2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "sysemu/sysemu.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
36 #include "hw/boards.h"
37 #include "hw/ppc/ppc.h"
38 #include "hw/loader.h"
40 #include "hw/ppc/spapr.h"
41 #include "hw/ppc/spapr_vio.h"
42 #include "hw/pci-host/spapr.h"
43 #include "hw/ppc/xics.h"
44 #include "hw/pci/msi.h"
46 #include "hw/pci/pci.h"
48 #include "exec/address-spaces.h"
50 #include "qemu/config-file.h"
54 /* SLOF memory layout:
56 * SLOF raw image loaded at 0, copies its romfs right below the flat
57 * device-tree, then position SLOF itself 31M below that
59 * So we set FW_OVERHEAD to 40MB which should account for all of that
62 * We load our kernel at 4M, leaving space for SLOF initial image
64 #define FDT_MAX_SIZE 0x10000
65 #define RTAS_MAX_SIZE 0x10000
66 #define FW_MAX_SIZE 0x400000
67 #define FW_FILE_NAME "slof.bin"
68 #define FW_OVERHEAD 0x2800000
69 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
71 #define MIN_RMA_SLOF 128UL
73 #define TIMEBASE_FREQ 512000000ULL
76 #define XICS_IRQS 1024
78 #define PHANDLE_XICP 0x00001111
80 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
82 sPAPREnvironment
*spapr
;
84 int spapr_allocate_irq(int hint
, bool lsi
)
90 /* FIXME: we should probably check for collisions somehow */
92 irq
= spapr
->next_irq
++;
95 /* Configure irq type */
96 if (!xics_get_qirq(spapr
->icp
, irq
)) {
100 xics_set_irq_type(spapr
->icp
, irq
, lsi
);
105 /* Allocate block of consequtive IRQs, returns a number of the first */
106 int spapr_allocate_irq_block(int num
, bool lsi
)
111 for (i
= 0; i
< num
; ++i
) {
114 irq
= spapr_allocate_irq(0, lsi
);
123 /* If the above doesn't create a consecutive block then that's
125 assert(irq
== (first
+ i
));
131 static int spapr_fixup_cpu_dt(void *fdt
, sPAPREnvironment
*spapr
)
137 int smt
= kvmppc_smt_threads();
138 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
140 assert(spapr
->cpu_model
);
142 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
143 cpu
= CPU(ppc_env_get_cpu(env
));
144 uint32_t associativity
[] = {cpu_to_be32(0x5),
148 cpu_to_be32(cpu
->numa_node
),
149 cpu_to_be32(cpu
->cpu_index
)};
151 if ((cpu
->cpu_index
% smt
) != 0) {
155 snprintf(cpu_model
, 32, "/cpus/%s@%x", spapr
->cpu_model
,
158 offset
= fdt_path_offset(fdt
, cpu_model
);
163 if (nb_numa_nodes
> 1) {
164 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
165 sizeof(associativity
));
171 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
172 pft_size_prop
, sizeof(pft_size_prop
));
181 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
184 size_t maxcells
= maxsize
/ sizeof(uint32_t);
188 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
189 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
191 if (!sps
->page_shift
) {
194 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
195 if (sps
->enc
[count
].page_shift
== 0) {
199 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
202 *(p
++) = cpu_to_be32(sps
->page_shift
);
203 *(p
++) = cpu_to_be32(sps
->slb_enc
);
204 *(p
++) = cpu_to_be32(count
);
205 for (j
= 0; j
< count
; j
++) {
206 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
207 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
211 return (p
- prop
) * sizeof(uint32_t);
218 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
219 #exp, fdt_strerror(ret)); \
225 static void *spapr_create_fdt_skel(const char *cpu_model
,
229 const char *boot_device
,
230 const char *kernel_cmdline
,
235 uint32_t start_prop
= cpu_to_be32(initrd_base
);
236 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
237 char hypertas_prop
[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
238 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
239 char qemu_hypertas_prop
[] = "hcall-memop1";
240 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
241 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(smp_cpus
)};
243 int i
, smt
= kvmppc_smt_threads();
244 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
