Revert "gdbstub: Do not kill target in system emulation mode"
[qemu/qmp-unstable.git] / target-ppc / fpu_helper.c
blob6cceffc556244bde6a6385c3264efdc26681566c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
22 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
23 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
25 /*****************************************************************************/
26 /* Floating point operations helpers */
27 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
29 CPU_FloatU f;
30 CPU_DoubleU d;
32 f.l = arg;
33 d.d = float32_to_float64(f.f, &env->fp_status);
34 return d.ll;
37 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
39 CPU_FloatU f;
40 CPU_DoubleU d;
42 d.ll = arg;
43 f.f = float64_to_float32(d.d, &env->fp_status);
44 return f.l;
47 static inline int isden(float64 d)
49 CPU_DoubleU u;
51 u.d = d;
53 return ((u.ll >> 52) & 0x7FF) == 0;
56 static inline int ppc_float32_get_unbiased_exp(float32 f)
58 return ((f >> 23) & 0xFF) - 127;
61 static inline int ppc_float64_get_unbiased_exp(float64 f)
63 return ((f >> 52) & 0x7FF) - 1023;
66 void helper_compute_fprf(CPUPPCState *env, uint64_t arg)
68 CPU_DoubleU farg;
69 int isneg;
70 int fprf;
72 farg.ll = arg;
73 isneg = float64_is_neg(farg.d);
74 if (unlikely(float64_is_any_nan(farg.d))) {
75 if (float64_is_signaling_nan(farg.d)) {
76 /* Signaling NaN: flags are undefined */
77 fprf = 0x00;
78 } else {
79 /* Quiet NaN */
80 fprf = 0x11;
82 } else if (unlikely(float64_is_infinity(farg.d))) {
83 /* +/- infinity */
84 if (isneg) {
85 fprf = 0x09;
86 } else {
87 fprf = 0x05;
89 } else {
90 if (float64_is_zero(farg.d)) {
91 /* +/- zero */
92 if (isneg) {
93 fprf = 0x12;
94 } else {
95 fprf = 0x02;
97 } else {
98 if (isden(farg.d)) {
99 /* Denormalized numbers */
100 fprf = 0x10;
101 } else {
102 /* Normalized numbers */
103 fprf = 0x00;
105 if (isneg) {
106 fprf |= 0x08;
107 } else {
108 fprf |= 0x04;
112 /* We update FPSCR_FPRF */
113 env->fpscr &= ~(0x1F << FPSCR_FPRF);
114 env->fpscr |= fprf << FPSCR_FPRF;
117 /* Floating-point invalid operations exception */
118 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
119 int set_fpcc)
121 CPUState *cs = CPU(ppc_env_get_cpu(env));
122 uint64_t ret = 0;
123 int ve;
125 ve = fpscr_ve;
126 switch (op) {
127 case POWERPC_EXCP_FP_VXSNAN:
128 env->fpscr |= 1 << FPSCR_VXSNAN;
129 break;
130 case POWERPC_EXCP_FP_VXSOFT:
131 env->fpscr |= 1 << FPSCR_VXSOFT;
132 break;
133 case POWERPC_EXCP_FP_VXISI:
134 /* Magnitude subtraction of infinities */
135 env->fpscr |= 1 << FPSCR_VXISI;
136 goto update_arith;
137 case POWERPC_EXCP_FP_VXIDI:
138 /* Division of infinity by infinity */
139 env->fpscr |= 1 << FPSCR_VXIDI;
140 goto update_arith;
141 case POWERPC_EXCP_FP_VXZDZ:
142 /* Division of zero by zero */
143 env->fpscr |= 1 << FPSCR_VXZDZ;
144 goto update_arith;
145 case POWERPC_EXCP_FP_VXIMZ:
146 /* Multiplication of zero by infinity */
147 env->fpscr |= 1 << FPSCR_VXIMZ;
148 goto update_arith;
149 case POWERPC_EXCP_FP_VXVC:
150 /* Ordered comparison of NaN */
151 env->fpscr |= 1 << FPSCR_VXVC;
152 if (set_fpcc) {
153 env->fpscr &= ~(0xF << FPSCR_FPCC);
154 env->fpscr |= 0x11 << FPSCR_FPCC;
156 /* We must update the target FPR before raising the exception */
157 if (ve != 0) {
158 cs->exception_index = POWERPC_EXCP_PROGRAM;
159 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
160 /* Update the floating-point enabled exception summary */
161 env->fpscr |= 1 << FPSCR_FEX;
162 /* Exception is differed */
163 ve = 0;
165 break;
166 case POWERPC_EXCP_FP_VXSQRT:
167 /* Square root of a negative number */
168 env->fpscr |= 1 << FPSCR_VXSQRT;
169 update_arith:
170 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
171 if (ve == 0) {
172 /* Set the result to quiet NaN */
173 ret = 0x7FF8000000000000ULL;
174 if (set_fpcc) {
175 env->fpscr &= ~(0xF << FPSCR_FPCC);
176 env->fpscr |= 0x11 << FPSCR_FPCC;
179 break;
180 case POWERPC_EXCP_FP_VXCVI:
181 /* Invalid conversion */
182 env->fpscr |= 1 << FPSCR_VXCVI;
183 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
184 if (ve == 0) {
185 /* Set the result to quiet NaN */
186 ret = 0x7FF8000000000000ULL;
187 if (set_fpcc) {
188 env->fpscr &= ~(0xF << FPSCR_FPCC);
189 env->fpscr |= 0x11 << FPSCR_FPCC;
192 break;
194 /* Update the floating-point invalid operation summary */
195 env->fpscr |= 1 << FPSCR_VX;
196 /* Update the floating-point exception summary */
197 env->fpscr |= 1 << FPSCR_FX;
198 if (ve != 0) {
199 /* Update the floating-point enabled exception summary */
200 env->fpscr |= 1 << FPSCR_FEX;
201 if (msr_fe0 != 0 || msr_fe1 != 0) {
202 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
203 POWERPC_EXCP_FP | op);
206 return ret;
209 static inline void float_zero_divide_excp(CPUPPCState *env)
211 env->fpscr |= 1 << FPSCR_ZX;
212 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
213 /* Update the floating-point exception summary */
214 env->fpscr |= 1 << FPSCR_FX;
215 if (fpscr_ze != 0) {
216 /* Update the floating-point enabled exception summary */
217 env->fpscr |= 1 << FPSCR_FEX;
218 if (msr_fe0 != 0 || msr_fe1 != 0) {
219 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
220 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
225 static inline void float_overflow_excp(CPUPPCState *env)
227 CPUState *cs = CPU(ppc_env_get_cpu(env));
229 env->fpscr |= 1 << FPSCR_OX;
230 /* Update the floating-point exception summary */
231 env->fpscr |= 1 << FPSCR_FX;
232 if (fpscr_oe != 0) {
233 /* XXX: should adjust the result */
234 /* Update the floating-point enabled exception summary */
235 env->fpscr |= 1 << FPSCR_FEX;
236 /* We must update the target FPR before raising the exception */
237 cs->exception_index = POWERPC_EXCP_PROGRAM;
238 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
239 } else {
240 env->fpscr |= 1 << FPSCR_XX;
241 env->fpscr |= 1 << FPSCR_FI;
245 static inline void float_underflow_excp(CPUPPCState *env)
247 CPUState *cs = CPU(ppc_env_get_cpu(env));
249 env->fpscr |= 1 << FPSCR_UX;
250 /* Update the floating-point exception summary */
251 env->fpscr |= 1 << FPSCR_FX;
252 if (fpscr_ue != 0) {
253 /* XXX: should adjust the result */
254 /* Update the floating-point enabled exception summary */
255 env->fpscr |= 1 << FPSCR_FEX;
256 /* We must update the target FPR before raising the exception */
257 cs->exception_index = POWERPC_EXCP_PROGRAM;
258 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
262 static inline void float_inexact_excp(CPUPPCState *env)
264 CPUState *cs = CPU(ppc_env_get_cpu(env));
266 env->fpscr |= 1 << FPSCR_XX;
267 /* Update the floating-point exception summary */
268 env->fpscr |= 1 << FPSCR_FX;
269 if (fpscr_xe != 0) {
270 /* Update the floating-point enabled exception summary */
271 env->fpscr |= 1 << FPSCR_FEX;
272 /* We must update the target FPR before raising the exception */
273 cs->exception_index = POWERPC_EXCP_PROGRAM;
274 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
278 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
280 int rnd_type;
282 /* Set rounding mode */
283 switch (fpscr_rn) {
284 case 0:
285 /* Best approximation (round to nearest) */
286 rnd_type = float_round_nearest_even;
287 break;
288 case 1:
289 /* Smaller magnitude (round toward zero) */
290 rnd_type = float_round_to_zero;
291 break;
292 case 2:
293 /* Round toward +infinite */
294 rnd_type = float_round_up;
295 break;
296 default:
297 case 3:
298 /* Round toward -infinite */
299 rnd_type = float_round_down;
300 break;
302 set_float_rounding_mode(rnd_type, &env->fp_status);
305 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
307 int prev;
309 prev = (env->fpscr >> bit) & 1;
310 env->fpscr &= ~(1 << bit);
311 if (prev == 1) {
312 switch (bit) {
313 case FPSCR_RN1:
314 case FPSCR_RN:
315 fpscr_set_rounding_mode(env);
316 break;
317 default:
318 break;
323 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
325 CPUState *cs = CPU(ppc_env_get_cpu(env));
326 int prev;
328 prev = (env->fpscr >> bit) & 1;
329 env->fpscr |= 1 << bit;
330 if (prev == 0) {
331 switch (bit) {
332 case FPSCR_VX:
333 env->fpscr |= 1 << FPSCR_FX;
334 if (fpscr_ve) {
335 goto raise_ve;
337 break;
338 case FPSCR_OX:
339 env->fpscr |= 1 << FPSCR_FX;
340 if (fpscr_oe) {
341 goto raise_oe;
343 break;
344 case FPSCR_UX:
345 env->fpscr |= 1 << FPSCR_FX;
346 if (fpscr_ue) {
347 goto raise_ue;
349 break;
350 case FPSCR_ZX:
351 env->fpscr |= 1 << FPSCR_FX;
352 if (fpscr_ze) {
353 goto raise_ze;
355 break;
356 case FPSCR_XX:
357 env->fpscr |= 1 << FPSCR_FX;
358 if (fpscr_xe) {
359 goto raise_xe;
361 break;
362 case FPSCR_VXSNAN:
363 case FPSCR_VXISI:
364 case FPSCR_VXIDI:
365 case FPSCR_VXZDZ:
366 case FPSCR_VXIMZ:
367 case FPSCR_VXVC:
368 case FPSCR_VXSOFT:
369 case FPSCR_VXSQRT:
370 case FPSCR_VXCVI:
371 env->fpscr |= 1 << FPSCR_VX;
372 env->fpscr |= 1 << FPSCR_FX;
373 if (fpscr_ve != 0) {
374 goto raise_ve;
376 break;
377 case FPSCR_VE:
378 if (fpscr_vx != 0) {
379 raise_ve:
380 env->error_code = POWERPC_EXCP_FP;
381 if (fpscr_vxsnan) {
382 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
384 if (fpscr_vxisi) {
385 env->error_code |= POWERPC_EXCP_FP_VXISI;
387 if (fpscr_vxidi) {
388 env->error_code |= POWERPC_EXCP_FP_VXIDI;
390 if (fpscr_vxzdz) {
391 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
