Revert "gdbstub: Do not kill target in system emulation mode"
[qemu/qmp-unstable.git] / migration / rdma.c
blob77e34441dcfb08dc03825de60d52a1141e951b61
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29 #include "trace.h"
32 * Print and error on both the Monitor and the Log file.
34 #define ERROR(errp, fmt, ...) \
35 do { \
36 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
37 if (errp && (*(errp) == NULL)) { \
38 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
39 } \
40 } while (0)
42 #define RDMA_RESOLVE_TIMEOUT_MS 10000
44 /* Do not merge data if larger than this. */
45 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
46 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
48 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
51 * This is only for non-live state being migrated.
52 * Instead of RDMA_WRITE messages, we use RDMA_SEND
53 * messages for that state, which requires a different
54 * delivery design than main memory.
56 #define RDMA_SEND_INCREMENT 32768
59 * Maximum size infiniband SEND message
61 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
62 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
64 #define RDMA_CONTROL_VERSION_CURRENT 1
66 * Capabilities for negotiation.
68 #define RDMA_CAPABILITY_PIN_ALL 0x01
71 * Add the other flags above to this list of known capabilities
72 * as they are introduced.
74 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
76 #define CHECK_ERROR_STATE() \
77 do { \
78 if (rdma->error_state) { \
79 if (!rdma->error_reported) { \
80 error_report("RDMA is in an error state waiting migration" \
81 " to abort!"); \
82 rdma->error_reported = 1; \
83 } \
84 return rdma->error_state; \
85 } \
86 } while (0);
89 * A work request ID is 64-bits and we split up these bits
90 * into 3 parts:
92 * bits 0-15 : type of control message, 2^16
93 * bits 16-29: ram block index, 2^14
94 * bits 30-63: ram block chunk number, 2^34
96 * The last two bit ranges are only used for RDMA writes,
97 * in order to track their completion and potentially
98 * also track unregistration status of the message.
100 #define RDMA_WRID_TYPE_SHIFT 0UL
101 #define RDMA_WRID_BLOCK_SHIFT 16UL
102 #define RDMA_WRID_CHUNK_SHIFT 30UL
104 #define RDMA_WRID_TYPE_MASK \
105 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
107 #define RDMA_WRID_BLOCK_MASK \
108 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
110 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
113 * RDMA migration protocol:
114 * 1. RDMA Writes (data messages, i.e. RAM)
115 * 2. IB Send/Recv (control channel messages)
117 enum {
118 RDMA_WRID_NONE = 0,
119 RDMA_WRID_RDMA_WRITE = 1,
120 RDMA_WRID_SEND_CONTROL = 2000,
121 RDMA_WRID_RECV_CONTROL = 4000,
124 static const char *wrid_desc[] = {
125 [RDMA_WRID_NONE] = "NONE",
126 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
127 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
128 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
132 * Work request IDs for IB SEND messages only (not RDMA writes).
133 * This is used by the migration protocol to transmit
134 * control messages (such as device state and registration commands)
136 * We could use more WRs, but we have enough for now.
138 enum {
139 RDMA_WRID_READY = 0,
140 RDMA_WRID_DATA,
141 RDMA_WRID_CONTROL,
142 RDMA_WRID_MAX,
146 * SEND/RECV IB Control Messages.
148 enum {
149 RDMA_CONTROL_NONE = 0,
150 RDMA_CONTROL_ERROR,
151 RDMA_CONTROL_READY, /* ready to receive */
152 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
153 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
154 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
155 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
156 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
157 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
158 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
159 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
160 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
163 static const char *control_desc[] = {
164 [RDMA_CONTROL_NONE] = "NONE",
165 [RDMA_CONTROL_ERROR] = "ERROR",
166 [RDMA_CONTROL_READY] = "READY",
167 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
168 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
169 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
170 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
171 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
172 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
173 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
174 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
175 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
179 * Memory and MR structures used to represent an IB Send/Recv work request.
180 * This is *not* used for RDMA writes, only IB Send/Recv.
182 typedef struct {
183 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
184 struct ibv_mr *control_mr; /* registration metadata */
185 size_t control_len; /* length of the message */
186 uint8_t *control_curr; /* start of unconsumed bytes */
187 } RDMAWorkRequestData;
190 * Negotiate RDMA capabilities during connection-setup time.
192 typedef struct {
193 uint32_t version;
194 uint32_t flags;
195 } RDMACapabilities;
197 static void caps_to_network(RDMACapabilities *cap)
199 cap->version = htonl(cap->version);
200 cap->flags = htonl(cap->flags);
203 static void network_to_caps(RDMACapabilities *cap)
205 cap->version = ntohl(cap->version);
206 cap->flags = ntohl(cap->flags);
210 * Representation of a RAMBlock from an RDMA perspective.
211 * This is not transmitted, only local.
212 * This and subsequent structures cannot be linked lists
213 * because we're using a single IB message to transmit
214 * the information. It's small anyway, so a list is overkill.
216 typedef struct RDMALocalBlock {
217 uint8_t *local_host_addr; /* local virtual address */
218 uint64_t remote_host_addr; /* remote virtual address */
219 uint64_t offset;
220 uint64_t length;
221 struct ibv_mr **pmr; /* MRs for chunk-level registration */
222 struct ibv_mr *mr; /* MR for non-chunk-level registration */
223 uint32_t *remote_keys; /* rkeys for chunk-level registration */
224 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
225 int index; /* which block are we */
226 bool is_ram_block;
227 int nb_chunks;
228 unsigned long *transit_bitmap;
229 unsigned long *unregister_bitmap;
230 } RDMALocalBlock;
233 * Also represents a RAMblock, but only on the dest.
234 * This gets transmitted by the dest during connection-time
235 * to the source VM and then is used to populate the
236 * corresponding RDMALocalBlock with
237 * the information needed to perform the actual RDMA.
239 typedef struct QEMU_PACKED RDMARemoteBlock {
240 uint64_t remote_host_addr;
241 uint64_t offset;
242 uint64_t length;
243 uint32_t remote_rkey;
244 uint32_t padding;
245 } RDMARemoteBlock;
247 static uint64_t htonll(uint64_t v)
249 union { uint32_t lv[2]; uint64_t llv; } u;
250 u.lv[0] = htonl(v >> 32);
251 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
252 return u.llv;
255 static uint64_t ntohll(uint64_t v) {
256 union { uint32_t lv[2]; uint64_t llv; } u;
257 u.llv = v;
258 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
261 static void remote_block_to_network(RDMARemoteBlock *rb)
263 rb->remote_host_addr = htonll(rb->remote_host_addr);
264 rb->offset = htonll(rb->offset);
265 rb->length = htonll(rb->length);
266 rb->remote_rkey = htonl(rb->remote_rkey);
269 static void network_to_remote_block(RDMARemoteBlock *rb)
271 rb->remote_host_addr = ntohll(rb->remote_host_addr);
272 rb->offset = ntohll(rb->offset);
273 rb->length = ntohll(rb->length);
274 rb->remote_rkey = ntohl(rb->remote_rkey);
278 * Virtual address of the above structures used for transmitting
279 * the RAMBlock descriptions at connection-time.
280 * This structure is *not* transmitted.
282 typedef struct RDMALocalBlocks {
283 int nb_blocks;
284 bool init; /* main memory init complete */
285 RDMALocalBlock *block;
286 } RDMALocalBlocks;
289 * Main data structure for RDMA state.
290 * While there is only one copy of this structure being allocated right now,
291 * this is the place where one would start if you wanted to consider
292 * having more than one RDMA connection open at the same time.
294 typedef struct RDMAContext {
295 char *host;
296 int port;
298 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
301 * This is used by *_exchange_send() to figure out whether or not
302 * the initial "READY" message has already been received or not.
303 * This is because other functions may potentially poll() and detect
304 * the READY message before send() does, in which case we need to
305 * know if it completed.
307 int control_ready_expected;
309 /* number of outstanding writes */
310 int nb_sent;
312 /* store info about current buffer so that we can
313 merge it with future sends */
314 uint64_t current_addr;
315 uint64_t current_length;
316 /* index of ram block the current buffer belongs to */
317 int current_index;
318 /* index of the chunk in the current ram block */
319 int current_chunk;
321 bool pin_all;
324 * infiniband-specific variables for opening the device
325 * and maintaining connection state and so forth.
327 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
328 * cm_id->verbs, cm_id->channel, and cm_id->qp.
330 struct rdma_cm_id *cm_id; /* connection manager ID */
331 struct rdma_cm_id *listen_id;
332 bool connected;
334 struct ibv_context *verbs;
335 struct rdma_event_channel *channel;
336 struct ibv_qp *qp; /* queue pair */
337 struct ibv_comp_channel *comp_channel; /* completion channel */
338 struct ibv_pd *pd; /* protection domain */
339 struct ibv_cq *cq; /* completion queue */
342 * If a previous write failed (perhaps because of a failed
343 * memory registration, then do not attempt any future work
344 * and remember the error state.
346 int error_state;
347 int error_reported;
350 * Description of ram blocks used throughout the code.
352 RDMALocalBlocks local_ram_blocks;
353 RDMARemoteBlock *block;
356 * Migration on *destination* started.
357 * Then use coroutine yield function.
358 * Source runs in a thread, so we don't care.
360 int migration_started_on_destination;
362 int total_registrations;
363 int total_writes;
365 int unregister_current, unregister_next;
366 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
368 GHashTable *blockmap;
369 } RDMAContext;
372 * Interface to the rest of the migration call stack.
374 typedef struct QEMUFileRDMA {
375 RDMAContext *rdma;
376 size_t len;
377 void *file;
378 } QEMUFileRDMA;
381 * Main structure for IB Send/Recv control messages.
382 * This gets prepended at the beginning of every Send/Recv.
384 typedef struct QEMU_PACKED {
385 uint32_t len; /* Total length of data portion */
386 uint32_t type; /* which control command to perform */
387 uint32_t repeat; /* number of commands in data portion of same type */
388 uint32_t padding;
389 } RDMAControlHeader;
391 static void control_to_network(RDMAControlHeader *control)
393 control->type = htonl(control->type);
394 control->len = htonl(control->len);
395 control->repeat = htonl(control->repeat);
398 static void network_to_control(RDMAControlHeader *control)
400 control->type = ntohl(control->type);
401 control->len = ntohl(control->len);
402 control->repeat = ntohl(control->repeat);
406 * Register a single Chunk.
407 * Information sent by the source VM to inform the dest
408 * to register an single chunk of memory before we can perform
409 * the actual RDMA operation.