246 fdt
= g_malloc0(FDT_MAX_SIZE
);
247 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
250 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
253 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
255 _FDT((fdt_finish_reservemap(fdt
)));
258 _FDT((fdt_begin_node(fdt
, "")));
259 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
260 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
261 _FDT((fdt_property_string(fdt
, "compatible", "qemu,pseries")));
263 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
264 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
267 _FDT((fdt_begin_node(fdt
, "chosen")));
269 /* Set Form1_affinity */
270 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
272 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
273 _FDT((fdt_property(fdt
, "linux,initrd-start",
274 &start_prop
, sizeof(start_prop
))));
275 _FDT((fdt_property(fdt
, "linux,initrd-end",
276 &end_prop
, sizeof(end_prop
))));
278 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
279 cpu_to_be64(kernel_size
) };
281 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
284 _FDT((fdt_property_string(fdt
, "qemu,boot-device", boot_device
)));
286 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
287 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
288 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
290 _FDT((fdt_end_node(fdt
)));
293 _FDT((fdt_begin_node(fdt
, "cpus")));
295 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
296 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
298 modelname
= g_strdup(cpu_model
);
300 for (i
= 0; i
< strlen(modelname
); i
++) {
301 modelname
[i
] = toupper(modelname
[i
]);
304 /* This is needed during FDT finalization */
305 spapr
->cpu_model
= g_strdup(modelname
);
307 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
308 CPUState
*cpu
= CPU(ppc_env_get_cpu(env
));
309 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
310 int index
= cpu
->cpu_index
;
311 uint32_t servers_prop
[smp_threads
];
312 uint32_t gservers_prop
[smp_threads
* 2];
314 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
316 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
317 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318 uint32_t page_sizes_prop
[64];
319 size_t page_sizes_prop_size
;
321 if ((index
% smt
) != 0) {
325 nodename
= g_strdup_printf("%s@%x", modelname
, index
);
327 _FDT((fdt_begin_node(fdt
, nodename
)));
331 _FDT((fdt_property_cell(fdt
, "reg", index
)));
332 _FDT((fdt_property_string(fdt
, "device_type", "cpu")));
334 _FDT((fdt_property_cell(fdt
, "cpu-version", env
->spr
[SPR_PVR
])));
335 _FDT((fdt_property_cell(fdt
, "d-cache-block-size",
336 env
->dcache_line_size
)));
337 _FDT((fdt_property_cell(fdt
, "d-cache-line-size",
338 env
->dcache_line_size
)));
339 _FDT((fdt_property_cell(fdt
, "i-cache-block-size",
340 env
->icache_line_size
)));
341 _FDT((fdt_property_cell(fdt
, "i-cache-line-size",
342 env
->icache_line_size
)));
344 if (pcc
->l1_dcache_size
) {
345 _FDT((fdt_property_cell(fdt
, "d-cache-size", pcc
->l1_dcache_size
)));
347 fprintf(stderr
, "Warning: Unknown L1 dcache size for cpu\n");
349 if (pcc
->l1_icache_size
) {
350 _FDT((fdt_property_cell(fdt
, "i-cache-size", pcc
->l1_icache_size
)));
352 fprintf(stderr
, "Warning: Unknown L1 icache size for cpu\n");
355 _FDT((fdt_property_cell(fdt
, "timebase-frequency", tbfreq
)));
356 _FDT((fdt_property_cell(fdt
, "clock-frequency", cpufreq
)));
357 _FDT((fdt_property_cell(fdt
, "ibm,slb-size", env
->slb_nr
)));
358 _FDT((fdt_property_string(fdt
, "status", "okay")));
359 _FDT((fdt_property(fdt
, "64-bit", NULL
, 0)));
361 /* Build interrupt servers and gservers properties */
362 for (i
= 0; i
< smp_threads
; i
++) {
363 servers_prop
[i
] = cpu_to_be32(index
+ i
);
364 /* Hack, direct the group queues back to cpu 0 */
365 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
366 gservers_prop
[i
*2 + 1] = 0;