393 if (fpscr_vximz) {
394 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
396 if (fpscr_vxvc) {
397 env->error_code |= POWERPC_EXCP_FP_VXVC;
399 if (fpscr_vxsoft) {
400 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
402 if (fpscr_vxsqrt) {
403 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
405 if (fpscr_vxcvi) {
406 env->error_code |= POWERPC_EXCP_FP_VXCVI;
408 goto raise_excp;
410 break;
411 case FPSCR_OE:
412 if (fpscr_ox != 0) {
413 raise_oe:
414 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
415 goto raise_excp;
417 break;
418 case FPSCR_UE:
419 if (fpscr_ux != 0) {
420 raise_ue:
421 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
422 goto raise_excp;
424 break;
425 case FPSCR_ZE:
426 if (fpscr_zx != 0) {
427 raise_ze:
428 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
429 goto raise_excp;
431 break;
432 case FPSCR_XE:
433 if (fpscr_xx != 0) {
434 raise_xe:
435 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
436 goto raise_excp;
438 break;
439 case FPSCR_RN1:
440 case FPSCR_RN:
441 fpscr_set_rounding_mode(env);
442 break;
443 default:
444 break;
445 raise_excp:
446 /* Update the floating-point enabled exception summary */
447 env->fpscr |= 1 << FPSCR_FEX;
448 /* We have to update Rc1 before raising the exception */
449 cs->exception_index = POWERPC_EXCP_PROGRAM;
450 break;
455 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
457 CPUState *cs = CPU(ppc_env_get_cpu(env));
458 target_ulong prev, new;
459 int i;
461 prev = env->fpscr;
462 new = (target_ulong)arg;
463 new &= ~0x60000000LL;
464 new |= prev & 0x60000000LL;
465 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
466 if (mask & (1 << i)) {
467 env->fpscr &= ~(0xFLL << (4 * i));
468 env->fpscr |= new & (0xFLL << (4 * i));
471 /* Update VX and FEX */
472 if (fpscr_ix != 0) {
473 env->fpscr |= 1 << FPSCR_VX;
474 } else {
475 env->fpscr &= ~(1 << FPSCR_VX);
477 if ((fpscr_ex & fpscr_eex) != 0) {
478 env->fpscr |= 1 << FPSCR_FEX;
479 cs->exception_index = POWERPC_EXCP_PROGRAM;
480 /* XXX: we should compute it properly */
481 env->error_code = POWERPC_EXCP_FP;
482 } else {
483 env->fpscr &= ~(1 << FPSCR_FEX);
485 fpscr_set_rounding_mode(env);
488 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
490 helper_store_fpscr(env, arg, mask);
493 void helper_float_check_status(CPUPPCState *env)
495 CPUState *cs = CPU(ppc_env_get_cpu(env));
496 int status = get_float_exception_flags(&env->fp_status);
498 if (status & float_flag_divbyzero) {
499 float_zero_divide_excp(env);
500 } else if (status & float_flag_overflow) {
501 float_overflow_excp(env);
502 } else if (status & float_flag_underflow) {
503 float_underflow_excp(env);
504 } else if (status & float_flag_inexact) {
505 float_inexact_excp(env);
508 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
509 (env->error_code & POWERPC_EXCP_FP)) {
510 /* Differred floating-point exception after target FPR update */
511 if (msr_fe0 != 0 || msr_fe1 != 0) {
512 helper_raise_exception_err(env, cs->exception_index,
513 env->error_code);
518 void helper_reset_fpstatus(CPUPPCState *env)
520 set_float_exception_flags(0, &env->fp_status);
523 /* fadd - fadd. */
524 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
526 CPU_DoubleU farg1, farg2;
528 farg1.ll = arg1;
529 farg2.ll = arg2;
531 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
532 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
533 /* Magnitude subtraction of infinities */
534 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
535 } else {
536 if (unlikely(float64_is_signaling_nan(farg1.d) ||
537 float64_is_signaling_nan(farg2.d))) {
538 /* sNaN addition */
539 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
541 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
544 return farg1.ll;
547 /* fsub - fsub. */
548 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
550 CPU_DoubleU farg1, farg2;
552 farg1.ll = arg1;
553 farg2.ll = arg2;
555 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
556 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
557 /* Magnitude subtraction of infinities */
558 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
559 } else {
560 if (unlikely(float64_is_signaling_nan(farg1.d) ||
561 float64_is_signaling_nan(farg2.d))) {
562 /* sNaN subtraction */
563 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
565 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
568 return farg1.ll;
571 /* fmul - fmul. */
572 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
574 CPU_DoubleU farg1, farg2;
576 farg1.ll = arg1;
577 farg2.ll = arg2;
579 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
580 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
581 /* Multiplication of zero by infinity */
582 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
583 } else {
584 if (unlikely(float64_is_signaling_nan(farg1.d) ||
585 float64_is_signaling_nan(farg2.d))) {
586 /* sNaN multiplication */
587 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
589 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
592 return farg1.ll;
595 /* fdiv - fdiv. */
596 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
598 CPU_DoubleU farg1, farg2;
600 farg1.ll = arg1;
601 farg2.ll = arg2;
603 if (unlikely(float64_is_infinity(farg1.d) &&
604 float64_is_infinity(farg2.d))) {
605 /* Division of infinity by infinity */
606 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
607 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
608 /* Division of zero by zero */
609 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
610 } else {
611 if (unlikely(float64_is_signaling_nan(farg1.d) ||
612 float64_is_signaling_nan(farg2.d))) {
613 /* sNaN division */
614 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
616 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
619 return farg1.ll;
623 #define FPU_FCTI(op, cvt, nanval) \
624 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
626 CPU_DoubleU farg; \
628 farg.ll = arg; \
629 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
631 if (unlikely(env->fp_status.float_exception_flags)) { \
632 if (float64_is_any_nan(arg)) { \
633 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
634 if (float64_is_signaling_nan(arg)) { \
635 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
637 farg.ll = nanval; \
638 } else if (env->fp_status.float_exception_flags & \
639 float_flag_invalid) { \
640 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
642 helper_float_check_status(env); \
644 return farg.ll; \
647 FPU_FCTI(fctiw, int32, 0x80000000U)
648 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
649 FPU_FCTI(fctiwu, uint32, 0x00000000U)
650 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
651 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
652 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
653 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
654 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
656 #define FPU_FCFI(op, cvtr, is_single) \
657 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
659 CPU_DoubleU farg; \
661 if (is_single) { \
662 float32 tmp = cvtr(arg, &env->fp_status); \
663 farg.d = float32_to_float64(tmp, &env->fp_status); \
664 } else { \
665 farg.d = cvtr(arg, &env->fp_status); \
667 helper_float_check_status(env); \
668 return farg.ll; \
671 FPU_FCFI(fcfid, int64_to_float64, 0)
672 FPU_FCFI(fcfids, int64_to_float32, 1)
673 FPU_FCFI(fcfidu, uint64_to_float64, 0)
674 FPU_FCFI(fcfidus, uint64_to_float32, 1)
676 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
677 int rounding_mode)
679 CPU_DoubleU farg;
681 farg.ll = arg;
683 if (unlikely(float64_is_signaling_nan(farg.d))) {
684 /* sNaN round */
685 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
686 farg.ll = arg | 0x0008000000000000ULL;
687 } else {
688 int inexact = get_float_exception_flags(&env->fp_status) &
689 float_flag_inexact;
690 set_float_rounding_mode(rounding_mode, &env->fp_status);
691 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
692 /* Restore rounding mode from FPSCR */
693 fpscr_set_rounding_mode(env);
695 /* fri* does not set FPSCR[XX] */
696 if (!inexact) {
697 env->fp_status.float_exception_flags &= ~float_flag_inexact;
700 helper_float_check_status(env);
701 return farg.ll;
704 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
706 return do_fri(env, arg, float_round_ties_away);
709 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
711 return do_fri(env, arg, float_round_to_zero);
714 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
716 return do_fri(env, arg, float_round_up);
719 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
721 return do_fri(env, arg, float_round_down);
724 /* fmadd - fmadd. */
725 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
726 uint64_t arg3)
728 CPU_DoubleU farg1, farg2, farg3;
730 farg1.ll = arg1;
731 farg2.ll = arg2;
732 farg3.ll = arg3;
734 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
735 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
736 /* Multiplication of zero by infinity */
737 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
738 } else {
739 if (unlikely(float64_is_signaling_nan(farg1.d) ||
740 float64_is_signaling_nan(farg2.d) ||
