382 int type = env->interrupt_index & 0xf0;
384 if (((type == TT_EXTINT) &&
385 cpu_pil_allowed(env, pil)) ||
386 type != TT_EXTINT) {
387 env->exception_index = env->interrupt_index;
388 do_interrupt(env);
389 next_tb = 0;
393 #elif defined(TARGET_ARM)
394 if (interrupt_request & CPU_INTERRUPT_FIQ
395 && !(env->uncached_cpsr & CPSR_F)) {
396 env->exception_index = EXCP_FIQ;
397 do_interrupt(env);
398 next_tb = 0;
400 /* ARMv7-M interrupt return works by loading a magic value
401 into the PC. On real hardware the load causes the
402 return to occur. The qemu implementation performs the
403 jump normally, then does the exception return when the
404 CPU tries to execute code at the magic address.
405 This will cause the magic PC value to be pushed to
406 the stack if an interrupt occurred at the wrong time.
407 We avoid this by disabling interrupts when
408 pc contains a magic address. */
409 if (interrupt_request & CPU_INTERRUPT_HARD
410 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
411 || !(env->uncached_cpsr & CPSR_I))) {
412 env->exception_index = EXCP_IRQ;
413 do_interrupt(env);
414 next_tb = 0;
416 #elif defined(TARGET_UNICORE32)
417 if (interrupt_request & CPU_INTERRUPT_HARD
418 && !(env->uncached_asr & ASR_I)) {
419 do_interrupt(env);
420 next_tb = 0;
422 #elif defined(TARGET_SH4)
423 if (interrupt_request & CPU_INTERRUPT_HARD) {
424 do_interrupt(env);
425 next_tb = 0;
427 #elif defined(TARGET_ALPHA)
429 int idx = -1;
430 /* ??? This hard-codes the OSF/1 interrupt levels. */
431 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
432 case 0 ... 3:
433 if (interrupt_request & CPU_INTERRUPT_HARD) {
434 idx = EXCP_DEV_INTERRUPT;
436 /* FALLTHRU */
437 case 4:
438 if (interrupt_request & CPU_INTERRUPT_TIMER) {
439 idx = EXCP_CLK_INTERRUPT;
441 /* FALLTHRU */
442 case 5:
443 if (interrupt_request & CPU_INTERRUPT_SMP) {
444 idx = EXCP_SMP_INTERRUPT;
446 /* FALLTHRU */
447 case 6:
448 if (interrupt_request & CPU_INTERRUPT_MCHK) {
449 idx = EXCP_MCHK;
452 if (idx >= 0) {
453 env->exception_index = idx;
454 env->error_code = 0;
455 do_interrupt(env);
456 next_tb = 0;
459 #elif defined(TARGET_CRIS)
460 if (interrupt_request & CPU_INTERRUPT_HARD
461 && (env->pregs[PR_CCS] & I_FLAG)
462 && !env->locked_irq) {
463 env->exception_index = EXCP_IRQ;
464 do_interrupt(env);
465 next_tb = 0;
467 if (interrupt_request & CPU_INTERRUPT_NMI
468 && (env->pregs[PR_CCS] & M_FLAG)) {
469 env->exception_index = EXCP_NMI;
470 do_interrupt(env);
471 next_tb = 0;
473 #elif defined(TARGET_M68K)
474 if (interrupt_request & CPU_INTERRUPT_HARD
475 && ((env->sr & SR_I) >> SR_I_SHIFT)
476 < env->pending_level) {
477 /* Real hardware gets the interrupt vector via an
478 IACK cycle at this point. Current emulated
479 hardware doesn't rely on this, so we
480 provide/save the vector when the interrupt is
481 first signalled. */
482 env->exception_index = env->pending_vector;
483 do_interrupt_m68k_hardirq(env);
484 next_tb = 0;
486 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
487 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
488 (env->psw.mask & PSW_MASK_EXT)) {
489 do_interrupt(env);
490 next_tb = 0;
492 #elif defined(TARGET_XTENSA)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
494 env->exception_index = EXC_IRQ;
495 do_interrupt(env);
496 next_tb = 0;
498 #endif
499 /* Don't use the cached interrupt_request value,
500 do_interrupt may have updated the EXITTB flag. */
501 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
502 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
503 /* ensure that no TB jump will be modified as
504 the program flow was changed */
505 next_tb = 0;
508 if (unlikely(env->exit_request)) {
509 env->exit_request = 0;
510 env->exception_index = EXCP_INTERRUPT;
511 cpu_loop_exit(env);
513 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