411 typedef struct QEMU_PACKED {
412 union QEMU_PACKED {
413 uint64_t current_addr; /* offset into the ramblock of the chunk */
414 uint64_t chunk; /* chunk to lookup if unregistering */
415 } key;
416 uint32_t current_index; /* which ramblock the chunk belongs to */
417 uint32_t padding;
418 uint64_t chunks; /* how many sequential chunks to register */
419 } RDMARegister;
421 static void register_to_network(RDMARegister *reg)
423 reg->key.current_addr = htonll(reg->key.current_addr);
424 reg->current_index = htonl(reg->current_index);
425 reg->chunks = htonll(reg->chunks);
428 static void network_to_register(RDMARegister *reg)
430 reg->key.current_addr = ntohll(reg->key.current_addr);
431 reg->current_index = ntohl(reg->current_index);
432 reg->chunks = ntohll(reg->chunks);
435 typedef struct QEMU_PACKED {
436 uint32_t value; /* if zero, we will madvise() */
437 uint32_t block_idx; /* which ram block index */
438 uint64_t offset; /* where in the remote ramblock this chunk */
439 uint64_t length; /* length of the chunk */
440 } RDMACompress;
442 static void compress_to_network(RDMACompress *comp)
444 comp->value = htonl(comp->value);
445 comp->block_idx = htonl(comp->block_idx);
446 comp->offset = htonll(comp->offset);
447 comp->length = htonll(comp->length);
450 static void network_to_compress(RDMACompress *comp)
452 comp->value = ntohl(comp->value);
453 comp->block_idx = ntohl(comp->block_idx);
454 comp->offset = ntohll(comp->offset);
455 comp->length = ntohll(comp->length);
459 * The result of the dest's memory registration produces an "rkey"
460 * which the source VM must reference in order to perform
461 * the RDMA operation.
463 typedef struct QEMU_PACKED {
464 uint32_t rkey;
465 uint32_t padding;
466 uint64_t host_addr;
467 } RDMARegisterResult;
469 static void result_to_network(RDMARegisterResult *result)
471 result->rkey = htonl(result->rkey);
472 result->host_addr = htonll(result->host_addr);
475 static void network_to_result(RDMARegisterResult *result)
477 result->rkey = ntohl(result->rkey);
478 result->host_addr = ntohll(result->host_addr);
481 const char *print_wrid(int wrid);
482 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
483 uint8_t *data, RDMAControlHeader *resp,
484 int *resp_idx,
485 int (*callback)(RDMAContext *rdma));
487 static inline uint64_t ram_chunk_index(const uint8_t *start,
488 const uint8_t *host)
490 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
493 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
494 uint64_t i)
496 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
497 (i << RDMA_REG_CHUNK_SHIFT));
500 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
501 uint64_t i)
503 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
504 (1UL << RDMA_REG_CHUNK_SHIFT);
506 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
507 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
510 return result;
513 static int rdma_add_block(RDMAContext *rdma, void *host_addr,
514 ram_addr_t block_offset, uint64_t length)
516 RDMALocalBlocks *local = &rdma->local_ram_blocks;
517 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
518 (void *)(uintptr_t)block_offset);
519 RDMALocalBlock *old = local->block;
521 assert(block == NULL);
523 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
525 if (local->nb_blocks) {
526 int x;
528 for (x = 0; x < local->nb_blocks; x++) {
529 g_hash_table_remove(rdma->blockmap,
530 (void *)(uintptr_t)old[x].offset);
531 g_hash_table_insert(rdma->blockmap,
532 (void *)(uintptr_t)old[x].offset,
533 &local->block[x]);
535 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
536 g_free(old);
539 block = &local->block[local->nb_blocks];
541 block->local_host_addr = host_addr;
542 block->offset = block_offset;
543 block->length = length;
544 block->index = local->nb_blocks;
545 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
546 block->transit_bitmap = bitmap_new(block->nb_chunks);
547 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
548 block->unregister_bitmap = bitmap_new(block->nb_chunks);
549 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
550 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
552 block->is_ram_block = local->init ? false : true;
554 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
556 trace_rdma_add_block(local->nb_blocks, (uintptr_t) block->local_host_addr,
557 block->offset, block->length,
558 (uintptr_t) (block->local_host_addr + block->length),
559 BITS_TO_LONGS(block->nb_chunks) *
560 sizeof(unsigned long) * 8,
561 block->nb_chunks);
563 local->nb_blocks++;
565 return 0;
569 * Memory regions need to be registered with the device and queue pairs setup
570 * in advanced before the migration starts. This tells us where the RAM blocks
571 * are so that we can register them individually.
573 static void qemu_rdma_init_one_block(void *host_addr,
574 ram_addr_t block_offset, ram_addr_t length, void *opaque)
576 rdma_add_block(opaque, host_addr, block_offset, length);
580 * Identify the RAMBlocks and their quantity. They will be references to
581 * identify chunk boundaries inside each RAMBlock and also be referenced
582 * during dynamic page registration.
584 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
586 RDMALocalBlocks *local = &rdma->local_ram_blocks;
588 assert(rdma->blockmap == NULL);
589 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
590 memset(local, 0, sizeof *local);
591 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
592 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
593 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
594 rdma->local_ram_blocks.nb_blocks);
595 local->init = true;
596 return 0;
599 static int rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
601 RDMALocalBlocks *local = &rdma->local_ram_blocks;
602 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
603 (void *) block_offset);
604 RDMALocalBlock *old = local->block;
605 int x;
607 assert(block);
609 if (block->pmr) {
610 int j;
612 for (j = 0; j < block->nb_chunks; j++) {
613 if (!block->pmr[j]) {
614 continue;
616 ibv_dereg_mr(block->pmr[j]);
617 rdma->total_registrations--;
619 g_free(block->pmr);
620 block->pmr = NULL;
623 if (block->mr) {
624 ibv_dereg_mr(block->mr);
625 rdma->total_registrations--;
626 block->mr = NULL;
629 g_free(block->transit_bitmap);
630 block->transit_bitmap = NULL;
632 g_free(block->unregister_bitmap);
633 block->unregister_bitmap = NULL;
635 g_free(block->remote_keys);
636 block->remote_keys = NULL;
638 for (x = 0; x < local->nb_blocks; x++) {
639 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)old[x].offset);
642 if (local->nb_blocks > 1) {
644 local->block = g_malloc0(sizeof(RDMALocalBlock) *
645 (local->nb_blocks - 1));
647 if (block->index) {
648 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
651 if (block->index < (local->nb_blocks - 1)) {
652 memcpy(local->block + block->index, old + (block->index + 1),
653 sizeof(RDMALocalBlock) *
654 (local->nb_blocks - (block->index + 1)));
656 } else {
657 assert(block == local->block);
658 local->block = NULL;
661 trace_rdma_delete_block(local->nb_blocks,
662 (uintptr_t)block->local_host_addr,
663 block->offset, block->length,
664 (uintptr_t)(block->local_host_addr + block->length),
665 BITS_TO_LONGS(block->nb_chunks) *
666 sizeof(unsigned long) * 8, block->nb_chunks);
668 g_free(old);
670 local->nb_blocks--;
672 if (local->nb_blocks) {
673 for (x = 0; x < local->nb_blocks; x++) {
674 g_hash_table_insert(rdma->blockmap,
675 (void *)(uintptr_t)local->block[x].offset,
676 &local->block[x]);
680 return 0;
684 * Put in the log file which RDMA device was opened and the details
685 * associated with that device.
687 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
689 struct ibv_port_attr port;
691 if (ibv_query_port(verbs, 1, &port)) {
692 error_report("Failed to query port information");
693 return;
696 printf("%s RDMA Device opened: kernel name %s "
697 "uverbs device name %s, "
698 "infiniband_verbs class device path %s, "
699 "infiniband class device path %s, "
700 "transport: (%d) %s\n",
701 who,
702 verbs->device->name,
703 verbs->device->dev_name,
704 verbs->device->dev_path,
705 verbs->device->ibdev_path,
706 port.link_layer,
707 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
708 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
709 ? "Ethernet" : "Unknown"));
713 * Put in the log file the RDMA gid addressing information,
714 * useful for folks who have trouble understanding the
715 * RDMA device hierarchy in the kernel.
717 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
719 char sgid[33];
720 char dgid[33];
721 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
722 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
723 trace_qemu_rdma_dump_gid(who, sgid, dgid);
727 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
728 * We will try the next addrinfo struct, and fail if there are
729 * no other valid addresses to bind against.
731 * If user is listening on '[::]', then we will not have a opened a device
732 * yet and have no way of verifying if the device is RoCE or not.
734 * In this case, the source VM will throw an error for ALL types of
735 * connections (both IPv4 and IPv6) if the destination machine does not have
736 * a regular infiniband network available for use.
738 * The only way to guarantee that an error is thrown for broken kernels is
739 * for the management software to choose a *specific* interface at bind time
740 * and validate what time of hardware it is.
742 * Unfortunately, this puts the user in a fix:
744 * If the source VM connects with an IPv4 address without knowing that the
745 * destination has bound to '[::]' the migration will unconditionally fail
746 * unless the management software is explicitly listening on the the IPv4
747 * address while using a RoCE-based device.
749 * If the source VM connects with an IPv6 address, then we're OK because we can
750 * throw an error on the source (and similarly on the destination).
752 * But in mixed environments, this will be broken for a while until it is fixed
753 * inside linux.
755 * We do provide a *tiny* bit of help in this function: We can list all of the
756 * devices in the system and check to see if all the devices are RoCE or
757 * Infiniband.
759 * If we detect that we have a *pure* RoCE environment, then we can safely
760 * thrown an error even if the management software has specified '[::]' as the
761 * bind address.
763 * However, if there is are multiple hetergeneous devices, then we cannot make
764 * this assumption and the user just has to be sure they know what they are
765 * doing.
767 * Patches are being reviewed on linux-rdma.
769 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
771 struct ibv_port_attr port_attr;
773 /* This bug only exists in linux, to our knowledge. */
774 #ifdef CONFIG_LINUX
777 * Verbs are only NULL if management has bound to '[::]'.
779 * Let's iterate through all the devices and see if there any pure IB
780 * devices (non-ethernet).
782 * If not, then we can safely proceed with the migration.
783 * Otherwise, there are no guarantees until the bug is fixed in linux.