741 float64_is_signaling_nan(farg3.d))) {
742 /* sNaN operation */
743 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
745 /* This is the way the PowerPC specification defines it */
746 float128 ft0_128, ft1_128;
748 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
749 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
750 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
751 if (unlikely(float128_is_infinity(ft0_128) &&
752 float64_is_infinity(farg3.d) &&
753 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
754 /* Magnitude subtraction of infinities */
755 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
756 } else {
757 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
758 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
759 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
763 return farg1.ll;
766 /* fmsub - fmsub. */
767 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
768 uint64_t arg3)
770 CPU_DoubleU farg1, farg2, farg3;
772 farg1.ll = arg1;
773 farg2.ll = arg2;
774 farg3.ll = arg3;
776 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
777 (float64_is_zero(farg1.d) &&
778 float64_is_infinity(farg2.d)))) {
779 /* Multiplication of zero by infinity */
780 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
781 } else {
782 if (unlikely(float64_is_signaling_nan(farg1.d) ||
783 float64_is_signaling_nan(farg2.d) ||
784 float64_is_signaling_nan(farg3.d))) {
785 /* sNaN operation */
786 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
788 /* This is the way the PowerPC specification defines it */
789 float128 ft0_128, ft1_128;
791 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
792 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
793 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
794 if (unlikely(float128_is_infinity(ft0_128) &&
795 float64_is_infinity(farg3.d) &&
796 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
797 /* Magnitude subtraction of infinities */
798 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
799 } else {
800 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
801 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
802 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
805 return farg1.ll;
808 /* fnmadd - fnmadd. */
809 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
810 uint64_t arg3)
812 CPU_DoubleU farg1, farg2, farg3;
814 farg1.ll = arg1;
815 farg2.ll = arg2;
816 farg3.ll = arg3;
818 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
819 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
820 /* Multiplication of zero by infinity */
821 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
822 } else {
823 if (unlikely(float64_is_signaling_nan(farg1.d) ||
824 float64_is_signaling_nan(farg2.d) ||
825 float64_is_signaling_nan(farg3.d))) {
826 /* sNaN operation */
827 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
829 /* This is the way the PowerPC specification defines it */
830 float128 ft0_128, ft1_128;
832 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
833 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
834 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
835 if (unlikely(float128_is_infinity(ft0_128) &&
836 float64_is_infinity(farg3.d) &&
837 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
838 /* Magnitude subtraction of infinities */
839 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
840 } else {
841 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
842 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
843 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
845 if (likely(!float64_is_any_nan(farg1.d))) {
846 farg1.d = float64_chs(farg1.d);
849 return farg1.ll;
852 /* fnmsub - fnmsub. */
853 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
854 uint64_t arg3)
856 CPU_DoubleU farg1, farg2, farg3;
858 farg1.ll = arg1;
859 farg2.ll = arg2;
860 farg3.ll = arg3;
862 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
863 (float64_is_zero(farg1.d) &&
864 float64_is_infinity(farg2.d)))) {
865 /* Multiplication of zero by infinity */
866 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
867 } else {
868 if (unlikely(float64_is_signaling_nan(farg1.d) ||
869 float64_is_signaling_nan(farg2.d) ||
870 float64_is_signaling_nan(farg3.d))) {
871 /* sNaN operation */
872 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
874 /* This is the way the PowerPC specification defines it */
875 float128 ft0_128, ft1_128;
877 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
878 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
879 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
880 if (unlikely(float128_is_infinity(ft0_128) &&
881 float64_is_infinity(farg3.d) &&
882 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
883 /* Magnitude subtraction of infinities */
884 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
885 } else {
886 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
887 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
888 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
890 if (likely(!float64_is_any_nan(farg1.d))) {
891 farg1.d = float64_chs(farg1.d);
894 return farg1.ll;
897 /* frsp - frsp. */
898 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
900 CPU_DoubleU farg;
901 float32 f32;
903 farg.ll = arg;
905 if (unlikely(float64_is_signaling_nan(farg.d))) {
906 /* sNaN square root */
907 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
909 f32 = float64_to_float32(farg.d, &env->fp_status);
910 farg.d = float32_to_float64(f32, &env->fp_status);
912 return farg.ll;
915 /* fsqrt - fsqrt. */
916 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
918 CPU_DoubleU farg;
920 farg.ll = arg;
922 if (unlikely(float64_is_any_nan(farg.d))) {
923 if (unlikely(float64_is_signaling_nan(farg.d))) {
924 /* sNaN reciprocal square root */
925 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
926 farg.ll = float64_snan_to_qnan(farg.ll);
928 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
929 /* Square root of a negative nonzero number */
930 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
931 } else {
932 farg.d = float64_sqrt(farg.d, &env->fp_status);
934 return farg.ll;
937 /* fre - fre. */
938 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
940 CPU_DoubleU farg;
942 farg.ll = arg;
944 if (unlikely(float64_is_signaling_nan(farg.d))) {
945 /* sNaN reciprocal */
946 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
948 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
949 return farg.d;
952 /* fres - fres. */
953 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
955 CPU_DoubleU farg;
956 float32 f32;
958 farg.ll = arg;
960 if (unlikely(float64_is_signaling_nan(farg.d))) {
961 /* sNaN reciprocal */
962 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
964 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
965 f32 = float64_to_float32(farg.d, &env->fp_status);
966 farg.d = float32_to_float64(f32, &env->fp_status);
968 return farg.ll;
971 /* frsqrte - frsqrte. */
972 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
974 CPU_DoubleU farg;
976 farg.ll = arg;
978 if (unlikely(float64_is_any_nan(farg.d))) {
979 if (unlikely(float64_is_signaling_nan(farg.d))) {
980 /* sNaN reciprocal square root */
981 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
982 farg.ll = float64_snan_to_qnan(farg.ll);
984 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
985 /* Reciprocal square root of a negative nonzero number */
986 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
987 } else {
988 farg.d = float64_sqrt(farg.d, &env->fp_status);
989 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
992 return farg.ll;
995 /* fsel - fsel. */
996 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
997 uint64_t arg3)
999 CPU_DoubleU farg1;
1001 farg1.ll = arg1;
1003 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1004 !float64_is_any_nan(farg1.d)) {
1005 return arg2;
1006 } else {
1007 return arg3;
1011 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1013 int fe_flag = 0;
1014 int fg_flag = 0;
1016 if (unlikely(float64_is_infinity(fra) ||
1017 float64_is_infinity(frb) ||
1018 float64_is_zero(frb))) {
1019 fe_flag = 1;
1020 fg_flag = 1;
1021 } else {
1022 int e_a = ppc_float64_get_unbiased_exp(fra);
1023 int e_b = ppc_float64_get_unbiased_exp(frb);
1025 if (unlikely(float64_is_any_nan(fra) ||
1026 float64_is_any_nan(frb))) {
1027 fe_flag = 1;
1028 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1029 fe_flag = 1;
1030 } else if (!float64_is_zero(fra) &&
1031 (((e_a - e_b) >= 1023) ||
1032 ((e_a - e_b) <= -1021) ||
1033 (e_a <= -970))) {
1034 fe_flag = 1;
1037 if (unlikely(float64_is_zero_or_denormal(frb))) {
1038 /* XB is not zero because of the above check and */
1039 /* so must be denormalized. */
1040 fg_flag = 1;
1044 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1047 uint32_t helper_ftsqrt(uint64_t frb)
1049 int fe_flag = 0;
1050 int fg_flag = 0;
1052 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1053 fe_flag = 1;
1054 fg_flag = 1;
1055 } else {
1056 int e_b = ppc_float64_get_unbiased_exp(frb);
1058 if (unlikely(float64_is_any_nan(frb))) {
1059 fe_flag = 1;
1060 } else if (unlikely(float64_is_zero(frb))) {
1061 fe_flag = 1;