514 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
515 /* restore flags in standard format */
516 #if defined(TARGET_I386)
517 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
518 | (DF & DF_MASK);
519 log_cpu_state(env, X86_DUMP_CCOP);
520 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
521 #elif defined(TARGET_M68K)
522 cpu_m68k_flush_flags(env, env->cc_op);
523 env->cc_op = CC_OP_FLAGS;
524 env->sr = (env->sr & 0xffe0)
525 | env->cc_dest | (env->cc_x << 4);
526 log_cpu_state(env, 0);
527 #else
528 log_cpu_state(env, 0);
529 #endif
531 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
532 spin_lock(&tb_lock);
533 tb = tb_find_fast(env);
534 /* Note: we do it here to avoid a gcc bug on Mac OS X when
535 doing it in tb_find_slow */
536 if (tb_invalidated_flag) {
537 /* as some TB could have been invalidated because
538 of memory exceptions while generating the code, we
539 must recompute the hash index here */
540 next_tb = 0;
541 tb_invalidated_flag = 0;
543 #ifdef CONFIG_DEBUG_EXEC
544 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
545 (long)tb->tc_ptr, tb->pc,
546 lookup_symbol(tb->pc));
547 #endif
548 /* see if we can patch the calling TB. When the TB
549 spans two pages, we cannot safely do a direct
550 jump. */
551 if (next_tb != 0 && tb->page_addr[1] == -1) {
552 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
554 spin_unlock(&tb_lock);
556 /* cpu_interrupt might be called while translating the
557 TB, but before it is linked into a potentially
558 infinite loop and becomes env->current_tb. Avoid
559 starting execution if there is a pending interrupt. */
560 env->current_tb = tb;
561 barrier();
562 if (likely(!env->exit_request)) {
563 tc_ptr = tb->tc_ptr;
564 /* execute the generated code */
565 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
566 if ((next_tb & 3) == 2) {
567 /* Instruction counter expired. */
568 int insns_left;
569 tb = (TranslationBlock *)(long)(next_tb & ~3);
570 /* Restore PC. */
571 cpu_pc_from_tb(env, tb);
572 insns_left = env->icount_decr.u32;
573 if (env->icount_extra && insns_left >= 0) {
574 /* Refill decrementer and continue execution. */
575 env->icount_extra += insns_left;
576 if (env->icount_extra > 0xffff) {
577 insns_left = 0xffff;
578 } else {
579 insns_left = env->icount_extra;
581 env->icount_extra -= insns_left;
582 env->icount_decr.u16.low = insns_left;
583 } else {
584 if (insns_left > 0) {
585 /* Execute remaining instructions. */
586 cpu_exec_nocache(env, insns_left, tb);
588 env->exception_index = EXCP_INTERRUPT;
589 next_tb = 0;
590 cpu_loop_exit(env);
594 env->current_tb = NULL;
595 /* reset soft MMU for next block (it can currently
596 only be set by a memory fault) */
597 } /* for(;;) */
598 } else {
599 /* Reload env after longjmp - the compiler may have smashed all
600 * local variables as longjmp is marked 'noreturn'. */
601 env = cpu_single_env;
603 } /* for(;;) */
606 #if defined(TARGET_I386)
607 /* restore flags in standard format */
608 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
609 | (DF & DF_MASK);
610 #elif defined(TARGET_ARM)
611 /* XXX: Save/restore host fpu exception state?. */
612 #elif defined(TARGET_UNICORE32)
613 #elif defined(TARGET_SPARC)
614 #elif defined(TARGET_PPC)
615 #elif defined(TARGET_LM32)
616 #elif defined(TARGET_M68K)
617 cpu_m68k_flush_flags(env, env->cc_op);
618 env->cc_op = CC_OP_FLAGS;
619 env->sr = (env->sr & 0xffe0)
620 | env->cc_dest | (env->cc_x << 4);
621 #elif defined(TARGET_MICROBLAZE)
622 #elif defined(TARGET_MIPS)
623 #elif defined(TARGET_SH4)
624 #elif defined(TARGET_ALPHA)
625 #elif defined(TARGET_CRIS)
626 #elif defined(TARGET_S390X)
627 #elif defined(TARGET_XTENSA)
628 /* XXXXX */
629 #else
630 #error unsupported target CPU
631 #endif
633 /* fail safe : never use cpu_single_env outside cpu_exec() */
634 cpu_single_env = NULL;
635 return ret;