785 if (!verbs) {
786 int num_devices, x;
787 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
788 bool roce_found = false;
789 bool ib_found = false;
791 for (x = 0; x < num_devices; x++) {
792 verbs = ibv_open_device(dev_list[x]);
794 if (ibv_query_port(verbs, 1, &port_attr)) {
795 ibv_close_device(verbs);
796 ERROR(errp, "Could not query initial IB port");
797 return -EINVAL;
800 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
801 ib_found = true;
802 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
803 roce_found = true;
806 ibv_close_device(verbs);
810 if (roce_found) {
811 if (ib_found) {
812 fprintf(stderr, "WARN: migrations may fail:"
813 " IPv6 over RoCE / iWARP in linux"
814 " is broken. But since you appear to have a"
815 " mixed RoCE / IB environment, be sure to only"
816 " migrate over the IB fabric until the kernel "
817 " fixes the bug.\n");
818 } else {
819 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
820 " and your management software has specified '[::]'"
821 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
822 return -ENONET;
826 return 0;
830 * If we have a verbs context, that means that some other than '[::]' was
831 * used by the management software for binding. In which case we can
832 * actually warn the user about a potentially broken kernel.
835 /* IB ports start with 1, not 0 */
836 if (ibv_query_port(verbs, 1, &port_attr)) {
837 ERROR(errp, "Could not query initial IB port");
838 return -EINVAL;
841 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
842 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
843 "(but patches on linux-rdma in progress)");
844 return -ENONET;
847 #endif
849 return 0;
853 * Figure out which RDMA device corresponds to the requested IP hostname
854 * Also create the initial connection manager identifiers for opening
855 * the connection.
857 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
859 int ret;
860 struct rdma_addrinfo *res;
861 char port_str[16];
862 struct rdma_cm_event *cm_event;
863 char ip[40] = "unknown";
864 struct rdma_addrinfo *e;
866 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
867 ERROR(errp, "RDMA hostname has not been set");
868 return -EINVAL;
871 /* create CM channel */
872 rdma->channel = rdma_create_event_channel();
873 if (!rdma->channel) {
874 ERROR(errp, "could not create CM channel");
875 return -EINVAL;
878 /* create CM id */
879 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
880 if (ret) {
881 ERROR(errp, "could not create channel id");
882 goto err_resolve_create_id;
885 snprintf(port_str, 16, "%d", rdma->port);
886 port_str[15] = '\0';
888 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
889 if (ret < 0) {
890 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
891 goto err_resolve_get_addr;
894 for (e = res; e != NULL; e = e->ai_next) {
895 inet_ntop(e->ai_family,
896 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
897 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
899 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
900 RDMA_RESOLVE_TIMEOUT_MS);
901 if (!ret) {
902 if (e->ai_family == AF_INET6) {
903 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
904 if (ret) {
905 continue;
908 goto route;
912 ERROR(errp, "could not resolve address %s", rdma->host);
913 goto err_resolve_get_addr;
915 route:
916 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
918 ret = rdma_get_cm_event(rdma->channel, &cm_event);
919 if (ret) {
920 ERROR(errp, "could not perform event_addr_resolved");
921 goto err_resolve_get_addr;
924 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
925 ERROR(errp, "result not equal to event_addr_resolved %s",
926 rdma_event_str(cm_event->event));
927 perror("rdma_resolve_addr");
928 rdma_ack_cm_event(cm_event);
929 ret = -EINVAL;
930 goto err_resolve_get_addr;
932 rdma_ack_cm_event(cm_event);
934 /* resolve route */
935 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
936 if (ret) {
937 ERROR(errp, "could not resolve rdma route");
938 goto err_resolve_get_addr;
941 ret = rdma_get_cm_event(rdma->channel, &cm_event);
942 if (ret) {
943 ERROR(errp, "could not perform event_route_resolved");
944 goto err_resolve_get_addr;
946 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
947 ERROR(errp, "result not equal to event_route_resolved: %s",
948 rdma_event_str(cm_event->event));
949 rdma_ack_cm_event(cm_event);
950 ret = -EINVAL;
951 goto err_resolve_get_addr;
953 rdma_ack_cm_event(cm_event);
954 rdma->verbs = rdma->cm_id->verbs;
955 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
956 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
957 return 0;
959 err_resolve_get_addr:
960 rdma_destroy_id(rdma->cm_id);
961 rdma->cm_id = NULL;
962 err_resolve_create_id:
963 rdma_destroy_event_channel(rdma->channel);
964 rdma->channel = NULL;
965 return ret;
969 * Create protection domain and completion queues
971 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
973 /* allocate pd */
974 rdma->pd = ibv_alloc_pd(rdma->verbs);
975 if (!rdma->pd) {
976 error_report("failed to allocate protection domain");
977 return -1;
980 /* create completion channel */
981 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
982 if (!rdma->comp_channel) {
983 error_report("failed to allocate completion channel");
984 goto err_alloc_pd_cq;
988 * Completion queue can be filled by both read and write work requests,
989 * so must reflect the sum of both possible queue sizes.
991 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
992 NULL, rdma->comp_channel, 0);
993 if (!rdma->cq) {
994 error_report("failed to allocate completion queue");
995 goto err_alloc_pd_cq;
998 return 0;
1000 err_alloc_pd_cq:
1001 if (rdma->pd) {
1002 ibv_dealloc_pd(rdma->pd);
1004 if (rdma->comp_channel) {
1005 ibv_destroy_comp_channel(rdma->comp_channel);
1007 rdma->pd = NULL;
1008 rdma->comp_channel = NULL;
1009 return -1;
1014 * Create queue pairs.
1016 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1018 struct ibv_qp_init_attr attr = { 0 };
1019 int ret;
1021 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1022 attr.cap.max_recv_wr = 3;
1023 attr.cap.max_send_sge = 1;
1024 attr.cap.max_recv_sge = 1;
1025 attr.send_cq = rdma->cq;
1026 attr.recv_cq = rdma->cq;
1027 attr.qp_type = IBV_QPT_RC;
1029 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1030 if (ret) {
1031 return -1;
1034 rdma->qp = rdma->cm_id->qp;
1035 return 0;
1038 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1040 int i;
1041 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1043 for (i = 0; i < local->nb_blocks; i++) {
1044 local->block[i].mr =
1045 ibv_reg_mr(rdma->pd,
1046 local->block[i].local_host_addr,
1047 local->block[i].length,
1048 IBV_ACCESS_LOCAL_WRITE |
1049 IBV_ACCESS_REMOTE_WRITE
1051 if (!local->block[i].mr) {
1052 perror("Failed to register local dest ram block!\n");
1053 break;
1055 rdma->total_registrations++;
1058 if (i >= local->nb_blocks) {
1059 return 0;
1062 for (i--; i >= 0; i--) {
1063 ibv_dereg_mr(local->block[i].mr);
1064 rdma->total_registrations--;
1067 return -1;
1072 * Find the ram block that corresponds to the page requested to be
1073 * transmitted by QEMU.
1075 * Once the block is found, also identify which 'chunk' within that
1076 * block that the page belongs to.
1078 * This search cannot fail or the migration will fail.
1080 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1081 uintptr_t block_offset,
1082 uint64_t offset,
1083 uint64_t length,
1084 uint64_t *block_index,
1085 uint64_t *chunk_index)
1087 uint64_t current_addr = block_offset + offset;
1088 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1089 (void *) block_offset);
1090 assert(block);
1091 assert(current_addr >= block->offset);
1092 assert((current_addr + length) <= (block->offset + block->length));
1094 *block_index = block->index;
1095 *chunk_index = ram_chunk_index(block->local_host_addr,
1096 block->local_host_addr + (current_addr - block->offset));
1098 return 0;
1102 * Register a chunk with IB. If the chunk was already registered
1103 * previously, then skip.
1105 * Also return the keys associated with the registration needed
1106 * to perform the actual RDMA operation.
1108 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1109 RDMALocalBlock *block, uintptr_t host_addr,
1110 uint32_t *lkey, uint32_t *rkey, int chunk,
1111 uint8_t *chunk_start, uint8_t *chunk_end)
1113 if (block->mr) {
1114 if (lkey) {
1115 *lkey = block->mr->lkey;
1117 if (rkey) {
1118 *rkey = block->mr->rkey;
1120 return 0;
1123 /* allocate memory to store chunk MRs */
1124 if (!block->pmr) {
1125 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1129 * If 'rkey', then we're the destination, so grant access to the source.
1131 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1133 if (!block->pmr[chunk]) {
1134 uint64_t len = chunk_end - chunk_start;
1136 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1138 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1139 chunk_start, len,
1140 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1141 IBV_ACCESS_REMOTE_WRITE) : 0));
1143 if (!block->pmr[chunk]) {
1144 perror("Failed to register chunk!");
1145 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1146 " start %" PRIuPTR " end %" PRIuPTR
1147 " host %" PRIuPTR
1148 " local %" PRIuPTR " registrations: %d\n",
1149 block->index, chunk, (uintptr_t)chunk_start,
1150 (uintptr_t)chunk_end, host_addr,
1151 (uintptr_t)block->local_host_addr,
1152 rdma->total_registrations);
1153 return -1;
1155 rdma->total_registrations++;
1158 if (lkey) {
1159 *lkey = block->pmr[chunk]->lkey;
1161 if (rkey) {
1162 *rkey = block->pmr[chunk]->rkey;
1164 return 0;
1168 * Register (at connection time) the memory used for control
1169 * channel messages.
1171 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1173 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1174 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1175 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1176 if (rdma->wr_data[idx].control_mr) {
1177 rdma->total_registrations++;
1178 return 0;
1180 error_report("qemu_rdma_reg_control failed");
1181 return -1;
1184 const char *print_wrid(int wrid)
1186 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1187 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1189 return wrid_desc[wrid];
1193 * RDMA requires memory registration (mlock/pinning), but this is not good for
1194 * overcommitment.
1196 * In preparation for the future where LRU information or workload-specific
1197 * writable writable working set memory access behavior is available to QEMU
1198 * it would be nice to have in place the ability to UN-register/UN-pin
1199 * particular memory regions from the RDMA hardware when it is determine that
1200 * those regions of memory will likely not be accessed again in the near future.
1202 * While we do not yet have such information right now, the following
1203 * compile-time option allows us to perform a non-optimized version of this
1204 * behavior.
1206 * By uncommenting this option, you will cause *all* RDMA transfers to be
1207 * unregistered immediately after the transfer completes on both sides of the
1208 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1210 * This will have a terrible impact on migration performance, so until future
1211 * workload information or LRU information is available, do not attempt to use
1212 * this feature except for basic testing.
1214 //#define RDMA_UNREGISTRATION_EXAMPLE
1217 * Perform a non-optimized memory unregistration after every transfer
1218 * for demonsration purposes, only if pin-all is not requested.
1220 * Potential optimizations:
1221 * 1. Start a new thread to run this function continuously
1222 - for bit clearing
1223 - and for receipt of unregister messages
1224 * 2. Use an LRU.