1062 } else if (unlikely(float64_is_neg(frb))) {
1063 fe_flag = 1;
1064 } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1065 fe_flag = 1;
1068 if (unlikely(float64_is_zero_or_denormal(frb))) {
1069 /* XB is not zero because of the above check and */
1070 /* therefore must be denormalized. */
1071 fg_flag = 1;
1075 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1078 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1079 uint32_t crfD)
1081 CPU_DoubleU farg1, farg2;
1082 uint32_t ret = 0;
1084 farg1.ll = arg1;
1085 farg2.ll = arg2;
1087 if (unlikely(float64_is_any_nan(farg1.d) ||
1088 float64_is_any_nan(farg2.d))) {
1089 ret = 0x01UL;
1090 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1091 ret = 0x08UL;
1092 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1093 ret = 0x04UL;
1094 } else {
1095 ret = 0x02UL;
1098 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1099 env->fpscr |= ret << FPSCR_FPRF;
1100 env->crf[crfD] = ret;
1101 if (unlikely(ret == 0x01UL
1102 && (float64_is_signaling_nan(farg1.d) ||
1103 float64_is_signaling_nan(farg2.d)))) {
1104 /* sNaN comparison */
1105 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1109 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1110 uint32_t crfD)
1112 CPU_DoubleU farg1, farg2;
1113 uint32_t ret = 0;
1115 farg1.ll = arg1;
1116 farg2.ll = arg2;
1118 if (unlikely(float64_is_any_nan(farg1.d) ||
1119 float64_is_any_nan(farg2.d))) {
1120 ret = 0x01UL;
1121 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1122 ret = 0x08UL;
1123 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1124 ret = 0x04UL;
1125 } else {
1126 ret = 0x02UL;
1129 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1130 env->fpscr |= ret << FPSCR_FPRF;
1131 env->crf[crfD] = ret;
1132 if (unlikely(ret == 0x01UL)) {
1133 if (float64_is_signaling_nan(farg1.d) ||
1134 float64_is_signaling_nan(farg2.d)) {
1135 /* sNaN comparison */
1136 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1137 POWERPC_EXCP_FP_VXVC, 1);
1138 } else {
1139 /* qNaN comparison */
1140 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1145 /* Single-precision floating-point conversions */
1146 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1148 CPU_FloatU u;
1150 u.f = int32_to_float32(val, &env->vec_status);
1152 return u.l;
1155 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1157 CPU_FloatU u;
1159 u.f = uint32_to_float32(val, &env->vec_status);
1161 return u.l;
1164 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1166 CPU_FloatU u;
1168 u.l = val;
1169 /* NaN are not treated the same way IEEE 754 does */
1170 if (unlikely(float32_is_quiet_nan(u.f))) {
1171 return 0;
1174 return float32_to_int32(u.f, &env->vec_status);
1177 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1179 CPU_FloatU u;
1181 u.l = val;
1182 /* NaN are not treated the same way IEEE 754 does */
1183 if (unlikely(float32_is_quiet_nan(u.f))) {
1184 return 0;
1187 return float32_to_uint32(u.f, &env->vec_status);
1190 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1192 CPU_FloatU u;
1194 u.l = val;
1195 /* NaN are not treated the same way IEEE 754 does */
1196 if (unlikely(float32_is_quiet_nan(u.f))) {
1197 return 0;
1200 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1203 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1205 CPU_FloatU u;
1207 u.l = val;
1208 /* NaN are not treated the same way IEEE 754 does */
1209 if (unlikely(float32_is_quiet_nan(u.f))) {
1210 return 0;
1213 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1216 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1218 CPU_FloatU u;
1219 float32 tmp;
1221 u.f = int32_to_float32(val, &env->vec_status);
1222 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1223 u.f = float32_div(u.f, tmp, &env->vec_status);
1225 return u.l;
1228 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1230 CPU_FloatU u;
1231 float32 tmp;
1233 u.f = uint32_to_float32(val, &env->vec_status);
1234 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1235 u.f = float32_div(u.f, tmp, &env->vec_status);
1237 return u.l;
1240 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1242 CPU_FloatU u;
1243 float32 tmp;
1245 u.l = val;
1246 /* NaN are not treated the same way IEEE 754 does */
1247 if (unlikely(float32_is_quiet_nan(u.f))) {
1248 return 0;
1250 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1251 u.f = float32_mul(u.f, tmp, &env->vec_status);
1253 return float32_to_int32(u.f, &env->vec_status);
1256 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1258 CPU_FloatU u;
1259 float32 tmp;
1261 u.l = val;
1262 /* NaN are not treated the same way IEEE 754 does */
1263 if (unlikely(float32_is_quiet_nan(u.f))) {
1264 return 0;
1266 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1267 u.f = float32_mul(u.f, tmp, &env->vec_status);
1269 return float32_to_uint32(u.f, &env->vec_status);
1272 #define HELPER_SPE_SINGLE_CONV(name) \
1273 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1275 return e##name(env, val); \
1277 /* efscfsi */
1278 HELPER_SPE_SINGLE_CONV(fscfsi);
1279 /* efscfui */
1280 HELPER_SPE_SINGLE_CONV(fscfui);
1281 /* efscfuf */
1282 HELPER_SPE_SINGLE_CONV(fscfuf);
1283 /* efscfsf */
1284 HELPER_SPE_SINGLE_CONV(fscfsf);
1285 /* efsctsi */
1286 HELPER_SPE_SINGLE_CONV(fsctsi);
1287 /* efsctui */
1288 HELPER_SPE_SINGLE_CONV(fsctui);
1289 /* efsctsiz */
1290 HELPER_SPE_SINGLE_CONV(fsctsiz);
1291 /* efsctuiz */
1292 HELPER_SPE_SINGLE_CONV(fsctuiz);
1293 /* efsctsf */
1294 HELPER_SPE_SINGLE_CONV(fsctsf);
1295 /* efsctuf */
1296 HELPER_SPE_SINGLE_CONV(fsctuf);
1298 #define HELPER_SPE_VECTOR_CONV(name) \
1299 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1301 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1302 (uint64_t)e##name(env, val); \
1304 /* evfscfsi */
1305 HELPER_SPE_VECTOR_CONV(fscfsi);
1306 /* evfscfui */
1307 HELPER_SPE_VECTOR_CONV(fscfui);
1308 /* evfscfuf */
1309 HELPER_SPE_VECTOR_CONV(fscfuf);
1310 /* evfscfsf */
1311 HELPER_SPE_VECTOR_CONV(fscfsf);
1312 /* evfsctsi */
1313 HELPER_SPE_VECTOR_CONV(fsctsi);
1314 /* evfsctui */
1315 HELPER_SPE_VECTOR_CONV(fsctui);
1316 /* evfsctsiz */
1317 HELPER_SPE_VECTOR_CONV(fsctsiz);
1318 /* evfsctuiz */
1319 HELPER_SPE_VECTOR_CONV(fsctuiz);
1320 /* evfsctsf */
1321 HELPER_SPE_VECTOR_CONV(fsctsf);
1322 /* evfsctuf */
1323 HELPER_SPE_VECTOR_CONV(fsctuf);
1325 /* Single-precision floating-point arithmetic */
1326 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1328 CPU_FloatU u1, u2;
1330 u1.l = op1;
1331 u2.l = op2;
1332 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1333 return u1.l;
1336 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1338 CPU_FloatU u1, u2;
1340 u1.l = op1;
1341 u2.l = op2;
1342 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1343 return u1.l;
1346 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1348 CPU_FloatU u1, u2;
1350 u1.l = op1;
1351 u2.l = op2;
1352 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1353 return u1.l;
1356 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1358 CPU_FloatU u1, u2;
1360 u1.l = op1;
1361 u2.l = op2;
1362 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1363 return u1.l;
1366 #define HELPER_SPE_SINGLE_ARITH(name) \
1367 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1369 return e##name(env, op1, op2); \
1371 /* efsadd */
1372 HELPER_SPE_SINGLE_ARITH(fsadd);
1373 /* efssub */
1374 HELPER_SPE_SINGLE_ARITH(fssub);
1375 /* efsmul */
1376 HELPER_SPE_SINGLE_ARITH(fsmul);
1377 /* efsdiv */
1378 HELPER_SPE_SINGLE_ARITH(fsdiv);
1380 #define HELPER_SPE_VECTOR_ARITH(name) \
1381 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1383 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1384 (uint64_t)e##name(env, op1, op2); \
1386 /* evfsadd */
1387 HELPER_SPE_VECTOR_ARITH(fsadd);
1388 /* evfssub */
1389 HELPER_SPE_VECTOR_ARITH(fssub);
1390 /* evfsmul */
1391 HELPER_SPE_VECTOR_ARITH(fsmul);
1392 /* evfsdiv */
1393 HELPER_SPE_VECTOR_ARITH(fsdiv);
1395 /* Single-precision floating-point comparisons */
1396 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1398 CPU_FloatU u1, u2;
1400 u1.l = op1;
1401 u2.l = op2;
1402 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1405 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1407 CPU_FloatU u1, u2;
1409 u1.l = op1;
1410 u2.l = op2;
1411 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1414 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1416 CPU_FloatU u1, u2;
1418 u1.l = op1;
1419 u2.l = op2;
1420 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1423 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1425 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1426 return efscmplt(env, op1, op2);
1429 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1431 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1432 return efscmpgt(env, op1, op2);
1435 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1437 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1438 return efscmpeq(env, op1, op2);
1441 #define HELPER_SINGLE_SPE_CMP(name) \
1442 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1444 return e##name(env, op1, op2) << 2; \
1446 /* efststlt */
1447 HELPER_SINGLE_SPE_CMP(fststlt);
1448 /* efststgt */
1449 HELPER_SINGLE_SPE_CMP(fststgt);