368 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-server#s",
369 servers_prop
, sizeof(servers_prop
))));
370 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-gserver#s",
371 gservers_prop
, sizeof(gservers_prop
))));
373 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
374 _FDT((fdt_property(fdt
, "ibm,processor-segment-sizes",
375 segs
, sizeof(segs
))));
378 /* Advertise VMX/VSX (vector extensions) if available
379 * 0 / no property == no vector extensions
380 * 1 == VMX / Altivec available
381 * 2 == VSX available */
382 if (env
->insns_flags
& PPC_ALTIVEC
) {
383 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
385 _FDT((fdt_property_cell(fdt
, "ibm,vmx", vmx
)));
388 /* Advertise DFP (Decimal Floating Point) if available
389 * 0 / no property == no DFP
390 * 1 == DFP available */
391 if (env
->insns_flags2
& PPC2_DFP
) {
392 _FDT((fdt_property_cell(fdt
, "ibm,dfp", 1)));
395 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
396 sizeof(page_sizes_prop
));
397 if (page_sizes_prop_size
) {
398 _FDT((fdt_property(fdt
, "ibm,segment-page-sizes",
399 page_sizes_prop
, page_sizes_prop_size
)));
402 _FDT((fdt_end_node(fdt
)));
407 _FDT((fdt_end_node(fdt
)));
410 _FDT((fdt_begin_node(fdt
, "rtas")));
412 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas_prop
,
413 sizeof(hypertas_prop
))));
414 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas_prop
,
415 sizeof(qemu_hypertas_prop
))));
417 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
418 refpoints
, sizeof(refpoints
))));
420 _FDT((fdt_property_cell(fdt
, "rtas-error-log-max", RTAS_ERROR_LOG_MAX
)));
422 _FDT((fdt_end_node(fdt
)));
424 /* interrupt controller */
425 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
427 _FDT((fdt_property_string(fdt
, "device_type",
428 "PowerPC-External-Interrupt-Presentation")));
429 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
430 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
431 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
432 interrupt_server_ranges_prop
,
433 sizeof(interrupt_server_ranges_prop
))));
434 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
435 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
436 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
438 _FDT((fdt_end_node(fdt
)));
441 _FDT((fdt_begin_node(fdt
, "vdevice")));
443 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
444 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
445 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
446 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
447 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
448 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
450 _FDT((fdt_end_node(fdt
)));
453 spapr_events_fdt_skel(fdt
, epow_irq
);
455 _FDT((fdt_end_node(fdt
))); /* close root node */
456 _FDT((fdt_finish(fdt
)));
461 static int spapr_populate_memory(sPAPREnvironment
*spapr
, void *fdt
)
463 uint32_t associativity
[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
464 cpu_to_be32(0x0), cpu_to_be32(0x0),
467 hwaddr node0_size
, mem_start
;
468 uint64_t mem_reg_property
[2];
472 node0_size
= (nb_numa_nodes
> 1) ? node_mem
[0] : ram_size
;
473 if (spapr
->rma_size
> node0_size
) {
474 spapr
->rma_size
= node0_size
;
478 mem_reg_property
[0] = 0;
479 mem_reg_property
[1] = cpu_to_be64(spapr
->rma_size
);
480 off
= fdt_add_subnode(fdt
, 0, "memory@0");
482 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
483 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
484 sizeof(mem_reg_property
))));
485 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
486 sizeof(associativity
))));
489 if (node0_size
> spapr
->rma_size
) {
490 mem_reg_property
[0] = cpu_to_be64(spapr
->rma_size
);
491 mem_reg_property
[1] = cpu_to_be64(node0_size
- spapr
->rma_size
);
493 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, spapr
->rma_size
);
494 off
= fdt_add_subnode(fdt
, 0, mem_name
);
496 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