1225 * 3. Use workload hints.
1227 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1229 while (rdma->unregistrations[rdma->unregister_current]) {
1230 int ret;
1231 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1232 uint64_t chunk =
1233 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1234 uint64_t index =
1235 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1236 RDMALocalBlock *block =
1237 &(rdma->local_ram_blocks.block[index]);
1238 RDMARegister reg = { .current_index = index };
1239 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1241 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1242 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1243 .repeat = 1,
1246 trace_qemu_rdma_unregister_waiting_proc(chunk,
1247 rdma->unregister_current);
1249 rdma->unregistrations[rdma->unregister_current] = 0;
1250 rdma->unregister_current++;
1252 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1253 rdma->unregister_current = 0;
1258 * Unregistration is speculative (because migration is single-threaded
1259 * and we cannot break the protocol's inifinband message ordering).
1260 * Thus, if the memory is currently being used for transmission,
1261 * then abort the attempt to unregister and try again
1262 * later the next time a completion is received for this memory.
1264 clear_bit(chunk, block->unregister_bitmap);
1266 if (test_bit(chunk, block->transit_bitmap)) {
1267 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1268 continue;
1271 trace_qemu_rdma_unregister_waiting_send(chunk);
1273 ret = ibv_dereg_mr(block->pmr[chunk]);
1274 block->pmr[chunk] = NULL;
1275 block->remote_keys[chunk] = 0;
1277 if (ret != 0) {
1278 perror("unregistration chunk failed");
1279 return -ret;
1281 rdma->total_registrations--;
1283 reg.key.chunk = chunk;
1284 register_to_network(&reg);
1285 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1286 &resp, NULL, NULL);
1287 if (ret < 0) {
1288 return ret;
1291 trace_qemu_rdma_unregister_waiting_complete(chunk);
1294 return 0;
1297 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1298 uint64_t chunk)
1300 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1302 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1303 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1305 return result;
1309 * Set bit for unregistration in the next iteration.
1310 * We cannot transmit right here, but will unpin later.
1312 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1313 uint64_t chunk, uint64_t wr_id)
1315 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1316 error_report("rdma migration: queue is full");
1317 } else {
1318 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1320 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1321 trace_qemu_rdma_signal_unregister_append(chunk,
1322 rdma->unregister_next);
1324 rdma->unregistrations[rdma->unregister_next++] =
1325 qemu_rdma_make_wrid(wr_id, index, chunk);
1327 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1328 rdma->unregister_next = 0;
1330 } else {
1331 trace_qemu_rdma_signal_unregister_already(chunk);
1337 * Consult the connection manager to see a work request
1338 * (of any kind) has completed.
1339 * Return the work request ID that completed.
1341 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1342 uint32_t *byte_len)
1344 int ret;
1345 struct ibv_wc wc;
1346 uint64_t wr_id;
1348 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1350 if (!ret) {
1351 *wr_id_out = RDMA_WRID_NONE;
1352 return 0;
1355 if (ret < 0) {
1356 error_report("ibv_poll_cq return %d", ret);
1357 return ret;
1360 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1362 if (wc.status != IBV_WC_SUCCESS) {
1363 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1364 wc.status, ibv_wc_status_str(wc.status));
1365 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1367 return -1;
1370 if (rdma->control_ready_expected &&
1371 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1372 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1373 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1374 rdma->control_ready_expected = 0;
1377 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1378 uint64_t chunk =
1379 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1380 uint64_t index =
1381 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1382 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1384 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1385 index, chunk, block->local_host_addr,
1386 (void *)(uintptr_t)block->remote_host_addr);
1388 clear_bit(chunk, block->transit_bitmap);
1390 if (rdma->nb_sent > 0) {
1391 rdma->nb_sent--;
1394 if (!rdma->pin_all) {
1396 * FYI: If one wanted to signal a specific chunk to be unregistered
1397 * using LRU or workload-specific information, this is the function
1398 * you would call to do so. That chunk would then get asynchronously
1399 * unregistered later.
1401 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1402 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1403 #endif
1405 } else {
1406 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1409 *wr_id_out = wc.wr_id;
1410 if (byte_len) {
1411 *byte_len = wc.byte_len;
1414 return 0;
1418 * Block until the next work request has completed.
1420 * First poll to see if a work request has already completed,
1421 * otherwise block.
1423 * If we encounter completed work requests for IDs other than
1424 * the one we're interested in, then that's generally an error.
1426 * The only exception is actual RDMA Write completions. These
1427 * completions only need to be recorded, but do not actually
1428 * need further processing.
1430 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1431 uint32_t *byte_len)
1433 int num_cq_events = 0, ret = 0;
1434 struct ibv_cq *cq;
1435 void *cq_ctx;
1436 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1438 if (ibv_req_notify_cq(rdma->cq, 0)) {
1439 return -1;
1441 /* poll cq first */
1442 while (wr_id != wrid_requested) {
1443 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1444 if (ret < 0) {
1445 return ret;
1448 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1450 if (wr_id == RDMA_WRID_NONE) {
1451 break;
1453 if (wr_id != wrid_requested) {
1454 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1455 wrid_requested, print_wrid(wr_id), wr_id);
1459 if (wr_id == wrid_requested) {
1460 return 0;
1463 while (1) {
1465 * Coroutine doesn't start until process_incoming_migration()
1466 * so don't yield unless we know we're running inside of a coroutine.
1468 if (rdma->migration_started_on_destination) {
1469 yield_until_fd_readable(rdma->comp_channel->fd);
1472 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1473 perror("ibv_get_cq_event");
1474 goto err_block_for_wrid;
1477 num_cq_events++;
1479 if (ibv_req_notify_cq(cq, 0)) {
1480 goto err_block_for_wrid;
1483 while (wr_id != wrid_requested) {
1484 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1485 if (ret < 0) {
1486 goto err_block_for_wrid;
1489 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1491 if (wr_id == RDMA_WRID_NONE) {
1492 break;
1494 if (wr_id != wrid_requested) {
1495 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1496 wrid_requested, print_wrid(wr_id), wr_id);
1500 if (wr_id == wrid_requested) {
1501 goto success_block_for_wrid;
1505 success_block_for_wrid:
1506 if (num_cq_events) {
1507 ibv_ack_cq_events(cq, num_cq_events);
1509 return 0;
1511 err_block_for_wrid:
1512 if (num_cq_events) {
1513 ibv_ack_cq_events(cq, num_cq_events);
1515 return ret;
1519 * Post a SEND message work request for the control channel
1520 * containing some data and block until the post completes.
1522 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1523 RDMAControlHeader *head)
1525 int ret = 0;
1526 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1527 struct ibv_send_wr *bad_wr;
1528 struct ibv_sge sge = {
1529 .addr = (uintptr_t)(wr->control),
1530 .length = head->len + sizeof(RDMAControlHeader),
1531 .lkey = wr->control_mr->lkey,
1533 struct ibv_send_wr send_wr = {
1534 .wr_id = RDMA_WRID_SEND_CONTROL,
1535 .opcode = IBV_WR_SEND,
1536 .send_flags = IBV_SEND_SIGNALED,
1537 .sg_list = &sge,
1538 .num_sge = 1,
1541 trace_qemu_rdma_post_send_control(control_desc[head->type]);
1544 * We don't actually need to do a memcpy() in here if we used
1545 * the "sge" properly, but since we're only sending control messages
1546 * (not RAM in a performance-critical path), then its OK for now.
1548 * The copy makes the RDMAControlHeader simpler to manipulate
1549 * for the time being.
1551 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1552 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1553 control_to_network((void *) wr->control);
1555 if (buf) {
1556 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1560 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1562 if (ret > 0) {
1563 error_report("Failed to use post IB SEND for control");
1564 return -ret;
1567 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1568 if (ret < 0) {
1569 error_report("rdma migration: send polling control error");
1572 return ret;
1576 * Post a RECV work request in anticipation of some future receipt
1577 * of data on the control channel.
1579 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1581 struct ibv_recv_wr *bad_wr;
1582 struct ibv_sge sge = {
1583 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1584 .length = RDMA_CONTROL_MAX_BUFFER,
1585 .lkey = rdma->wr_data[idx].control_mr->lkey,
1588 struct ibv_recv_wr recv_wr = {
1589 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1590 .sg_list = &sge,
1591 .num_sge = 1,
1595 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1596 return -1;
1599 return 0;
1603 * Block and wait for a RECV control channel message to arrive.
1605 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1606 RDMAControlHeader *head, int expecting, int idx)
1608 uint32_t byte_len;
1609 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1610 &byte_len);
1612 if (ret < 0) {
1613 error_report("rdma migration: recv polling control error!");
1614 return ret;
1617 network_to_control((void *) rdma->wr_data[idx].control);
1618 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1620 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1622 if (expecting == RDMA_CONTROL_NONE) {
1623 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1624 head->type);
1625 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1626 error_report("Was expecting a %s (%d) control message"
1627 ", but got: %s (%d), length: %d",
1628 control_desc[expecting], expecting,
1629 control_desc[head->type], head->type, head->len);
1630 return -EIO;
1632 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1633 error_report("too long length: %d", head->len);
1634 return -EINVAL;
1636 if (sizeof(*head) + head->len != byte_len) {
1637 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1638 return -EINVAL;
1641 return 0;
1645 * When a RECV work request has completed, the work request's
1646 * buffer is pointed at the header.
1648 * This will advance the pointer to the data portion
1649 * of the control message of the work request's buffer that
1650 * was populated after the work request finished.
1652 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1653 RDMAControlHeader *head)
1655 rdma->wr_data[idx].control_len = head->len;
1656 rdma->wr_data[idx].control_curr =
1657 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1661 * This is an 'atomic' high-level operation to deliver a single, unified
1662 * control-channel message.
1664 * Additionally, if the user is expecting some kind of reply to this message,
1665 * they can request a 'resp' response message be filled in by posting an
1666 * additional work request on behalf of the user and waiting for an additional
1667 * completion.
1669 * The extra (optional) response is used during registration to us from having
1670 * to perform an *additional* exchange of message just to provide a response by
1671 * instead piggy-backing on the acknowledgement.
1673 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1674 uint8_t *data, RDMAControlHeader *resp,
1675 int *resp_idx,
1676 int (*callback)(RDMAContext *rdma))
1678 int ret = 0;
1681 * Wait until the dest is ready before attempting to deliver the message
1682 * by waiting for a READY message.
1684 if (rdma->control_ready_expected) {
1685 RDMAControlHeader resp;
1686 ret = qemu_rdma_exchange_get_response(rdma,
1687 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1688 if (ret < 0) {
1689 return ret;
1694 * If the user is expecting a response, post a WR in anticipation of it.