1450 /* efststeq */
1451 HELPER_SINGLE_SPE_CMP(fststeq);
1452 /* efscmplt */
1453 HELPER_SINGLE_SPE_CMP(fscmplt);
1454 /* efscmpgt */
1455 HELPER_SINGLE_SPE_CMP(fscmpgt);
1456 /* efscmpeq */
1457 HELPER_SINGLE_SPE_CMP(fscmpeq);
1459 static inline uint32_t evcmp_merge(int t0, int t1)
1461 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1464 #define HELPER_VECTOR_SPE_CMP(name) \
1465 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1467 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1468 e##name(env, op1, op2)); \
1470 /* evfststlt */
1471 HELPER_VECTOR_SPE_CMP(fststlt);
1472 /* evfststgt */
1473 HELPER_VECTOR_SPE_CMP(fststgt);
1474 /* evfststeq */
1475 HELPER_VECTOR_SPE_CMP(fststeq);
1476 /* evfscmplt */
1477 HELPER_VECTOR_SPE_CMP(fscmplt);
1478 /* evfscmpgt */
1479 HELPER_VECTOR_SPE_CMP(fscmpgt);
1480 /* evfscmpeq */
1481 HELPER_VECTOR_SPE_CMP(fscmpeq);
1483 /* Double-precision floating-point conversion */
1484 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1486 CPU_DoubleU u;
1488 u.d = int32_to_float64(val, &env->vec_status);
1490 return u.ll;
1493 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1495 CPU_DoubleU u;
1497 u.d = int64_to_float64(val, &env->vec_status);
1499 return u.ll;
1502 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1504 CPU_DoubleU u;
1506 u.d = uint32_to_float64(val, &env->vec_status);
1508 return u.ll;
1511 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1513 CPU_DoubleU u;
1515 u.d = uint64_to_float64(val, &env->vec_status);
1517 return u.ll;
1520 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1522 CPU_DoubleU u;
1524 u.ll = val;
1525 /* NaN are not treated the same way IEEE 754 does */
1526 if (unlikely(float64_is_any_nan(u.d))) {
1527 return 0;
1530 return float64_to_int32(u.d, &env->vec_status);
1533 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1535 CPU_DoubleU u;
1537 u.ll = val;
1538 /* NaN are not treated the same way IEEE 754 does */
1539 if (unlikely(float64_is_any_nan(u.d))) {
1540 return 0;
1543 return float64_to_uint32(u.d, &env->vec_status);
1546 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1548 CPU_DoubleU u;
1550 u.ll = val;
1551 /* NaN are not treated the same way IEEE 754 does */
1552 if (unlikely(float64_is_any_nan(u.d))) {
1553 return 0;
1556 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1559 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1561 CPU_DoubleU u;
1563 u.ll = val;
1564 /* NaN are not treated the same way IEEE 754 does */
1565 if (unlikely(float64_is_any_nan(u.d))) {
1566 return 0;
1569 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1572 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1574 CPU_DoubleU u;
1576 u.ll = val;
1577 /* NaN are not treated the same way IEEE 754 does */
1578 if (unlikely(float64_is_any_nan(u.d))) {
1579 return 0;
1582 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1585 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1587 CPU_DoubleU u;
1589 u.ll = val;
1590 /* NaN are not treated the same way IEEE 754 does */
1591 if (unlikely(float64_is_any_nan(u.d))) {
1592 return 0;
1595 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1598 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1600 CPU_DoubleU u;
1601 float64 tmp;
1603 u.d = int32_to_float64(val, &env->vec_status);
1604 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1605 u.d = float64_div(u.d, tmp, &env->vec_status);
1607 return u.ll;
1610 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1612 CPU_DoubleU u;
1613 float64 tmp;
1615 u.d = uint32_to_float64(val, &env->vec_status);
1616 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1617 u.d = float64_div(u.d, tmp, &env->vec_status);
1619 return u.ll;
1622 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1624 CPU_DoubleU u;
1625 float64 tmp;
1627 u.ll = val;
1628 /* NaN are not treated the same way IEEE 754 does */
1629 if (unlikely(float64_is_any_nan(u.d))) {
1630 return 0;
1632 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1633 u.d = float64_mul(u.d, tmp, &env->vec_status);
1635 return float64_to_int32(u.d, &env->vec_status);
1638 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1640 CPU_DoubleU u;
1641 float64 tmp;
1643 u.ll = val;
1644 /* NaN are not treated the same way IEEE 754 does */
1645 if (unlikely(float64_is_any_nan(u.d))) {
1646 return 0;
1648 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1649 u.d = float64_mul(u.d, tmp, &env->vec_status);
1651 return float64_to_uint32(u.d, &env->vec_status);
1654 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1656 CPU_DoubleU u1;
1657 CPU_FloatU u2;
1659 u1.ll = val;
1660 u2.f = float64_to_float32(u1.d, &env->vec_status);
1662 return u2.l;
1665 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1667 CPU_DoubleU u2;
1668 CPU_FloatU u1;
1670 u1.l = val;
1671 u2.d = float32_to_float64(u1.f, &env->vec_status);
1673 return u2.ll;
1676 /* Double precision fixed-point arithmetic */
1677 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1679 CPU_DoubleU u1, u2;
1681 u1.ll = op1;
1682 u2.ll = op2;
1683 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1684 return u1.ll;
1687 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1689 CPU_DoubleU u1, u2;
1691 u1.ll = op1;
1692 u2.ll = op2;
1693 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1694 return u1.ll;
1697 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1699 CPU_DoubleU u1, u2;
1701 u1.ll = op1;
1702 u2.ll = op2;
1703 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1704 return u1.ll;
1707 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1709 CPU_DoubleU u1, u2;
1711 u1.ll = op1;
1712 u2.ll = op2;
1713 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1714 return u1.ll;
1717 /* Double precision floating point helpers */
1718 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1720 CPU_DoubleU u1, u2;
1722 u1.ll = op1;
1723 u2.ll = op2;
1724 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1727 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1729 CPU_DoubleU u1, u2;
1731 u1.ll = op1;
1732 u2.ll = op2;
1733 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1736 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1738 CPU_DoubleU u1, u2;
1740 u1.ll = op1;
1741 u2.ll = op2;
1742 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1745 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1747 /* XXX: TODO: test special values (NaN, infinites, ...) */
1748 return helper_efdtstlt(env, op1, op2);
1751 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1753 /* XXX: TODO: test special values (NaN, infinites, ...) */
1754 return helper_efdtstgt(env, op1, op2);
1757 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1759 /* XXX: TODO: test special values (NaN, infinites, ...) */
1760 return helper_efdtsteq(env, op1, op2);
1763 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1764 (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \
1765 (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1767 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1768 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1769 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1770 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1, 6, 5)
1771 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1773 typedef union _ppc_vsr_t {
1774 uint64_t u64[2];
1775 uint32_t u32[4];
1776 float32 f32[4];
1777 float64 f64[2];
1778 } ppc_vsr_t;
1780 #if defined(HOST_WORDS_BIGENDIAN)
1781 #define VsrW(i) u32[i]
1782 #define VsrD(i) u64[i]
1783 #else
1784 #define VsrW(i) u32[3-(i)]
1785 #define VsrD(i) u64[1-(i)]
1786 #endif
1788 static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1790 if (n < 32) {
1791 vsr->VsrD(0) = env->fpr[n];
1792 vsr->VsrD(1) = env->vsr[n];
1793 } else {
1794 vsr->u64[0] = env->avr[n-32].u64[0];
1795 vsr->u64[1] = env->avr[n-32].u64[1];
1799 static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1801 if (n < 32) {
1802 env->fpr[n] = vsr->VsrD(0);
1803 env->vsr[n] = vsr->VsrD(1);
1804 } else {
1805 env->avr[n-32].u64[0] = vsr->u64[0];
1806 env->avr[n-32].u64[1] = vsr->u64[1];
1810 #define float64_to_float64(x, env) x
1813 /* VSX_ADD_SUB - VSX floating point add/subract
1814 * name - instruction mnemonic
1815 * op - operation (add or sub)
1816 * nels - number of elements (1, 2 or 4)
1817 * tp - type (float32 or float64)
1818 * fld - vsr_t field (VsrD(*) or VsrW(*))
1819 * sfprf - set FPRF
1821 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1822 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1824 ppc_vsr_t xt, xa, xb; \
1825 int i; \
1827 getVSR(xA(opcode), &xa, env); \
1828 getVSR(xB(opcode), &xb, env); \
1829 getVSR(xT(opcode), &xt, env); \
1830 helper_reset_fpstatus(env); \
1832 for (i = 0; i < nels; i++) { \
1833 float_status tstat = env->fp_status; \
1834 set_float_exception_flags(0, &tstat); \
1835 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1836 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1838 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1839 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1840 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1841 } else if (tp##_is_signaling_nan(xa.fld) || \
1842 tp##_is_signaling_nan(xb.fld)) { \
1843 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1847 if (r2sp) { \
