Revert "gdbstub: Do not kill target in system emulation mode"
[qemu/qmp-unstable.git] / hw / timer / hpet.c
blobb6b8a2063da63ad052539db79d95a7ac707d197c
1 /*
2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "ui/console.h"
30 #include "qemu/timer.h"
31 #include "hw/timer/hpet.h"
32 #include "hw/sysbus.h"
33 #include "hw/timer/mc146818rtc.h"
34 #include "hw/timer/i8254.h"
36 //#define HPET_DEBUG
37 #ifdef HPET_DEBUG
38 #define DPRINTF printf
39 #else
40 #define DPRINTF(...)
41 #endif
43 #define HPET_MSI_SUPPORT 0
45 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
47 struct HPETState;
48 typedef struct HPETTimer { /* timers */
49 uint8_t tn; /*timer number*/
50 QEMUTimer *qemu_timer;
51 struct HPETState *state;
52 /* Memory-mapped, software visible timer registers */
53 uint64_t config; /* configuration/cap */
54 uint64_t cmp; /* comparator */
55 uint64_t fsb; /* FSB route */
56 /* Hidden register state */
57 uint64_t period; /* Last value written to comparator */
58 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
59 * mode. Next pop will be actual timer expiration.
61 } HPETTimer;
63 typedef struct HPETState {
64 /*< private >*/
65 SysBusDevice parent_obj;
66 /*< public >*/
68 MemoryRegion iomem;
69 uint64_t hpet_offset;
70 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
71 uint32_t flags;
72 uint8_t rtc_irq_level;
73 qemu_irq pit_enabled;
74 uint8_t num_timers;
75 uint32_t intcap;
76 HPETTimer timer[HPET_MAX_TIMERS];
78 /* Memory-mapped, software visible registers */
79 uint64_t capability; /* capabilities */
80 uint64_t config; /* configuration */
81 uint64_t isr; /* interrupt status reg */
82 uint64_t hpet_counter; /* main counter */
83 uint8_t hpet_id; /* instance id */
84 } HPETState;
86 static uint32_t hpet_in_legacy_mode(HPETState *s)
88 return s->config & HPET_CFG_LEGACY;
91 static uint32_t timer_int_route(struct HPETTimer *timer)
93 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
96 static uint32_t timer_fsb_route(HPETTimer *t)
98 return t->config & HPET_TN_FSB_ENABLE;
101 static uint32_t hpet_enabled(HPETState *s)
103 return s->config & HPET_CFG_ENABLE;
106 static uint32_t timer_is_periodic(HPETTimer *t)
108 return t->config & HPET_TN_PERIODIC;
111 static uint32_t timer_enabled(HPETTimer *t)
113 return t->config & HPET_TN_ENABLE;
116 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
118 return ((int32_t)(b) - (int32_t)(a) < 0);
121 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
123 return ((int64_t)(b) - (int64_t)(a) < 0);
126 static uint64_t ticks_to_ns(uint64_t value)
128 return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
131 static uint64_t ns_to_ticks(uint64_t value)
133 return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
136 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
138 new &= mask;
139 new |= old & ~mask;
140 return new;
143 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
145 return (!(old & mask) && (new & mask));
148 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
150 return ((old & mask) && !(new & mask));
153 static uint64_t hpet_get_ticks(HPETState *s)
155 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
159 * calculate diff between comparator value and current ticks
161 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
164 if (t->config & HPET_TN_32BIT) {
165 uint32_t diff, cmp;
167 cmp = (uint32_t)t->cmp;
168 diff = cmp - (uint32_t)current;
169 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
170 return (uint64_t)diff;
171 } else {
172 uint64_t diff, cmp;
174 cmp = t->cmp;
175 diff = cmp - current;
176 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
177 return diff;
181 static void update_irq(struct HPETTimer *timer, int set)
183 uint64_t mask;
184 HPETState *s;
185 int route;
187 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
188 /* if LegacyReplacementRoute bit is set, HPET specification requires
189 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
190 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
192 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