1696 if (resp) {
1697 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1698 if (ret) {
1699 error_report("rdma migration: error posting"
1700 " extra control recv for anticipated result!");
1701 return ret;
1706 * Post a WR to replace the one we just consumed for the READY message.
1708 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1709 if (ret) {
1710 error_report("rdma migration: error posting first control recv!");
1711 return ret;
1715 * Deliver the control message that was requested.
1717 ret = qemu_rdma_post_send_control(rdma, data, head);
1719 if (ret < 0) {
1720 error_report("Failed to send control buffer!");
1721 return ret;
1725 * If we're expecting a response, block and wait for it.
1727 if (resp) {
1728 if (callback) {
1729 trace_qemu_rdma_exchange_send_issue_callback();
1730 ret = callback(rdma);
1731 if (ret < 0) {
1732 return ret;
1736 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1737 ret = qemu_rdma_exchange_get_response(rdma, resp,
1738 resp->type, RDMA_WRID_DATA);
1740 if (ret < 0) {
1741 return ret;
1744 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1745 if (resp_idx) {
1746 *resp_idx = RDMA_WRID_DATA;
1748 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1751 rdma->control_ready_expected = 1;
1753 return 0;
1757 * This is an 'atomic' high-level operation to receive a single, unified
1758 * control-channel message.
1760 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1761 int expecting)
1763 RDMAControlHeader ready = {
1764 .len = 0,
1765 .type = RDMA_CONTROL_READY,
1766 .repeat = 1,
1768 int ret;
1771 * Inform the source that we're ready to receive a message.
1773 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1775 if (ret < 0) {
1776 error_report("Failed to send control buffer!");
1777 return ret;
1781 * Block and wait for the message.
1783 ret = qemu_rdma_exchange_get_response(rdma, head,
1784 expecting, RDMA_WRID_READY);
1786 if (ret < 0) {
1787 return ret;
1790 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1793 * Post a new RECV work request to replace the one we just consumed.
1795 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1796 if (ret) {
1797 error_report("rdma migration: error posting second control recv!");
1798 return ret;
1801 return 0;
1805 * Write an actual chunk of memory using RDMA.
1807 * If we're using dynamic registration on the dest-side, we have to
1808 * send a registration command first.
1810 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1811 int current_index, uint64_t current_addr,
1812 uint64_t length)
1814 struct ibv_sge sge;
1815 struct ibv_send_wr send_wr = { 0 };
1816 struct ibv_send_wr *bad_wr;
1817 int reg_result_idx, ret, count = 0;
1818 uint64_t chunk, chunks;
1819 uint8_t *chunk_start, *chunk_end;
1820 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1821 RDMARegister reg;
1822 RDMARegisterResult *reg_result;
1823 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1824 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1825 .type = RDMA_CONTROL_REGISTER_REQUEST,
1826 .repeat = 1,
1829 retry:
1830 sge.addr = (uintptr_t)(block->local_host_addr +
1831 (current_addr - block->offset));
1832 sge.length = length;
1834 chunk = ram_chunk_index(block->local_host_addr,
1835 (uint8_t *)(uintptr_t)sge.addr);
1836 chunk_start = ram_chunk_start(block, chunk);
1838 if (block->is_ram_block) {
1839 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1841 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1842 chunks--;
1844 } else {
1845 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1847 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1848 chunks--;
1852 trace_qemu_rdma_write_one_top(chunks + 1,
1853 (chunks + 1) *
1854 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1856 chunk_end = ram_chunk_end(block, chunk + chunks);
1858 if (!rdma->pin_all) {
1859 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1860 qemu_rdma_unregister_waiting(rdma);
1861 #endif
1864 while (test_bit(chunk, block->transit_bitmap)) {
1865 (void)count;
1866 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1867 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1869 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1871 if (ret < 0) {
1872 error_report("Failed to Wait for previous write to complete "
1873 "block %d chunk %" PRIu64
1874 " current %" PRIu64 " len %" PRIu64 " %d",
1875 current_index, chunk, sge.addr, length, rdma->nb_sent);
1876 return ret;
1880 if (!rdma->pin_all || !block->is_ram_block) {
1881 if (!block->remote_keys[chunk]) {
1883 * This chunk has not yet been registered, so first check to see
1884 * if the entire chunk is zero. If so, tell the other size to
1885 * memset() + madvise() the entire chunk without RDMA.
1888 if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1889 length)
1890 && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1891 length) == length) {
1892 RDMACompress comp = {
1893 .offset = current_addr,
1894 .value = 0,
1895 .block_idx = current_index,
1896 .length = length,
1899 head.len = sizeof(comp);
1900 head.type = RDMA_CONTROL_COMPRESS;
1902 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1903 current_index, current_addr);
1905 compress_to_network(&comp);
1906 ret = qemu_rdma_exchange_send(rdma, &head,
1907 (uint8_t *) &comp, NULL, NULL, NULL);
1909 if (ret < 0) {
1910 return -EIO;
1913 acct_update_position(f, sge.length, true);
1915 return 1;
1919 * Otherwise, tell other side to register.
1921 reg.current_index = current_index;
1922 if (block->is_ram_block) {
1923 reg.key.current_addr = current_addr;
1924 } else {
1925 reg.key.chunk = chunk;
1927 reg.chunks = chunks;
1929 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1930 current_addr);
1932 register_to_network(&reg);
1933 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1934 &resp, &reg_result_idx, NULL);
1935 if (ret < 0) {
1936 return ret;
1939 /* try to overlap this single registration with the one we sent. */
1940 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1941 &sge.lkey, NULL, chunk,
1942 chunk_start, chunk_end)) {
1943 error_report("cannot get lkey");
1944 return -EINVAL;
1947 reg_result = (RDMARegisterResult *)
1948 rdma->wr_data[reg_result_idx].control_curr;
1950 network_to_result(reg_result);
1952 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
1953 reg_result->rkey, chunk);
1955 block->remote_keys[chunk] = reg_result->rkey;
1956 block->remote_host_addr = reg_result->host_addr;
1957 } else {
1958 /* already registered before */
1959 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1960 &sge.lkey, NULL, chunk,
1961 chunk_start, chunk_end)) {
1962 error_report("cannot get lkey!");
1963 return -EINVAL;
1967 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1968 } else {
1969 send_wr.wr.rdma.rkey = block->remote_rkey;
1971 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1972 &sge.lkey, NULL, chunk,
1973 chunk_start, chunk_end)) {
1974 error_report("cannot get lkey!");
1975 return -EINVAL;
1980 * Encode the ram block index and chunk within this wrid.
1981 * We will use this information at the time of completion
1982 * to figure out which bitmap to check against and then which
1983 * chunk in the bitmap to look for.
1985 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1986 current_index, chunk);
1988 send_wr.opcode = IBV_WR_RDMA_WRITE;
1989 send_wr.send_flags = IBV_SEND_SIGNALED;
1990 send_wr.sg_list = &sge;
1991 send_wr.num_sge = 1;
1992 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1993 (current_addr - block->offset);
1995 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1996 sge.length);
1999 * ibv_post_send() does not return negative error numbers,
2000 * per the specification they are positive - no idea why.
2002 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2004 if (ret == ENOMEM) {
2005 trace_qemu_rdma_write_one_queue_full();
2006 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2007 if (ret < 0) {
2008 error_report("rdma migration: failed to make "
2009 "room in full send queue! %d", ret);
2010 return ret;
2013 goto retry;
2015 } else if (ret > 0) {
2016 perror("rdma migration: post rdma write failed");
2017 return -ret;
2020 set_bit(chunk, block->transit_bitmap);
2021 acct_update_position(f, sge.length, false);
2022 rdma->total_writes++;
2024 return 0;
2028 * Push out any unwritten RDMA operations.
2030 * We support sending out multiple chunks at the same time.
2031 * Not all of them need to get signaled in the completion queue.
2033 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2035 int ret;
2037 if (!rdma->current_length) {
2038 return 0;
2041 ret = qemu_rdma_write_one(f, rdma,
2042 rdma->current_index, rdma->current_addr, rdma->current_length);
2044 if (ret < 0) {
2045 return ret;
2048 if (ret == 0) {
2049 rdma->nb_sent++;
2050 trace_qemu_rdma_write_flush(rdma->nb_sent);
2053 rdma->current_length = 0;
2054 rdma->current_addr = 0;
2056 return 0;
2059 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2060 uint64_t offset, uint64_t len)
2062 RDMALocalBlock *block;
2063 uint8_t *host_addr;
2064 uint8_t *chunk_end;
2066 if (rdma->current_index < 0) {
2067 return 0;
2070 if (rdma->current_chunk < 0) {
2071 return 0;
2074 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2075 host_addr = block->local_host_addr + (offset - block->offset);
2076 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2078 if (rdma->current_length == 0) {
2079 return 0;
2083 * Only merge into chunk sequentially.
2085 if (offset != (rdma->current_addr + rdma->current_length)) {
2086 return 0;
2089 if (offset < block->offset) {
2090 return 0;
2093 if ((offset + len) > (block->offset + block->length)) {
2094 return 0;
2097 if ((host_addr + len) > chunk_end) {
2098 return 0;
2101 return 1;
2105 * We're not actually writing here, but doing three things:
2107 * 1. Identify the chunk the buffer belongs to.
2108 * 2. If the chunk is full or the buffer doesn't belong to the current
2109 * chunk, then start a new chunk and flush() the old chunk.
2110 * 3. To keep the hardware busy, we also group chunks into batches
2111 * and only require that a batch gets acknowledged in the completion
2112 * qeueue instead of each individual chunk.