497 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
498 sizeof(mem_reg_property
))));
499 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
500 sizeof(associativity
))));
503 /* RAM: Node 1 and beyond */
504 mem_start
= node0_size
;
505 for (i
= 1; i
< nb_numa_nodes
; i
++) {
506 mem_reg_property
[0] = cpu_to_be64(mem_start
);
507 mem_reg_property
[1] = cpu_to_be64(node_mem
[i
]);
508 associativity
[3] = associativity
[4] = cpu_to_be32(i
);
509 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, mem_start
);
510 off
= fdt_add_subnode(fdt
, 0, mem_name
);
512 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
513 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
514 sizeof(mem_reg_property
))));
515 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
516 sizeof(associativity
))));
517 mem_start
+= node_mem
[i
];
523 static void spapr_finalize_fdt(sPAPREnvironment
*spapr
,
532 fdt
= g_malloc(FDT_MAX_SIZE
);
534 /* open out the base tree into a temp buffer for the final tweaks */
535 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
537 ret
= spapr_populate_memory(spapr
, fdt
);
539 fprintf(stderr
, "couldn't setup memory nodes in fdt\n");
543 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
545 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
549 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
550 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
554 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
559 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
561 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
564 /* Advertise NUMA via ibm,associativity */
565 ret
= spapr_fixup_cpu_dt(fdt
, spapr
);
567 fprintf(stderr
, "Couldn't finalize CPU device tree properties\n");
570 if (!spapr
->has_graphics
) {
571 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
574 _FDT((fdt_pack(fdt
)));
576 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
577 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
578 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
582 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
587 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
589 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
592 static void emulate_spapr_hypercall(PowerPCCPU
*cpu
)
594 CPUPPCState
*env
= &cpu
->env
;
597 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
598 env
->gpr
[3] = H_PRIVILEGE
;
600 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
604 static void spapr_reset_htab(sPAPREnvironment
*spapr
)
608 /* allocate hash page table. For now we always make this 16mb,
609 * later we should probably make it scale to the size of guest
612 shift
= kvmppc_reset_htab(spapr
->htab_shift
);
615 /* Kernel handles htab, we don't need to allocate one */
616 spapr
->htab_shift
= shift
;
619 /* Allocate an htab if we don't yet have one */
620 spapr
->htab
= qemu_memalign(HTAB_SIZE(spapr
), HTAB_SIZE(spapr
));
624 memset(spapr
->htab
, 0, HTAB_SIZE(spapr
));
627 /* Update the RMA size if necessary */
628 if (spapr
->vrma_adjust
) {
629 spapr
->rma_size
= kvmppc_rma_size(ram_size
, spapr
->htab_shift
);
633 static void ppc_spapr_reset(void)
635 CPUState
*first_cpu_cpu
;
637 /* Reset the hash table & recalc the RMA */
638 spapr_reset_htab(spapr
);
640 qemu_devices_reset();
643 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
646 /* Set up the entry state */
647 first_cpu_cpu
= ENV_GET_CPU(first_cpu
);
648 first_cpu
->gpr
[3] = spapr
->fdt_addr
;
649 first_cpu
->gpr
[5] = 0;
650 first_cpu_cpu
->halted
= 0;
651 first_cpu
->nip
= spapr
->entry_point
;
655 static void spapr_cpu_reset(void *opaque
)
657 PowerPCCPU
*cpu
= opaque
;
658 CPUState
*cs
= CPU(cpu
);
659 CPUPPCState
*env
= &cpu
->env
;
663 /* All CPUs start halted. CPU0 is unhalted from the machine level
664 * reset code and the rest are explicitly started up by the guest
665 * using an RTAS call */
668 env
->spr
[SPR_HIOR
] = 0;
670 env
->external_htab
= spapr
->htab
;
672 env
->htab_mask
= HTAB_SIZE(spapr