193 } else {
194 route = timer_int_route(timer);
196 s = timer->state;
197 mask = 1 << timer->tn;
198 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
199 s->isr &= ~mask;
200 if (!timer_fsb_route(timer)) {
201 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
202 if (route >= ISA_NUM_IRQS) {
203 qemu_irq_raise(s->irqs[route]);
204 } else {
205 qemu_irq_lower(s->irqs[route]);
208 } else if (timer_fsb_route(timer)) {
209 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
210 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
211 NULL);
212 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
213 s->isr |= mask;
214 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
215 if (route >= ISA_NUM_IRQS) {
216 qemu_irq_lower(s->irqs[route]);
217 } else {
218 qemu_irq_raise(s->irqs[route]);
220 } else {
221 s->isr &= ~mask;
222 qemu_irq_pulse(s->irqs[route]);
226 static void hpet_pre_save(void *opaque)
228 HPETState *s = opaque;
230 /* save current counter value */
231 s->hpet_counter = hpet_get_ticks(s);
234 static int hpet_pre_load(void *opaque)
236 HPETState *s = opaque;
238 /* version 1 only supports 3, later versions will load the actual value */
239 s->num_timers = HPET_MIN_TIMERS;
240 return 0;
243 static bool hpet_validate_num_timers(void *opaque, int version_id)
245 HPETState *s = opaque;
247 if (s->num_timers < HPET_MIN_TIMERS) {
248 return false;
249 } else if (s->num_timers > HPET_MAX_TIMERS) {
250 return false;
252 return true;
255 static int hpet_post_load(void *opaque, int version_id)
257 HPETState *s = opaque;
259 /* Recalculate the offset between the main counter and guest time */
260 s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
262 /* Push number of timers into capability returned via HPET_ID */
263 s->capability &= ~HPET_ID_NUM_TIM_MASK;
264 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
265 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
267 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
268 s->flags &= ~(1 << HPET_MSI_SUPPORT);
269 if (s->timer[0].config & HPET_TN_FSB_CAP) {
270 s->flags |= 1 << HPET_MSI_SUPPORT;
272 return 0;
275 static bool hpet_rtc_irq_level_needed(void *opaque)
277 HPETState *s = opaque;
279 return s->rtc_irq_level != 0;
282 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
283 .name = "hpet/rtc_irq_level",
284 .version_id = 1,
285 .minimum_version_id = 1,
286 .fields = (VMStateField[]) {
287 VMSTATE_UINT8(rtc_irq_level, HPETState),
288 VMSTATE_END_OF_LIST()
292 static const VMStateDescription vmstate_hpet_timer = {
293 .name = "hpet_timer",
294 .version_id = 1,
295 .minimum_version_id = 1,
296 .fields = (VMStateField[]) {
297 VMSTATE_UINT8(tn, HPETTimer),
298 VMSTATE_UINT64(config, HPETTimer),
299 VMSTATE_UINT64(cmp, HPETTimer),
300 VMSTATE_UINT64(fsb, HPETTimer),
301 VMSTATE_UINT64(period, HPETTimer),
302 VMSTATE_UINT8(wrap_flag, HPETTimer),
303 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
304 VMSTATE_END_OF_LIST()
308 static const VMStateDescription vmstate_hpet = {
309 .name = "hpet",
310 .version_id = 2,
311 .minimum_version_id = 1,
312 .pre_save = hpet_pre_save,
313 .pre_load = hpet_pre_load,
314 .post_load = hpet_post_load,
315 .fields = (VMStateField[]) {
316 VMSTATE_UINT64(config, HPETState),
317 VMSTATE_UINT64(isr, HPETState),
318 VMSTATE_UINT64(hpet_counter, HPETState),
319 VMSTATE_UINT8_V(num_timers, HPETState, 2),
320 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
321 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
322 vmstate_hpet_timer, HPETTimer),
323 VMSTATE_END_OF_LIST()
325 .subsections = (VMStateSubsection[]) {
327 .vmsd = &vmstate_hpet_rtc_irq_level,
328 .needed = hpet_rtc_irq_level_needed,
329 }, {
330 /* empty */
336 * timer expiration callback
338 static void hpet_timer(void *opaque)
340 HPETTimer *t = opaque;
341 uint64_t diff;
343 uint64_t period = t->period;
344 uint64_t cur_tick = hpet_get_ticks(t->state);
346 if (timer_is_periodic(t) && period != 0) {
347 if (t->config & HPET_TN_32BIT) {
348 while (hpet_time_after(cur_tick, t->cmp)) {
349 t->cmp = (uint32_t)(t->cmp + t->period);