1848 xt.fld = helper_frsp(env, xt.fld); \
1851 if (sfprf) { \
1852 helper_compute_fprf(env, xt.fld); \
1855 putVSR(xT(opcode), &xt, env); \
1856 helper_float_check_status(env); \
1859 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1860 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1861 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1862 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1863 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1864 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1865 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1866 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1868 /* VSX_MUL - VSX floating point multiply
1869 * op - instruction mnemonic
1870 * nels - number of elements (1, 2 or 4)
1871 * tp - type (float32 or float64)
1872 * fld - vsr_t field (VsrD(*) or VsrW(*))
1873 * sfprf - set FPRF
1875 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1876 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1878 ppc_vsr_t xt, xa, xb; \
1879 int i; \
1881 getVSR(xA(opcode), &xa, env); \
1882 getVSR(xB(opcode), &xb, env); \
1883 getVSR(xT(opcode), &xt, env); \
1884 helper_reset_fpstatus(env); \
1886 for (i = 0; i < nels; i++) { \
1887 float_status tstat = env->fp_status; \
1888 set_float_exception_flags(0, &tstat); \
1889 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1890 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1892 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1893 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) || \
1894 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) { \
1895 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1896 } else if (tp##_is_signaling_nan(xa.fld) || \
1897 tp##_is_signaling_nan(xb.fld)) { \
1898 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1902 if (r2sp) { \
1903 xt.fld = helper_frsp(env, xt.fld); \
1906 if (sfprf) { \
1907 helper_compute_fprf(env, xt.fld); \
1911 putVSR(xT(opcode), &xt, env); \
1912 helper_float_check_status(env); \
1915 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1916 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1917 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1918 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1920 /* VSX_DIV - VSX floating point divide
1921 * op - instruction mnemonic
1922 * nels - number of elements (1, 2 or 4)
1923 * tp - type (float32 or float64)
1924 * fld - vsr_t field (VsrD(*) or VsrW(*))
1925 * sfprf - set FPRF
1927 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1928 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1930 ppc_vsr_t xt, xa, xb; \
1931 int i; \
1933 getVSR(xA(opcode), &xa, env); \
1934 getVSR(xB(opcode), &xb, env); \
1935 getVSR(xT(opcode), &xt, env); \
1936 helper_reset_fpstatus(env); \
1938 for (i = 0; i < nels; i++) { \
1939 float_status tstat = env->fp_status; \
1940 set_float_exception_flags(0, &tstat); \
1941 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1942 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1944 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1945 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1946 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1947 } else if (tp##_is_zero(xa.fld) && \
1948 tp##_is_zero(xb.fld)) { \
1949 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1950 } else if (tp##_is_signaling_nan(xa.fld) || \
1951 tp##_is_signaling_nan(xb.fld)) { \
1952 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1956 if (r2sp) { \
1957 xt.fld = helper_frsp(env, xt.fld); \
1960 if (sfprf) { \
1961 helper_compute_fprf(env, xt.fld); \
1965 putVSR(xT(opcode), &xt, env); \
1966 helper_float_check_status(env); \
1969 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1970 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1971 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1972 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1974 /* VSX_RE - VSX floating point reciprocal estimate
1975 * op - instruction mnemonic
1976 * nels - number of elements (1, 2 or 4)
1977 * tp - type (float32 or float64)
1978 * fld - vsr_t field (VsrD(*) or VsrW(*))
1979 * sfprf - set FPRF
1981 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1982 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1984 ppc_vsr_t xt, xb; \
1985 int i; \
1987 getVSR(xB(opcode), &xb, env); \
1988 getVSR(xT(opcode), &xt, env); \
1989 helper_reset_fpstatus(env); \
1991 for (i = 0; i < nels; i++) { \
1992 if (unlikely(tp##_is_signaling_nan(xb.fld))) { \
1993 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1995 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
1997 if (r2sp) { \
1998 xt.fld = helper_frsp(env, xt.fld); \
2001 if (sfprf) { \
2002 helper_compute_fprf(env, xt.fld); \
2006 putVSR(xT(opcode), &xt, env); \
2007 helper_float_check_status(env); \
2010 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2011 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2012 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2013 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2015 /* VSX_SQRT - VSX floating point square root
2016 * op - instruction mnemonic
2017 * nels - number of elements (1, 2 or 4)
2018 * tp - type (float32 or float64)
2019 * fld - vsr_t field (VsrD(*) or VsrW(*))
2020 * sfprf - set FPRF
2022 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2023 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2025 ppc_vsr_t xt, xb; \
2026 int i; \
2028 getVSR(xB(opcode), &xb, env); \
2029 getVSR(xT(opcode), &xt, env); \
2030 helper_reset_fpstatus(env); \
2032 for (i = 0; i < nels; i++) { \
2033 float_status tstat = env->fp_status; \
2034 set_float_exception_flags(0, &tstat); \
2035 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2036 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2038 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2039 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2040 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2041 } else if (tp##_is_signaling_nan(xb.fld)) { \
2042 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2046 if (r2sp) { \
2047 xt.fld = helper_frsp(env, xt.fld); \
2050 if (sfprf) { \
2051 helper_compute_fprf(env, xt.fld); \
2055 putVSR(xT(opcode), &xt, env); \
2056 helper_float_check_status(env); \
2059 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2060 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2061 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2062 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2064 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2065 * op - instruction mnemonic
2066 * nels - number of elements (1, 2 or 4)
2067 * tp - type (float32 or float64)
2068 * fld - vsr_t field (VsrD(*) or VsrW(*))
2069 * sfprf - set FPRF
2071 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2072 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2074 ppc_vsr_t xt, xb; \
2075 int i; \
2077 getVSR(xB(opcode), &xb, env); \
2078 getVSR(xT(opcode), &xt, env); \
2079 helper_reset_fpstatus(env); \
2081 for (i = 0; i < nels; i++) { \
2082 float_status tstat = env->fp_status; \
2083 set_float_exception_flags(0, &tstat); \
2084 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2085 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2086 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2088 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2089 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2090 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2091 } else if (tp##_is_signaling_nan(xb.fld)) { \
2092 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2096 if (r2sp) { \
2097 xt.fld = helper_frsp(env, xt.fld); \
2100 if (sfprf) { \
2101 helper_compute_fprf(env, xt.fld); \
2105 putVSR(xT(opcode), &xt, env); \
2106 helper_float_check_status(env); \
2109 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2110 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2111 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2112 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2114 /* VSX_TDIV - VSX floating point test for divide
2115 * op - instruction mnemonic
2116 * nels - number of elements (1, 2 or 4)
2117 * tp - type (float32 or float64)
2118 * fld - vsr_t field (VsrD(*) or VsrW(*))
2119 * emin - minimum unbiased exponent
2120 * emax - maximum unbiased exponent
2121 * nbits - number of fraction bits
2123 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2124 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2126 ppc_vsr_t xa, xb; \
2127 int i; \
2128 int fe_flag = 0; \
2129 int fg_flag = 0; \
2131 getVSR(xA(opcode), &xa, env); \
2132 getVSR(xB(opcode), &xb, env); \
2134 for (i = 0; i < nels; i++) { \
2135 if (unlikely(tp##_is_infinity(xa.fld) || \
2136 tp##_is_infinity(xb.fld) || \
2137 tp##_is_zero(xb.fld))) { \
2138 fe_flag = 1; \
2139 fg_flag = 1; \
2140 } else { \
2141 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2142 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2144 if (unlikely(tp##_is_any_nan(xa.fld) || \
2145 tp##_is_any_nan(xb.fld))) { \
2146 fe_flag = 1; \
2147 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2148 fe_flag = 1; \
2149 } else if (!tp##_is_zero(xa.fld) && \
2150 (((e_a - e_b) >= emax) || \