) - 1;
673 env
->spr
[SPR_SDR1
] = (unsigned long)spapr
->htab
|
674 (spapr
->htab_shift
- 18);
677 static void spapr_create_nvram(sPAPREnvironment
*spapr
)
679 QemuOpts
*machine_opts
;
682 dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
684 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
686 const char *drivename
;
688 drivename
= qemu_opt_get(machine_opts
, "nvram");
690 BlockDriverState
*bs
;
692 bs
= bdrv_find(drivename
);
694 fprintf(stderr
, "No such block device \"%s\" for nvram\n",
698 qdev_prop_set_drive_nofail(dev
, "drive", bs
);
702 qdev_init_nofail(dev
);
704 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
707 /* Returns whether we want to use VGA or not */
708 static int spapr_vga_init(PCIBus
*pci_bus
)
710 switch (vga_interface_type
) {
713 return pci_vga_init(pci_bus
) != NULL
;
715 fprintf(stderr
, "This vga model is not supported,"
716 "currently it only supports -vga std\n");
722 /* pSeries LPAR / sPAPR hardware init */
723 static void ppc_spapr_init(QEMUMachineInitArgs
*args
)
725 ram_addr_t ram_size
= args
->ram_size
;
726 const char *cpu_model
= args
->cpu_model
;
727 const char *kernel_filename
= args
->kernel_filename
;
728 const char *kernel_cmdline
= args
->kernel_cmdline
;
729 const char *initrd_filename
= args
->initrd_filename
;
730 const char *boot_device
= args
->boot_device
;
735 MemoryRegion
*sysmem
= get_system_memory();
736 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
737 hwaddr rma_alloc_size
;
738 uint32_t initrd_base
= 0;
739 long kernel_size
= 0, initrd_size
= 0;
740 long load_limit
, rtas_limit
, fw_size
;
743 msi_supported
= true;
745 spapr
= g_malloc0(sizeof(*spapr
));
746 QLIST_INIT(&spapr
->phbs
);
748 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
750 /* Allocate RMA if necessary */
751 rma_alloc_size
= kvmppc_alloc_rma("ppc_spapr.rma", sysmem
);
753 if (rma_alloc_size
== -1) {
754 hw_error("qemu: Unable to create RMA\n");
758 if (rma_alloc_size
&& (rma_alloc_size
< ram_size
)) {
759 spapr
->rma_size
= rma_alloc_size
;
761 spapr
->rma_size
= ram_size
;
763 /* With KVM, we don't actually know whether KVM supports an
764 * unbounded RMA (PR KVM) or is limited by the hash table size
765 * (HV KVM using VRMA), so we always assume the latter
767 * In that case, we also limit the initial allocations for RTAS
768 * etc... to 256M since we have no way to know what the VRMA size
769 * is going to be as it depends on the size of the hash table
770 * isn't determined yet.
773 spapr
->vrma_adjust
= 1;
774 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
778 /* We place the device tree and RTAS just below either the top of the RMA,
779 * or just below 2GB, whichever is lowere, so that it can be
780 * processed with 32-bit real mode code if necessary */
781 rtas_limit
= MIN(spapr
->rma_size
, 0x80000000);
782 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
783 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
784 load_limit
= spapr
->fdt_addr
- FW_OVERHEAD
;
786 /* We aim for a hash table of size 1/128 the size of RAM. The
787 * normal rule of thumb is 1/64 the size of RAM, but that's much
788 * more than needed for the Linux guests we support. */
789 spapr
->htab_shift
= 18; /* Minimum architected size */
790 while (spapr
->htab_shift
<= 46) {
791 if ((1ULL << (spapr
->htab_shift
+ 7)) >= ram_size
) {
797 /* Set up Interrupt Controller before we create the VCPUs */
798 spapr
->icp
= xics_system_init(smp_cpus
* kvmppc_smt_threads() / smp_threads
,
800 spapr
->next_irq
= XICS_IRQ_BASE
;
803 if (cpu_model
== NULL
) {
804 cpu_model
= kvm_enabled() ? "host" : "POWER7";
806 for (i
= 0; i
< smp_cpus
; i
++) {
807 cpu
= cpu_ppc_init(cpu_model
);
809 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
814 xics_cpu_setup(spapr
->icp
, cpu
);
816 /* Set time-base frequency to 512 MHz */
817 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
819 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
820 * MSR[IP] should never be set.