351 } else {
352 while (hpet_time_after64(cur_tick, t->cmp)) {
353 t->cmp += period;
356 diff = hpet_calculate_diff(t, cur_tick);
357 timer_mod(t->qemu_timer,
358 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
359 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
360 if (t->wrap_flag) {
361 diff = hpet_calculate_diff(t, cur_tick);
362 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
363 (int64_t)ticks_to_ns(diff));
364 t->wrap_flag = 0;
367 update_irq(t, 1);
370 static void hpet_set_timer(HPETTimer *t)
372 uint64_t diff;
373 uint32_t wrap_diff; /* how many ticks until we wrap? */
374 uint64_t cur_tick = hpet_get_ticks(t->state);
376 /* whenever new timer is being set up, make sure wrap_flag is 0 */
377 t->wrap_flag = 0;
378 diff = hpet_calculate_diff(t, cur_tick);
380 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
381 * counter wraps in addition to an interrupt with comparator match.
383 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
384 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
385 if (wrap_diff < (uint32_t)diff) {
386 diff = wrap_diff;
387 t->wrap_flag = 1;
390 timer_mod(t->qemu_timer,
391 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
394 static void hpet_del_timer(HPETTimer *t)
396 timer_del(t->qemu_timer);
397 update_irq(t, 0);
400 #ifdef HPET_DEBUG
401 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
403 printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
404 return 0;
407 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
409 printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
410 return 0;
412 #endif
414 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
415 unsigned size)
417 HPETState *s = opaque;
418 uint64_t cur_tick, index;
420 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
421 index = addr;
422 /*address range of all TN regs*/
423 if (index >= 0x100 && index <= 0x3ff) {
424 uint8_t timer_id = (addr - 0x100) / 0x20;
425 HPETTimer *timer = &s->timer[timer_id];
427 if (timer_id > s->num_timers) {
428 DPRINTF("qemu: timer id out of range\n");
429 return 0;
432 switch ((addr - 0x100) % 0x20) {
433 case HPET_TN_CFG:
434 return timer->config;
435 case HPET_TN_CFG + 4: // Interrupt capabilities
436 return timer->config >> 32;
437 case HPET_TN_CMP: // comparator register
438 return timer->cmp;
439 case HPET_TN_CMP + 4:
440 return timer->cmp >> 32;
441 case HPET_TN_ROUTE:
442 return timer->fsb;
443 case HPET_TN_ROUTE + 4:
444 return timer->fsb >> 32;
445 default:
446 DPRINTF("qemu: invalid hpet_ram_readl\n");
447 break;
449 } else {
450 switch (index) {
451 case HPET_ID:
452 return s->capability;
453 case HPET_PERIOD:
454 return s->capability >> 32;
455 case HPET_CFG:
456 return s->config;
457 case HPET_CFG + 4:
458 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
459 return 0;
460 case HPET_COUNTER:
461 if (hpet_enabled(s)) {
462 cur_tick = hpet_get_ticks(s);
463 } else {
464 cur_tick = s->hpet_counter;
466 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
467 return cur_tick;
468 case HPET_COUNTER + 4:
469 if (hpet_enabled(s)) {
470 cur_tick = hpet_get_ticks(s);
471 } else {
472 cur_tick = s->hpet_counter;
474 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
475 return cur_tick >> 32;
476 case HPET_STATUS:
477 return s->isr;
478 default:
479 DPRINTF("qemu: invalid hpet_ram_readl\n");
480 break;
483 return 0;
486 static void hpet_ram_write(void *opaque, hwaddr addr,
487 uint64_t value, unsigned size)
489 int i;
490 HPETState *s = opaque;
491 uint64_t old_val, new_val, val, index;
493 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
494 index = addr;
495 old_val = hpet_ram_read(opaque, addr, 4);
496 new_val = value;
498 /*address range of all TN regs*/
499 if (index >= 0x100 && index <= 0x3ff) {
500 uint8_t timer_id = (addr - 0x100) / 0x20;
501 HPETTimer *timer = &s->timer[timer_id];
503 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
504 if (timer_id > s->num_timers) {
505 DPRINTF("qemu: timer id out of range\n");
506 return;
508 switch ((addr - 0x100) % 0x20) {