2114 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2115 uint64_t block_offset, uint64_t offset,
2116 uint64_t len)
2118 uint64_t current_addr = block_offset + offset;
2119 uint64_t index = rdma->current_index;
2120 uint64_t chunk = rdma->current_chunk;
2121 int ret;
2123 /* If we cannot merge it, we flush the current buffer first. */
2124 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2125 ret = qemu_rdma_write_flush(f, rdma);
2126 if (ret) {
2127 return ret;
2129 rdma->current_length = 0;
2130 rdma->current_addr = current_addr;
2132 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2133 offset, len, &index, &chunk);
2134 if (ret) {
2135 error_report("ram block search failed");
2136 return ret;
2138 rdma->current_index = index;
2139 rdma->current_chunk = chunk;
2142 /* merge it */
2143 rdma->current_length += len;
2145 /* flush it if buffer is too large */
2146 if (rdma->current_length >= RDMA_MERGE_MAX) {
2147 return qemu_rdma_write_flush(f, rdma);
2150 return 0;
2153 static void qemu_rdma_cleanup(RDMAContext *rdma)
2155 struct rdma_cm_event *cm_event;
2156 int ret, idx;
2158 if (rdma->cm_id && rdma->connected) {
2159 if (rdma->error_state) {
2160 RDMAControlHeader head = { .len = 0,
2161 .type = RDMA_CONTROL_ERROR,
2162 .repeat = 1,
2164 error_report("Early error. Sending error.");
2165 qemu_rdma_post_send_control(rdma, NULL, &head);
2168 ret = rdma_disconnect(rdma->cm_id);
2169 if (!ret) {
2170 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2171 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2172 if (!ret) {
2173 rdma_ack_cm_event(cm_event);
2176 trace_qemu_rdma_cleanup_disconnect();
2177 rdma->connected = false;
2180 g_free(rdma->block);
2181 rdma->block = NULL;
2183 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2184 if (rdma->wr_data[idx].control_mr) {
2185 rdma->total_registrations--;
2186 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2188 rdma->wr_data[idx].control_mr = NULL;
2191 if (rdma->local_ram_blocks.block) {
2192 while (rdma->local_ram_blocks.nb_blocks) {
2193 rdma_delete_block(rdma, rdma->local_ram_blocks.block->offset);
2197 if (rdma->qp) {
2198 rdma_destroy_qp(rdma->cm_id);
2199 rdma->qp = NULL;
2201 if (rdma->cq) {
2202 ibv_destroy_cq(rdma->cq);
2203 rdma->cq = NULL;
2205 if (rdma->comp_channel) {
2206 ibv_destroy_comp_channel(rdma->comp_channel);
2207 rdma->comp_channel = NULL;
2209 if (rdma->pd) {
2210 ibv_dealloc_pd(rdma->pd);
2211 rdma->pd = NULL;
2213 if (rdma->cm_id) {
2214 rdma_destroy_id(rdma->cm_id);
2215 rdma->cm_id = NULL;
2217 if (rdma->listen_id) {
2218 rdma_destroy_id(rdma->listen_id);
2219 rdma->listen_id = NULL;
2221 if (rdma->channel) {
2222 rdma_destroy_event_channel(rdma->channel);
2223 rdma->channel = NULL;
2225 g_free(rdma->host);
2226 rdma->host = NULL;
2230 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2232 int ret, idx;
2233 Error *local_err = NULL, **temp = &local_err;
2236 * Will be validated against destination's actual capabilities
2237 * after the connect() completes.
2239 rdma->pin_all = pin_all;
2241 ret = qemu_rdma_resolve_host(rdma, temp);
2242 if (ret) {
2243 goto err_rdma_source_init;
2246 ret = qemu_rdma_alloc_pd_cq(rdma);
2247 if (ret) {
2248 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2249 " limits may be too low. Please check $ ulimit -a # and "
2250 "search for 'ulimit -l' in the output");
2251 goto err_rdma_source_init;
2254 ret = qemu_rdma_alloc_qp(rdma);
2255 if (ret) {
2256 ERROR(temp, "rdma migration: error allocating qp!");
2257 goto err_rdma_source_init;
2260 ret = qemu_rdma_init_ram_blocks(rdma);
2261 if (ret) {
2262 ERROR(temp, "rdma migration: error initializing ram blocks!");
2263 goto err_rdma_source_init;
2266 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2267 ret = qemu_rdma_reg_control(rdma, idx);
2268 if (ret) {
2269 ERROR(temp, "rdma migration: error registering %d control!",
2270 idx);
2271 goto err_rdma_source_init;
2275 return 0;
2277 err_rdma_source_init:
2278 error_propagate(errp, local_err);
2279 qemu_rdma_cleanup(rdma);
2280 return -1;
2283 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2285 RDMACapabilities cap = {
2286 .version = RDMA_CONTROL_VERSION_CURRENT,
2287 .flags = 0,
2289 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2290 .retry_count = 5,
2291 .private_data = &cap,
2292 .private_data_len = sizeof(cap),
2294 struct rdma_cm_event *cm_event;
2295 int ret;
2298 * Only negotiate the capability with destination if the user
2299 * on the source first requested the capability.
2301 if (rdma->pin_all) {
2302 trace_qemu_rdma_connect_pin_all_requested();
2303 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2306 caps_to_network(&cap);
2308 ret = rdma_connect(rdma->cm_id, &conn_param);
2309 if (ret) {
2310 perror("rdma_connect");
2311 ERROR(errp, "connecting to destination!");
2312 goto err_rdma_source_connect;
2315 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2316 if (ret) {
2317 perror("rdma_get_cm_event after rdma_connect");
2318 ERROR(errp, "connecting to destination!");
2319 rdma_ack_cm_event(cm_event);
2320 goto err_rdma_source_connect;
2323 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2324 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2325 ERROR(errp, "connecting to destination!");
2326 rdma_ack_cm_event(cm_event);
2327 goto err_rdma_source_connect;
2329 rdma->connected = true;
2331 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2332 network_to_caps(&cap);
2335 * Verify that the *requested* capabilities are supported by the destination
2336 * and disable them otherwise.
2338 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2339 ERROR(errp, "Server cannot support pinning all memory. "
2340 "Will register memory dynamically.");
2341 rdma->pin_all = false;
2344 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2346 rdma_ack_cm_event(cm_event);
2348 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2349 if (ret) {
2350 ERROR(errp, "posting second control recv!");
2351 goto err_rdma_source_connect;
2354 rdma->control_ready_expected = 1;
2355 rdma->nb_sent = 0;
2356 return 0;
2358 err_rdma_source_connect:
2359 qemu_rdma_cleanup(rdma);
2360 return -1;
2363 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2365 int ret, idx;
2366 struct rdma_cm_id *listen_id;
2367 char ip[40] = "unknown";
2368 struct rdma_addrinfo *res, *e;
2369 char port_str[16];
2371 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2372 rdma->wr_data[idx].control_len = 0;
2373 rdma->wr_data[idx].control_curr = NULL;
2376 if (!rdma->host || !rdma->host[0]) {
2377 ERROR(errp, "RDMA host is not set!");
2378 rdma->error_state = -EINVAL;
2379 return -1;
2381 /* create CM channel */
2382 rdma->channel = rdma_create_event_channel();
2383 if (!rdma->channel) {
2384 ERROR(errp, "could not create rdma event channel");
2385 rdma->error_state = -EINVAL;
2386 return -1;
2389 /* create CM id */
2390 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2391 if (ret) {
2392 ERROR(errp, "could not create cm_id!");
2393 goto err_dest_init_create_listen_id;
2396 snprintf(port_str, 16, "%d", rdma->port);
2397 port_str[15] = '\0';
2399 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2400 if (ret < 0) {
2401 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2402 goto err_dest_init_bind_addr;
2405 for (e = res; e != NULL; e = e->ai_next) {
2406 inet_ntop(e->ai_family,
2407 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2408 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2409 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2410 if (ret) {
2411 continue;
2413 if (e->ai_family == AF_INET6) {
2414 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2415 if (ret) {
2416 continue;
2419 break;
2422 if (!e) {
2423 ERROR(errp, "Error: could not rdma_bind_addr!");
2424 goto err_dest_init_bind_addr;
2427 rdma->listen_id = listen_id;
2428 qemu_rdma_dump_gid("dest_init", listen_id);
2429 return 0;
2431 err_dest_init_bind_addr:
2432 rdma_destroy_id(listen_id);
2433 err_dest_init_create_listen_id:
2434 rdma_destroy_event_channel(rdma->channel);
2435 rdma->channel = NULL;
2436 rdma->error_state = ret;
2437 return ret;
2441 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2443 RDMAContext *rdma = NULL;
2444 InetSocketAddress *addr;
2446 if (host_port) {
2447 rdma = g_malloc0(sizeof(RDMAContext));
2448 memset(rdma, 0, sizeof(RDMAContext));
2449 rdma->current_index = -1;
2450 rdma->current_chunk = -1;
2452 addr = inet_parse(host_port, NULL);
2453 if (addr != NULL) {
2454 rdma->port = atoi(addr->port);
2455 rdma->host = g_strdup(addr->host);
2456 } else {
2457 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2458 g_free(rdma);
2459 rdma = NULL;
2462 qapi_free_InetSocketAddress(addr);
2465 return rdma;
2469 * QEMUFile interface to the control channel.
2470 * SEND messages for control only.
2471 * VM's ram is handled with regular RDMA messages.
2473 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2474 int64_t pos, int size)
2476 QEMUFileRDMA *r = opaque;
2477 QEMUFile *f = r->file;
2478 RDMAContext *rdma = r->rdma;
2479 size_t remaining = size;
2480 uint8_t * data = (void *) buf;
2481 int ret;
2483 CHECK_ERROR_STATE();
2486 * Push out any writes that
2487 * we're queued up for VM's ram.
2489 ret = qemu_rdma_write_flush(f, rdma);
2490 if (ret < 0) {
2491 rdma->error_state = ret;
2492 return ret;
2495 while (remaining) {
2496 RDMAControlHeader head;
2498 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2499 remaining -= r->len;
2501 head.len = r->len;
2502 head.type = RDMA_CONTROL_QEMU_FILE;
2504 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2506 if (ret < 0) {
2507 rdma->error_state = ret;
2508 return ret;
2511 data += r->len;
2514 return size;
2517 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2518 int size, int idx)
2520 size_t len = 0;
2522 if (rdma->wr_data[idx].control_len) {
2523 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2525 len = MIN(size, rdma->wr_data[idx].control_len);
2526 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2527 rdma->wr_data[idx].control_curr += len;
2528 rdma->wr_data[idx].control_len -= len;
2531 return len;
2535 * QEMUFile interface to the control channel.
2536 * RDMA links don't use bytestreams, so we have to
2537 * return bytes to QEMUFile opportunistically.
2539 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2540 int64_t pos, int size)
2542 QEMUFileRDMA *r = opaque;
2543 RDMAContext *rdma = r->rdma;
2544 RDMAControlHeader head;
2545 int ret = 0;
2547 CHECK_ERROR_STATE();
2550 * First, we hold on to the last SEND message we
2551 * were given and dish out the bytes until we run
2552 * out of bytes.
2554 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2555 if (r->len) {
2556 return r->len;
2560 * Once we run out, we block and wait for another
2561 * SEND message to arrive.
2563 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2565 if (ret < 0) {
2566 rdma->error_state = ret;
2567 return ret;
2571 * SEND was received with new bytes, now try again.
2573 return qemu_rdma_fill(r->rdma, buf, size, 0);
2577 * Block until all the outstanding chunks have been delivered by the hardware.