822 env
->msr_mask
&= ~(1 << 6);
824 /* Tell KVM that we're in PAPR mode */
826 kvmppc_set_papr(cpu
);
829 qemu_register_reset(spapr_cpu_reset
, cpu
);
833 spapr
->ram_limit
= ram_size
;
834 if (spapr
->ram_limit
> rma_alloc_size
) {
835 ram_addr_t nonrma_base
= rma_alloc_size
;
836 ram_addr_t nonrma_size
= spapr
->ram_limit
- rma_alloc_size
;
838 memory_region_init_ram(ram
, "ppc_spapr.ram", nonrma_size
);
839 vmstate_register_ram_global(ram
);
840 memory_region_add_subregion(sysmem
, nonrma_base
, ram
);
843 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
844 spapr
->rtas_size
= load_image_targphys(filename
, spapr
->rtas_addr
,
845 rtas_limit
- spapr
->rtas_addr
);
846 if (spapr
->rtas_size
< 0) {
847 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
850 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
851 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
852 spapr
->rtas_size
, RTAS_MAX_SIZE
);
857 /* Set up EPOW events infrastructure */
858 spapr_events_init(spapr
);
864 spapr
->vio_bus
= spapr_vio_bus_init();
866 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
868 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
872 /* We always have at least the nvram device on VIO */
873 spapr_create_nvram(spapr
);
876 spapr_pci_rtas_init();
878 phb
= spapr_create_phb(spapr
, 0);
880 for (i
= 0; i
< nb_nics
; i
++) {
881 NICInfo
*nd
= &nd_table
[i
];
884 nd
->model
= g_strdup("ibmveth");
887 if (strcmp(nd
->model
, "ibmveth") == 0) {
888 spapr_vlan_create(spapr
->vio_bus
, nd
);
890 pci_nic_init_nofail(&nd_table
[i
], nd
->model
, NULL
);
894 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
895 spapr_vscsi_create(spapr
->vio_bus
);
899 if (spapr_vga_init(phb
->bus
)) {
900 spapr
->has_graphics
= true;
903 if (usb_enabled(spapr
->has_graphics
)) {
904 pci_create_simple(phb
->bus
, -1, "pci-ohci");
905 if (spapr
->has_graphics
) {
906 usbdevice_create("keyboard");
907 usbdevice_create("mouse");
911 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
912 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
913 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
917 if (kernel_filename
) {
918 uint64_t lowaddr
= 0;
920 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
921 NULL
, &lowaddr
, NULL
, 1, ELF_MACHINE
, 0);
922 if (kernel_size
< 0) {
923 kernel_size
= load_image_targphys(kernel_filename
,
925 load_limit
- KERNEL_LOAD_ADDR
);
927 if (kernel_size
< 0) {
928 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
934 if (initrd_filename
) {
935 /* Try to locate the initrd in the gap between the kernel
936 * and the firmware. Add a bit of space just in case
938 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
939 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
940 load_limit
- initrd_base
);
941 if (initrd_size
< 0) {
942 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
952 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, FW_FILE_NAME
);
953 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
955 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
960 spapr
->entry_point
= 0x100;
962 /* Prepare the device tree */
963 spapr
->fdt_skel
= spapr_create_fdt_skel(cpu_model
,
964 initrd_base
, initrd_size
,
966 boot_device
, kernel_cmdline
,
968 assert(spapr
->fdt_skel
!= NULL
);
971 static QEMUMachine spapr_machine
= {
973 .desc
= "pSeries Logical Partition (PAPR compliant)",
974 .init
= ppc_spapr_init
,
975 .reset
= ppc_spapr_reset
,
976 .block_default_type
= IF_SCSI
,
977 .max_cpus
= MAX_CPUS
,
982 static void spapr_machine_init(void)
984 qemu_register_machine(&spapr_machine
);
987 machine_init(spapr_machine_init
);