509 case HPET_TN_CFG:
510 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
511 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
512 update_irq(timer, 0);
514 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
515 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
516 if (new_val & HPET_TN_32BIT) {
517 timer->cmp = (uint32_t)timer->cmp;
518 timer->period = (uint32_t)timer->period;
520 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
521 hpet_enabled(s)) {
522 hpet_set_timer(timer);
523 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
524 hpet_del_timer(timer);
526 break;
527 case HPET_TN_CFG + 4: // Interrupt capabilities
528 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
529 break;
530 case HPET_TN_CMP: // comparator register
531 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
532 if (timer->config & HPET_TN_32BIT) {
533 new_val = (uint32_t)new_val;
535 if (!timer_is_periodic(timer)
536 || (timer->config & HPET_TN_SETVAL)) {
537 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
539 if (timer_is_periodic(timer)) {
541 * FIXME: Clamp period to reasonable min value?
542 * Clamp period to reasonable max value
544 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
545 timer->period =
546 (timer->period & 0xffffffff00000000ULL) | new_val;
548 timer->config &= ~HPET_TN_SETVAL;
549 if (hpet_enabled(s)) {
550 hpet_set_timer(timer);
552 break;
553 case HPET_TN_CMP + 4: // comparator register high order
554 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
555 if (!timer_is_periodic(timer)
556 || (timer->config & HPET_TN_SETVAL)) {
557 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
558 } else {
560 * FIXME: Clamp period to reasonable min value?
561 * Clamp period to reasonable max value
563 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
564 timer->period =
565 (timer->period & 0xffffffffULL) | new_val << 32;
567 timer->config &= ~HPET_TN_SETVAL;
568 if (hpet_enabled(s)) {
569 hpet_set_timer(timer);
571 break;
572 case HPET_TN_ROUTE:
573 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
574 break;
575 case HPET_TN_ROUTE + 4:
576 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
577 break;
578 default:
579 DPRINTF("qemu: invalid hpet_ram_writel\n");
580 break;
582 return;
583 } else {
584 switch (index) {
585 case HPET_ID:
586 return;
587 case HPET_CFG:
588 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
589 s->config = (s->config & 0xffffffff00000000ULL) | val;
590 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
591 /* Enable main counter and interrupt generation. */
592 s->hpet_offset =
593 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
594 for (i = 0; i < s->num_timers; i++) {
595 if ((&s->timer[i])->cmp != ~0ULL) {
596 hpet_set_timer(&s->timer[i]);
599 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
600 /* Halt main counter and disable interrupt generation. */
601 s->hpet_counter = hpet_get_ticks(s);
602 for (i = 0; i < s->num_timers; i++) {
603 hpet_del_timer(&s->timer[i]);
606 /* i8254 and RTC output pins are disabled
607 * when HPET is in legacy mode */
608 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
609 qemu_set_irq(s->pit_enabled, 0);
610 qemu_irq_lower(s->irqs[0]);
611 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
612 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
613 qemu_irq_lower(s->irqs[0]);
614 qemu_set_irq(s->pit_enabled, 1);
615 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
617 break;
618 case HPET_CFG + 4:
619 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
620 break;
621 case HPET_STATUS:
622 val = new_val & s->isr;
623 for (i = 0; i < s->num_timers; i++) {
624 if (val & (1 << i)) {
625 update_irq(&s->timer[i], 0);
628 break;
629 case HPET_COUNTER:
630 if (hpet_enabled(s)) {
631 DPRINTF("qemu: Writing counter while HPET enabled!\n");
633 s->hpet_counter =
634 (s->hpet_counter & 0xffffffff00000000ULL) | value;
635 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
636 value, s->hpet_counter);
637 break;
638 case HPET_COUNTER + 4:
639 if (hpet_enabled(s)) {