2579 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2581 int ret;
2583 if (qemu_rdma_write_flush(f, rdma) < 0) {
2584 return -EIO;
2587 while (rdma->nb_sent) {
2588 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2589 if (ret < 0) {
2590 error_report("rdma migration: complete polling error!");
2591 return -EIO;
2595 qemu_rdma_unregister_waiting(rdma);
2597 return 0;
2600 static int qemu_rdma_close(void *opaque)
2602 trace_qemu_rdma_close();
2603 QEMUFileRDMA *r = opaque;
2604 if (r->rdma) {
2605 qemu_rdma_cleanup(r->rdma);
2606 g_free(r->rdma);
2608 g_free(r);
2609 return 0;
2613 * Parameters:
2614 * @offset == 0 :
2615 * This means that 'block_offset' is a full virtual address that does not
2616 * belong to a RAMBlock of the virtual machine and instead
2617 * represents a private malloc'd memory area that the caller wishes to
2618 * transfer.
2620 * @offset != 0 :
2621 * Offset is an offset to be added to block_offset and used
2622 * to also lookup the corresponding RAMBlock.
2624 * @size > 0 :
2625 * Initiate an transfer this size.
2627 * @size == 0 :
2628 * A 'hint' or 'advice' that means that we wish to speculatively
2629 * and asynchronously unregister this memory. In this case, there is no
2630 * guarantee that the unregister will actually happen, for example,
2631 * if the memory is being actively transmitted. Additionally, the memory
2632 * may be re-registered at any future time if a write within the same
2633 * chunk was requested again, even if you attempted to unregister it
2634 * here.
2636 * @size < 0 : TODO, not yet supported
2637 * Unregister the memory NOW. This means that the caller does not
2638 * expect there to be any future RDMA transfers and we just want to clean
2639 * things up. This is used in case the upper layer owns the memory and
2640 * cannot wait for qemu_fclose() to occur.
2642 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2643 * sent. Usually, this will not be more than a few bytes of
2644 * the protocol because most transfers are sent asynchronously.
2646 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2647 ram_addr_t block_offset, ram_addr_t offset,
2648 size_t size, uint64_t *bytes_sent)
2650 QEMUFileRDMA *rfile = opaque;
2651 RDMAContext *rdma = rfile->rdma;
2652 int ret;
2654 CHECK_ERROR_STATE();
2656 qemu_fflush(f);
2658 if (size > 0) {
2660 * Add this page to the current 'chunk'. If the chunk
2661 * is full, or the page doen't belong to the current chunk,
2662 * an actual RDMA write will occur and a new chunk will be formed.
2664 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2665 if (ret < 0) {
2666 error_report("rdma migration: write error! %d", ret);
2667 goto err;
2671 * We always return 1 bytes because the RDMA
2672 * protocol is completely asynchronous. We do not yet know
2673 * whether an identified chunk is zero or not because we're
2674 * waiting for other pages to potentially be merged with
2675 * the current chunk. So, we have to call qemu_update_position()
2676 * later on when the actual write occurs.
2678 if (bytes_sent) {
2679 *bytes_sent = 1;
2681 } else {
2682 uint64_t index, chunk;
2684 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2685 if (size < 0) {
2686 ret = qemu_rdma_drain_cq(f, rdma);
2687 if (ret < 0) {
2688 fprintf(stderr, "rdma: failed to synchronously drain"
2689 " completion queue before unregistration.\n");
2690 goto err;
2695 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2696 offset, size, &index, &chunk);
2698 if (ret) {
2699 error_report("ram block search failed");
2700 goto err;
2703 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2706 * TODO: Synchronous, guaranteed unregistration (should not occur during
2707 * fast-path). Otherwise, unregisters will process on the next call to
2708 * qemu_rdma_drain_cq()
2709 if (size < 0) {
2710 qemu_rdma_unregister_waiting(rdma);
2716 * Drain the Completion Queue if possible, but do not block,
2717 * just poll.
2719 * If nothing to poll, the end of the iteration will do this
2720 * again to make sure we don't overflow the request queue.
2722 while (1) {
2723 uint64_t wr_id, wr_id_in;
2724 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2725 if (ret < 0) {
2726 error_report("rdma migration: polling error! %d", ret);
2727 goto err;
2730 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2732 if (wr_id == RDMA_WRID_NONE) {
2733 break;
2737 return RAM_SAVE_CONTROL_DELAYED;
2738 err:
2739 rdma->error_state = ret;
2740 return ret;
2743 static int qemu_rdma_accept(RDMAContext *rdma)
2745 RDMACapabilities cap;
2746 struct rdma_conn_param conn_param = {
2747 .responder_resources = 2,
2748 .private_data = &cap,
2749 .private_data_len = sizeof(cap),
2751 struct rdma_cm_event *cm_event;
2752 struct ibv_context *verbs;
2753 int ret = -EINVAL;
2754 int idx;
2756 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2757 if (ret) {
2758 goto err_rdma_dest_wait;
2761 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2762 rdma_ack_cm_event(cm_event);
2763 goto err_rdma_dest_wait;
2766 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2768 network_to_caps(&cap);
2770 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2771 error_report("Unknown source RDMA version: %d, bailing...",
2772 cap.version);
2773 rdma_ack_cm_event(cm_event);
2774 goto err_rdma_dest_wait;
2778 * Respond with only the capabilities this version of QEMU knows about.
2780 cap.flags &= known_capabilities;
2783 * Enable the ones that we do know about.
2784 * Add other checks here as new ones are introduced.
2786 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2787 rdma->pin_all = true;
2790 rdma->cm_id = cm_event->id;
2791 verbs = cm_event->id->verbs;
2793 rdma_ack_cm_event(cm_event);
2795 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
2797 caps_to_network(&cap);
2799 trace_qemu_rdma_accept_pin_verbsc(verbs);
2801 if (!rdma->verbs) {
2802 rdma->verbs = verbs;
2803 } else if (rdma->verbs != verbs) {
2804 error_report("ibv context not matching %p, %p!", rdma->verbs,
2805 verbs);
2806 goto err_rdma_dest_wait;
2809 qemu_rdma_dump_id("dest_init", verbs);
2811 ret = qemu_rdma_alloc_pd_cq(rdma);
2812 if (ret) {
2813 error_report("rdma migration: error allocating pd and cq!");
2814 goto err_rdma_dest_wait;
2817 ret = qemu_rdma_alloc_qp(rdma);
2818 if (ret) {
2819 error_report("rdma migration: error allocating qp!");
2820 goto err_rdma_dest_wait;
2823 ret = qemu_rdma_init_ram_blocks(rdma);
2824 if (ret) {
2825 error_report("rdma migration: error initializing ram blocks!");
2826 goto err_rdma_dest_wait;
2829 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2830 ret = qemu_rdma_reg_control(rdma, idx);
2831 if (ret) {
2832 error_report("rdma: error registering %d control", idx);
2833 goto err_rdma_dest_wait;
2837 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2839 ret = rdma_accept(rdma->cm_id, &conn_param);
2840 if (ret) {
2841 error_report("rdma_accept returns %d", ret);
2842 goto err_rdma_dest_wait;
2845 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2846 if (ret) {
2847 error_report("rdma_accept get_cm_event failed %d", ret);
2848 goto err_rdma_dest_wait;
2851 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2852 error_report("rdma_accept not event established");
2853 rdma_ack_cm_event(cm_event);
2854 goto err_rdma_dest_wait;
2857 rdma_ack_cm_event(cm_event);
2858 rdma->connected = true;
2860 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2861 if (ret) {
2862 error_report("rdma migration: error posting second control recv");
2863 goto err_rdma_dest_wait;
2866 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2868 return 0;
2870 err_rdma_dest_wait:
2871 rdma->error_state = ret;
2872 qemu_rdma_cleanup(rdma);
2873 return ret;
2877 * During each iteration of the migration, we listen for instructions
2878 * by the source VM to perform dynamic page registrations before they
2879 * can perform RDMA operations.
2881 * We respond with the 'rkey'.
2883 * Keep doing this until the source tells us to stop.
2885 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2886 uint64_t flags)
2888 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2889 .type = RDMA_CONTROL_REGISTER_RESULT,
2890 .repeat = 0,
2892 RDMAControlHeader unreg_resp = { .len = 0,
2893 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2894 .repeat = 0,
2896 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2897 .repeat = 1 };
2898 QEMUFileRDMA *rfile = opaque;
2899 RDMAContext *rdma = rfile->rdma;
2900 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2901 RDMAControlHeader head;
2902 RDMARegister *reg, *registers;
2903 RDMACompress *comp;
2904 RDMARegisterResult *reg_result;
2905 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2906 RDMALocalBlock *block;
2907 void *host_addr;
2908 int ret = 0;
2909 int idx = 0;
2910 int count = 0;
2911 int i = 0;
2913 CHECK_ERROR_STATE();
2915 do {
2916 trace_qemu_rdma_registration_handle_wait(flags);
2918 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2920 if (ret < 0) {
2921 break;
2924 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2925 error_report("rdma: Too many requests in this message (%d)."
2926 "Bailing.", head.repeat);
2927 ret = -EIO;
2928 break;
2931 switch (head.type) {
2932 case RDMA_CONTROL_COMPRESS:
2933 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2934 network_to_compress(comp);
2936 trace_qemu_rdma_registration_handle_compress(comp->length,
2937 comp->block_idx,
2938 comp->offset);
2939 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2941 host_addr = block->local_host_addr +
2942 (comp->offset - block->offset);
2944 ram_handle_compressed(host_addr, comp->value, comp->length);
2945 break;
2947 case RDMA_CONTROL_REGISTER_FINISHED:
2948 trace_qemu_rdma_registration_handle_finished();
2949 goto out;
2951 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2952 trace_qemu_rdma_registration_handle_ram_blocks();
2954 if (rdma->pin_all) {
2955 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2956 if (ret) {
2957 error_report("rdma migration: error dest "
2958 "registering ram blocks");
2959 goto out;
2964 * Dest uses this to prepare to transmit the RAMBlock descriptions
2965 * to the source VM after connection setup.
2966 * Both sides use the "remote" structure to communicate and update
2967 * their "local" descriptions with what was sent.