2151 ((e_a - e_b) <= (emin+1)) || \
2152 (e_a <= (emin+nbits)))) { \
2153 fe_flag = 1; \
2156 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2157 /* XB is not zero because of the above check and */ \
2158 /* so must be denormalized. */ \
2159 fg_flag = 1; \
2164 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2167 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2168 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2169 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2171 /* VSX_TSQRT - VSX floating point test for square root
2172 * op - instruction mnemonic
2173 * nels - number of elements (1, 2 or 4)
2174 * tp - type (float32 or float64)
2175 * fld - vsr_t field (VsrD(*) or VsrW(*))
2176 * emin - minimum unbiased exponent
2177 * emax - maximum unbiased exponent
2178 * nbits - number of fraction bits
2180 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2181 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2183 ppc_vsr_t xa, xb; \
2184 int i; \
2185 int fe_flag = 0; \
2186 int fg_flag = 0; \
2188 getVSR(xA(opcode), &xa, env); \
2189 getVSR(xB(opcode), &xb, env); \
2191 for (i = 0; i < nels; i++) { \
2192 if (unlikely(tp##_is_infinity(xb.fld) || \
2193 tp##_is_zero(xb.fld))) { \
2194 fe_flag = 1; \
2195 fg_flag = 1; \
2196 } else { \
2197 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2199 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2200 fe_flag = 1; \
2201 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2202 fe_flag = 1; \
2203 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2204 fe_flag = 1; \
2205 } else if (!tp##_is_zero(xb.fld) && \
2206 (e_b <= (emin+nbits))) { \
2207 fe_flag = 1; \
2210 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2211 /* XB is not zero because of the above check and */ \
2212 /* therefore must be denormalized. */ \
2213 fg_flag = 1; \
2218 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2221 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2222 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2223 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2225 /* VSX_MADD - VSX floating point muliply/add variations
2226 * op - instruction mnemonic
2227 * nels - number of elements (1, 2 or 4)
2228 * tp - type (float32 or float64)
2229 * fld - vsr_t field (VsrD(*) or VsrW(*))
2230 * maddflgs - flags for the float*muladd routine that control the
2231 * various forms (madd, msub, nmadd, nmsub)
2232 * afrm - A form (1=A, 0=M)
2233 * sfprf - set FPRF
2235 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2236 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2238 ppc_vsr_t xt_in, xa, xb, xt_out; \
2239 ppc_vsr_t *b, *c; \
2240 int i; \
2242 if (afrm) { /* AxB + T */ \
2243 b = &xb; \
2244 c = &xt_in; \
2245 } else { /* AxT + B */ \
2246 b = &xt_in; \
2247 c = &xb; \
2250 getVSR(xA(opcode), &xa, env); \
2251 getVSR(xB(opcode), &xb, env); \
2252 getVSR(xT(opcode), &xt_in, env); \
2254 xt_out = xt_in; \
2256 helper_reset_fpstatus(env); \
2258 for (i = 0; i < nels; i++) { \
2259 float_status tstat = env->fp_status; \
2260 set_float_exception_flags(0, &tstat); \
2261 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2262 /* Avoid double rounding errors by rounding the intermediate */ \
2263 /* result to odd. */ \
2264 set_float_rounding_mode(float_round_to_zero, &tstat); \
2265 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2266 maddflgs, &tstat); \
2267 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2268 float_flag_inexact) != 0; \
2269 } else { \
2270 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2271 maddflgs, &tstat); \
2273 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2275 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2276 if (tp##_is_signaling_nan(xa.fld) || \
2277 tp##_is_signaling_nan(b->fld) || \
2278 tp##_is_signaling_nan(c->fld)) { \
2279 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2280 tstat.float_exception_flags &= ~float_flag_invalid; \
2282 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) || \
2283 (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) { \
2284 xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env, \
2285 POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \
2286 tstat.float_exception_flags &= ~float_flag_invalid; \
2288 if ((tstat.float_exception_flags & float_flag_invalid) && \
2289 ((tp##_is_infinity(xa.fld) || \
2290 tp##_is_infinity(b->fld)) && \
2291 tp##_is_infinity(c->fld))) { \
2292 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
2296 if (r2sp) { \
2297 xt_out.fld = helper_frsp(env, xt_out.fld); \
2300 if (sfprf) { \
2301 helper_compute_fprf(env, xt_out.fld); \
2304 putVSR(xT(opcode), &xt_out, env); \
2305 helper_float_check_status(env); \
2308 #define MADD_FLGS 0
2309 #define MSUB_FLGS float_muladd_negate_c
2310 #define NMADD_FLGS float_muladd_negate_result
2311 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2313 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2314 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2315 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2316 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2317 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2318 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2319 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2320 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2322 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2323 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2324 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2325 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2326 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2327 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2328 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2329 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2331 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2332 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2333 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2334 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2335 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2336 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2337 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2338 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2340 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2341 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2342 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2343 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2344 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2345 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2346 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2347 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2349 #define VSX_SCALAR_CMP(op, ordered) \
2350 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2352 ppc_vsr_t xa, xb; \
2353 uint32_t cc = 0; \
2355 getVSR(xA(opcode), &xa, env); \
2356 getVSR(xB(opcode), &xb, env); \
2358 if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \
2359 float64_is_any_nan(xb.VsrD(0)))) { \
2360 if (float64_is_signaling_nan(xa.VsrD(0)) || \
2361 float64_is_signaling_nan(xb.VsrD(0))) { \
2362 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2364 if (ordered) { \
2365 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2367 cc = 1; \
2368 } else { \
2369 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2370 cc = 8; \
2371 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), \
2372 &env->fp_status)) { \
2373 cc = 4; \
2374 } else { \
2375 cc = 2; \
2379 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2380 env->fpscr |= cc << FPSCR_FPRF; \
2381 env->crf[BF(opcode)] = cc; \
2383 helper_float_check_status(env); \
2386 VSX_SCALAR_CMP(xscmpodp, 1)
2387 VSX_SCALAR_CMP(xscmpudp, 0)
2389 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2390 * name - instruction mnemonic
2391 * op - operation (max or min)
2392 * nels - number of elements (1, 2 or 4)
2393 * tp - type (float32 or float64)
2394 * fld - vsr_t field (VsrD(*) or VsrW(*))
2396 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2397 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2399 ppc_vsr_t xt, xa, xb; \
2400 int i; \
2402 getVSR(xA(opcode), &xa, env); \
2403 getVSR(xB(opcode), &xb, env); \
2404 getVSR(xT(opcode), &xt, env); \
2406 for (i = 0; i < nels; i++) { \
2407 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2408 if (unlikely(tp##_is_signaling_nan(xa.fld) || \
2409 tp##_is_signaling_nan(xb.fld))) { \
2410 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2414 putVSR(xT(opcode), &xt, env); \
2415 helper_float_check_status(env); \
2418 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2419 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2420 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2421 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2422 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2423 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2425 /* VSX_CMP - VSX floating point compare
2426 * op - instruction mnemonic
2427 * nels - number of elements (1, 2 or 4)
2428 * tp - type (float32 or float64)
2429 * fld - vsr_t field (VsrD(*) or VsrW(*))
2430 * cmp - comparison operation
2431 * svxvc - set VXVC bit