640 DPRINTF("qemu: Writing counter while HPET enabled!\n");
642 s->hpet_counter =
643 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
644 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
645 value, s->hpet_counter);
646 break;
647 default:
648 DPRINTF("qemu: invalid hpet_ram_writel\n");
649 break;
654 static const MemoryRegionOps hpet_ram_ops = {
655 .read = hpet_ram_read,
656 .write = hpet_ram_write,
657 .valid = {
658 .min_access_size = 4,
659 .max_access_size = 4,
661 .endianness = DEVICE_NATIVE_ENDIAN,
664 static void hpet_reset(DeviceState *d)
666 HPETState *s = HPET(d);
667 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
668 int i;
670 for (i = 0; i < s->num_timers; i++) {
671 HPETTimer *timer = &s->timer[i];
673 hpet_del_timer(timer);
674 timer->cmp = ~0ULL;
675 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
676 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
677 timer->config |= HPET_TN_FSB_CAP;
679 /* advertise availability of ioapic int */
680 timer->config |= (uint64_t)s->intcap << 32;
681 timer->period = 0ULL;
682 timer->wrap_flag = 0;
685 qemu_set_irq(s->pit_enabled, 1);
686 s->hpet_counter = 0ULL;
687 s->hpet_offset = 0ULL;
688 s->config = 0ULL;
689 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
690 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
692 /* to document that the RTC lowers its output on reset as well */
693 s->rtc_irq_level = 0;
696 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
698 HPETState *s = HPET(opaque);
700 if (n == HPET_LEGACY_PIT_INT) {
701 if (!hpet_in_legacy_mode(s)) {
702 qemu_set_irq(s->irqs[0], level);
704 } else {
705 s->rtc_irq_level = level;
706 if (!hpet_in_legacy_mode(s)) {
707 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
712 static void hpet_init(Object *obj)
714 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
715 HPETState *s = HPET(obj);
717 /* HPET Area */
718 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", 0x400);
719 sysbus_init_mmio(sbd, &s->iomem);
722 static void hpet_realize(DeviceState *dev, Error **errp)
724 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
725 HPETState *s = HPET(dev);
726 int i;
727 HPETTimer *timer;
729 if (!s->intcap) {
730 error_printf("Hpet's intcap not initialized.\n");
732 if (hpet_cfg.count == UINT8_MAX) {
733 /* first instance */
734 hpet_cfg.count = 0;
737 if (hpet_cfg.count == 8) {
738 error_setg(errp, "Only 8 instances of HPET is allowed");
739 return;
742 s->hpet_id = hpet_cfg.count++;
744 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
745 sysbus_init_irq(sbd, &s->irqs[i]);
748 if (s->num_timers < HPET_MIN_TIMERS) {
749 s->num_timers = HPET_MIN_TIMERS;
750 } else if (s->num_timers > HPET_MAX_TIMERS) {
751 s->num_timers = HPET_MAX_TIMERS;
753 for (i = 0; i < HPET_MAX_TIMERS; i++) {
754 timer = &s->timer[i];
755 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
756 timer->tn = i;
757 timer->state = s;
760 /* 64-bit main counter; LegacyReplacementRoute. */
761 s->capability = 0x8086a001ULL;
762 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
763 s->capability |= ((HPET_CLK_PERIOD) << 32);
765 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
766 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
769 static Property hpet_device_properties[] = {
770 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
771 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
772 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
773 DEFINE_PROP_END_OF_LIST(),
776 static void hpet_device_class_init(ObjectClass *klass, void *data)
778 DeviceClass *dc = DEVICE_CLASS(klass);
780 dc->realize = hpet_realize;
781 dc->reset = hpet_reset;
782 dc->vmsd = &vmstate_hpet;
783 dc->props = hpet_device_properties;
786 static const TypeInfo hpet_device_info = {
787 .name = TYPE_HPET,
788 .parent = TYPE_SYS_BUS_DEVICE,
789 .instance_size = sizeof(HPETState),
790 .instance_init = hpet_init,
791 .class_init = hpet_device_class_init,
794 static void hpet_register_types(void)
796 type_register_static(&hpet_device_info);
799 type_init(hpet_register_types)