2969 for (i = 0; i < local->nb_blocks; i++) {
2970 rdma->block[i].remote_host_addr =
2971 (uintptr_t)(local->block[i].local_host_addr);
2973 if (rdma->pin_all) {
2974 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2977 rdma->block[i].offset = local->block[i].offset;
2978 rdma->block[i].length = local->block[i].length;
2980 remote_block_to_network(&rdma->block[i]);
2983 blocks.len = rdma->local_ram_blocks.nb_blocks
2984 * sizeof(RDMARemoteBlock);
2987 ret = qemu_rdma_post_send_control(rdma,
2988 (uint8_t *) rdma->block, &blocks);
2990 if (ret < 0) {
2991 error_report("rdma migration: error sending remote info");
2992 goto out;
2995 break;
2996 case RDMA_CONTROL_REGISTER_REQUEST:
2997 trace_qemu_rdma_registration_handle_register(head.repeat);
2999 reg_resp.repeat = head.repeat;
3000 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3002 for (count = 0; count < head.repeat; count++) {
3003 uint64_t chunk;
3004 uint8_t *chunk_start, *chunk_end;
3006 reg = &registers[count];
3007 network_to_register(reg);
3009 reg_result = &results[count];
3011 trace_qemu_rdma_registration_handle_register_loop(count,
3012 reg->current_index, reg->key.current_addr, reg->chunks);
3014 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3015 if (block->is_ram_block) {
3016 host_addr = (block->local_host_addr +
3017 (reg->key.current_addr - block->offset));
3018 chunk = ram_chunk_index(block->local_host_addr,
3019 (uint8_t *) host_addr);
3020 } else {
3021 chunk = reg->key.chunk;
3022 host_addr = block->local_host_addr +
3023 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3025 chunk_start = ram_chunk_start(block, chunk);
3026 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3027 if (qemu_rdma_register_and_get_keys(rdma, block,
3028 (uintptr_t)host_addr, NULL, &reg_result->rkey,
3029 chunk, chunk_start, chunk_end)) {
3030 error_report("cannot get rkey");
3031 ret = -EINVAL;
3032 goto out;
3035 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3037 trace_qemu_rdma_registration_handle_register_rkey(
3038 reg_result->rkey);
3040 result_to_network(reg_result);
3043 ret = qemu_rdma_post_send_control(rdma,
3044 (uint8_t *) results, &reg_resp);
3046 if (ret < 0) {
3047 error_report("Failed to send control buffer");
3048 goto out;
3050 break;
3051 case RDMA_CONTROL_UNREGISTER_REQUEST:
3052 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3053 unreg_resp.repeat = head.repeat;
3054 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3056 for (count = 0; count < head.repeat; count++) {
3057 reg = &registers[count];
3058 network_to_register(reg);
3060 trace_qemu_rdma_registration_handle_unregister_loop(count,
3061 reg->current_index, reg->key.chunk);
3063 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3065 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3066 block->pmr[reg->key.chunk] = NULL;
3068 if (ret != 0) {
3069 perror("rdma unregistration chunk failed");
3070 ret = -ret;
3071 goto out;
3074 rdma->total_registrations--;
3076 trace_qemu_rdma_registration_handle_unregister_success(
3077 reg->key.chunk);
3080 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3082 if (ret < 0) {
3083 error_report("Failed to send control buffer");
3084 goto out;
3086 break;
3087 case RDMA_CONTROL_REGISTER_RESULT:
3088 error_report("Invalid RESULT message at dest.");
3089 ret = -EIO;
3090 goto out;
3091 default:
3092 error_report("Unknown control message %s", control_desc[head.type]);
3093 ret = -EIO;
3094 goto out;
3096 } while (1);
3097 out:
3098 if (ret < 0) {
3099 rdma->error_state = ret;
3101 return ret;
3104 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3105 uint64_t flags)
3107 QEMUFileRDMA *rfile = opaque;
3108 RDMAContext *rdma = rfile->rdma;
3110 CHECK_ERROR_STATE();
3112 trace_qemu_rdma_registration_start(flags);
3113 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3114 qemu_fflush(f);
3116 return 0;
3120 * Inform dest that dynamic registrations are done for now.
3121 * First, flush writes, if any.
3123 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3124 uint64_t flags)
3126 Error *local_err = NULL, **errp = &local_err;
3127 QEMUFileRDMA *rfile = opaque;
3128 RDMAContext *rdma = rfile->rdma;
3129 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3130 int ret = 0;
3132 CHECK_ERROR_STATE();
3134 qemu_fflush(f);
3135 ret = qemu_rdma_drain_cq(f, rdma);
3137 if (ret < 0) {
3138 goto err;
3141 if (flags == RAM_CONTROL_SETUP) {
3142 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3143 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3144 int reg_result_idx, i, j, nb_remote_blocks;
3146 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3147 trace_qemu_rdma_registration_stop_ram();
3150 * Make sure that we parallelize the pinning on both sides.
3151 * For very large guests, doing this serially takes a really
3152 * long time, so we have to 'interleave' the pinning locally
3153 * with the control messages by performing the pinning on this
3154 * side before we receive the control response from the other
3155 * side that the pinning has completed.
3157 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3158 &reg_result_idx, rdma->pin_all ?
3159 qemu_rdma_reg_whole_ram_blocks : NULL);
3160 if (ret < 0) {
3161 ERROR(errp, "receiving remote info!");
3162 return ret;
3165 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3168 * The protocol uses two different sets of rkeys (mutually exclusive):
3169 * 1. One key to represent the virtual address of the entire ram block.
3170 * (dynamic chunk registration disabled - pin everything with one rkey.)
3171 * 2. One to represent individual chunks within a ram block.
3172 * (dynamic chunk registration enabled - pin individual chunks.)
3174 * Once the capability is successfully negotiated, the destination transmits
3175 * the keys to use (or sends them later) including the virtual addresses
3176 * and then propagates the remote ram block descriptions to his local copy.
3179 if (local->nb_blocks != nb_remote_blocks) {
3180 ERROR(errp, "ram blocks mismatch #1! "
3181 "Your QEMU command line parameters are probably "
3182 "not identical on both the source and destination.");
3183 return -EINVAL;
3186 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3187 memcpy(rdma->block,
3188 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3189 for (i = 0; i < nb_remote_blocks; i++) {
3190 network_to_remote_block(&rdma->block[i]);
3192 /* search local ram blocks */
3193 for (j = 0; j < local->nb_blocks; j++) {
3194 if (rdma->block[i].offset != local->block[j].offset) {
3195 continue;
3198 if (rdma->block[i].length != local->block[j].length) {
3199 ERROR(errp, "ram blocks mismatch #2! "
3200 "Your QEMU command line parameters are probably "
3201 "not identical on both the source and destination.");
3202 return -EINVAL;
3204 local->block[j].remote_host_addr =
3205 rdma->block[i].remote_host_addr;
3206 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3207 break;
3210 if (j >= local->nb_blocks) {
3211 ERROR(errp, "ram blocks mismatch #3! "
3212 "Your QEMU command line parameters are probably "
3213 "not identical on both the source and destination.");
3214 return -EINVAL;
3219 trace_qemu_rdma_registration_stop(flags);
3221 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3222 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3224 if (ret < 0) {
3225 goto err;
3228 return 0;
3229 err:
3230 rdma->error_state = ret;
3231 return ret;
3234 static int qemu_rdma_get_fd(void *opaque)
3236 QEMUFileRDMA *rfile = opaque;
3237 RDMAContext *rdma = rfile->rdma;
3239 return rdma->comp_channel->fd;
3242 static const QEMUFileOps rdma_read_ops = {
3243 .get_buffer = qemu_rdma_get_buffer,
3244 .get_fd = qemu_rdma_get_fd,
3245 .close = qemu_rdma_close,
3246 .hook_ram_load = qemu_rdma_registration_handle,
3249 static const QEMUFileOps rdma_write_ops = {
3250 .put_buffer = qemu_rdma_put_buffer,
3251 .close = qemu_rdma_close,
3252 .before_ram_iterate = qemu_rdma_registration_start,
3253 .after_ram_iterate = qemu_rdma_registration_stop,
3254 .save_page = qemu_rdma_save_page,
3257 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3259 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3261 if (qemu_file_mode_is_not_valid(mode)) {
3262 return NULL;
3265 r->rdma = rdma;
3267 if (mode[0] == 'w') {
3268 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3269 } else {
3270 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3273 return r->file;
3276 static void rdma_accept_incoming_migration(void *opaque)
3278 RDMAContext *rdma = opaque;
3279 int ret;
3280 QEMUFile *f;
3281 Error *local_err = NULL, **errp = &local_err;
3283 trace_qemu_dma_accept_incoming_migration();
3284 ret = qemu_rdma_accept(rdma);
3286 if (ret) {
3287 ERROR(errp, "RDMA Migration initialization failed!");
3288 return;
3291 trace_qemu_dma_accept_incoming_migration_accepted();
3293 f = qemu_fopen_rdma(rdma, "rb");
3294 if (f == NULL) {
3295 ERROR(errp, "could not qemu_fopen_rdma!");
3296 qemu_rdma_cleanup(rdma);
3297 return;
3300 rdma->migration_started_on_destination = 1;
3301 process_incoming_migration(f);
3304 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3306 int ret;
3307 RDMAContext *rdma;
3308 Error *local_err = NULL;
3310 trace_rdma_start_incoming_migration();
3311 rdma = qemu_rdma_data_init(host_port, &local_err);
3313 if (rdma == NULL) {
3314 goto err;
3317 ret = qemu_rdma_dest_init(rdma, &local_err);
3319 if (ret) {
3320 goto err;
3323 trace_rdma_start_incoming_migration_after_dest_init();
3325 ret = rdma_listen(rdma->listen_id, 5);
3327 if (ret) {
3328 ERROR(errp, "listening on socket!");
3329 goto err;
3332 trace_rdma_start_incoming_migration_after_rdma_listen();
3334 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3335 rdma_accept_incoming_migration, NULL,
3336 (void *)(intptr_t) rdma);
3337 return;
3338 err:
3339 error_propagate(errp, local_err);
3340 g_free(rdma);
3343 void rdma_start_outgoing_migration(void *opaque,
3344 const char *host_port, Error **errp)
3346 MigrationState *s = opaque;
3347 Error *local_err = NULL, **temp = &local_err;
3348 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3349 int ret = 0;
3351 if (rdma == NULL) {
3352 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3353 goto err;
3356 ret = qemu_rdma_source_init(rdma, &local_err,
3357 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3359 if (ret) {
3360 goto err;
3363 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3364 ret = qemu_rdma_connect(rdma, &local_err);
3366 if (ret) {
3367 goto err;
3370 trace_rdma_start_outgoing_migration_after_rdma_connect();
3372 s->file = qemu_fopen_rdma(rdma, "wb");
3373 migrate_fd_connect(s);
3374 return;
3375 err:
3376 error_propagate(errp, local_err);
3377 g_free(rdma);
3378 migrate_fd_error(s);