2433 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc) \
2434 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2436 ppc_vsr_t xt, xa, xb; \
2437 int i; \
2438 int all_true = 1; \
2439 int all_false = 1; \
2441 getVSR(xA(opcode), &xa, env); \
2442 getVSR(xB(opcode), &xb, env); \
2443 getVSR(xT(opcode), &xt, env); \
2445 for (i = 0; i < nels; i++) { \
2446 if (unlikely(tp##_is_any_nan(xa.fld) || \
2447 tp##_is_any_nan(xb.fld))) { \
2448 if (tp##_is_signaling_nan(xa.fld) || \
2449 tp##_is_signaling_nan(xb.fld)) { \
2450 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2452 if (svxvc) { \
2453 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2455 xt.fld = 0; \
2456 all_true = 0; \
2457 } else { \
2458 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) { \
2459 xt.fld = -1; \
2460 all_false = 0; \
2461 } else { \
2462 xt.fld = 0; \
2463 all_true = 0; \
2468 putVSR(xT(opcode), &xt, env); \
2469 if ((opcode >> (31-21)) & 1) { \
2470 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2472 helper_float_check_status(env); \
2475 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0)
2476 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1)
2477 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1)
2478 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0)
2479 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1)
2480 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1)
2482 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2483 * op - instruction mnemonic
2484 * nels - number of elements (1, 2 or 4)
2485 * stp - source type (float32 or float64)
2486 * ttp - target type (float32 or float64)
2487 * sfld - source vsr_t field
2488 * tfld - target vsr_t field (f32 or f64)
2489 * sfprf - set FPRF
2491 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2492 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2494 ppc_vsr_t xt, xb; \
2495 int i; \
2497 getVSR(xB(opcode), &xb, env); \
2498 getVSR(xT(opcode), &xt, env); \
2500 for (i = 0; i < nels; i++) { \
2501 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2502 if (unlikely(stp##_is_signaling_nan(xb.sfld))) { \
2503 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2504 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2506 if (sfprf) { \
2507 helper_compute_fprf(env, ttp##_to_float64(xt.tfld, \
2508 &env->fp_status)); \
2512 putVSR(xT(opcode), &xt, env); \
2513 helper_float_check_status(env); \
2516 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2517 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2518 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2519 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2521 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2523 float_status tstat = env->fp_status;
2524 set_float_exception_flags(0, &tstat);
2526 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2529 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2531 float_status tstat = env->fp_status;
2532 set_float_exception_flags(0, &tstat);
2534 return float32_to_float64(xb >> 32, &tstat);
2537 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2538 * op - instruction mnemonic
2539 * nels - number of elements (1, 2 or 4)
2540 * stp - source type (float32 or float64)
2541 * ttp - target type (int32, uint32, int64 or uint64)
2542 * sfld - source vsr_t field
2543 * tfld - target vsr_t field
2544 * rnan - resulting NaN
2546 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2547 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2549 ppc_vsr_t xt, xb; \
2550 int i; \
2552 getVSR(xB(opcode), &xb, env); \
2553 getVSR(xT(opcode), &xt, env); \
2555 for (i = 0; i < nels; i++) { \
2556 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2557 if (stp##_is_signaling_nan(xb.sfld)) { \
2558 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2560 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2561 xt.tfld = rnan; \
2562 } else { \
2563 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2564 &env->fp_status); \
2565 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2566 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2571 putVSR(xT(opcode), &xt, env); \
2572 helper_float_check_status(env); \
2575 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2576 0x8000000000000000ULL)
2577 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2578 0x80000000U)
2579 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2580 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2581 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2582 0x8000000000000000ULL)
2583 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2584 0x80000000U)
2585 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2586 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2587 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2588 0x8000000000000000ULL)
2589 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2590 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2591 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2593 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2594 * op - instruction mnemonic
2595 * nels - number of elements (1, 2 or 4)
2596 * stp - source type (int32, uint32, int64 or uint64)
2597 * ttp - target type (float32 or float64)
2598 * sfld - source vsr_t field
2599 * tfld - target vsr_t field
2600 * jdef - definition of the j index (i or 2*i)
2601 * sfprf - set FPRF
2603 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
2604 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2606 ppc_vsr_t xt, xb; \
2607 int i; \
2609 getVSR(xB(opcode), &xb, env); \
2610 getVSR(xT(opcode), &xt, env); \
2612 for (i = 0; i < nels; i++) { \
2613 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2614 if (r2sp) { \
2615 xt.tfld = helper_frsp(env, xt.tfld); \
2617 if (sfprf) { \
2618 helper_compute_fprf(env, xt.tfld); \
2622 putVSR(xT(opcode), &xt, env); \
2623 helper_float_check_status(env); \
2626 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2627 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2628 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2629 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2630 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2631 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2632 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2633 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2634 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2635 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2636 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2637 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2639 /* For "use current rounding mode", define a value that will not be one of
2640 * the existing rounding model enums.
2642 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2643 float_round_up + float_round_to_zero)
2645 /* VSX_ROUND - VSX floating point round
2646 * op - instruction mnemonic
2647 * nels - number of elements (1, 2 or 4)
2648 * tp - type (float32 or float64)
2649 * fld - vsr_t field (VsrD(*) or VsrW(*))
2650 * rmode - rounding mode
2651 * sfprf - set FPRF
2653 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
2654 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2656 ppc_vsr_t xt, xb; \
2657 int i; \
2658 getVSR(xB(opcode), &xb, env); \
2659 getVSR(xT(opcode), &xt, env); \
2661 if (rmode != FLOAT_ROUND_CURRENT) { \
2662 set_float_rounding_mode(rmode, &env->fp_status); \
2665 for (i = 0; i < nels; i++) { \
2666 if (unlikely(tp##_is_signaling_nan(xb.fld))) { \
2667 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2668 xt.fld = tp##_snan_to_qnan(xb.fld); \
2669 } else { \
2670 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
2672 if (sfprf) { \
2673 helper_compute_fprf(env, xt.fld); \
2677 /* If this is not a "use current rounding mode" instruction, \
2678 * then inhibit setting of the XX bit and restore rounding \
2679 * mode from FPSCR */ \
2680 if (rmode != FLOAT_ROUND_CURRENT) { \
2681 fpscr_set_rounding_mode(env); \
2682 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
2685 putVSR(xT(opcode), &xt, env); \
2686 helper_float_check_status(env); \
2689 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_nearest_even, 1)
2690 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2691 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2692 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2693 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2695 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_nearest_even, 0)
2696 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2697 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2698 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2699 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2701 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_nearest_even, 0)
2702 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2703 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2704 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2705 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2707 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2709 helper_reset_fpstatus(env);
2711 uint64_t xt = helper_frsp(env, xb);
2713 helper_compute_fprf(env, xt);
2714 helper_float_check_status(env);
2715 return xt;